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11.1 Introduction

The concept of the analytic signal is an important concept in one-dimensional
signal theory since it makes the instantaneous amplitude and phase of a real
signal directly accessible. Regrettably, there is no straightforward extension
of this concept to multidimensional signals, yet. There are rather different
approaches to an extension which have different drawbacks. In the first part
of this chapter we will review the main approaches and introduce a new one
which overcomes some of the problems of the older approaches. The new
definition is easily described in the frequency domain. However, in contrast
to the 1-D analytic signal we will use the quaternionic frequency domain
instead of the complex Fourier domain. Based on the so defined quaternionic
analytic signal [36] the instantaneous amplitude and quaternionic phase of a
2-D signal can be defined [34].

In one-dimensional signal theory it is often useful not to calculate the ana-
lytic signal but a bandpass filtered version of the analytic signal. This is done
by applying so called quadrature filters. Here, we will use Gabor filters which
are good approximations to quadrature filters. Corresponding to the evalu-
ation of the quaternionic analytic signal is the application of quaternionic
∗ This work has been supported by German National Merit Foundation and by
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Gabor filters which we introduce based on the quaternionic Fourier trans-
form. As a practical example we demonstrate the application of quaternionic
Gabor filters in texture segmentation.

11.2 The Analytic Signal

The notion of the analytic signal of a real one-dimensional signal was intro-
duced in 1946 by Gabor [88]. Before going into technical details we will give
a vivid explanation of the meaning of the analytic signal. If we regard a real
one-dimensional signal f as varying with time, it can be represented by the
oscillating vector from the origin to f(t) on the real line. Taking a snapshot
of the vector at time t0 as shown in figure 11.2 reveals no information about
the amplitude or the instantaneous phase of the oscillation. I.e. it is invisible
whether f is still growing to the right or already on the returning way and
where the extrema of the oscillation lie. The analytic signal of f is a complex-
valued signal, denoted by fA. Thus, fA can be visualized as a rotating vector
in the complex plane. This vector has the property that its projection to
the real axis is identical to the vector given by f . Moreover, if a snapshot is
taken, the length of the vector, and its angle against the real axis give the
instantaneous amplitude and the instantaneous phase of f , respectively. The
analytic signal is constructed by adding to the real signal f a signal which is
shifted by −π/2 in phase against f .

fHi

f

fA(t0)

f(t0)0

Fig. 11.1. Snapshot of the oscillating vector to f and the rotating vector to
fA at time t0
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In this section we will shortly review the analytic signal in 1-D and four
approaches to the analytic signal in 2-D which have occurred in the literature
[100, 101, 92, 226]. We investigate the different principles which lie at the basis
of the definitions and conclude with a set of desirable properties of the 2-D
analytic signal. Based on the QFT it is possible to introduce a novel definition
of the analytic signal which fulfills most of the desired properties.

11.2.1 The One-Dimensional Analytic Signal

As mentioned above, the analytic signal fA of a real one-dimensional signal f
is defined as the sum of f and a −π/2-shifted version of f as imaginary part.
The shifted version of f is the Hilbert transform fHi of f . Thus, the analytic
signal can be written as fA = f + ifHi. This is the generalization of the
complex notation of harmonic signals given by Euler’s equation exp(i2πux) =
cos(2πux) + i sin(2πux).

A phase shift by −π/2 – which is expected to be done by the Hilbert
transform – can be realized by taking the negative derivative of a function.
E.g. we have

− ∂

∂x
cos(2πux) = 2πu sin(2πux),

which shifts the cosine-function and additionally scales the amplitude with
the angular frequency ω = 2πu. In order to avoid this extra scaling we divide
each frequency component by the absolute value of the angular frequency.
This procedure can easily be described in the Fourier domain: Taking the
negative derivative results in multiplication by −i2πu. Dividing by |2πu|
results in the following procedure in the frequency domain:

F (u) 7→ −i u|u|F (u) = −i sign(u)F (u),

which makes plausible the definition of the Hilbert transform.
The formal definitions of the Hilbert transform and of the analytic signal

are as follows:

Definition 11.2.1 (Hilbert transform). Let f be a real 1-D signal and
F its Fourier transform. The Hilbert transform of f is then defined in the
frequency domain by

FHi(u) = −isign(u)F (u) with sign(u) =







1 if u > 0
0 if u = 0
−1 if u < 0

. (11.1)

In spatial domain this reads

fHi(x) = f(x) ∗ 1

πx
, (11.2)

where ∗ denotes the convolution operation.
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The convolution integral in (11.2), namely

fHi(x) =
1

π

∫

R

f(ξ)

x− ξ
dξ

contains a singularity at x = ξ. This is handled by evaluating Cauchy’s
principle value, i.e.

fHi(x) =
1

π
P

∫

R

f(ξ)

x− ξ
dξ (11.3)

=
1

π
lim
ε→0





x−ε
∫

−∞

f(ξ)

x− ξ
dξ +

∞
∫

x+ε

f(ξ)

x− ξ
dξ



 (11.4)

Definition 11.2.2 (Analytic signal). Let f be a real 1-D signal and F its
Fourier transform. Its analytic signal in the Fourier domain is then given by

FA(u) = F (u) + iFHi(u) (11.5)

= F (u)(1 + sign(u)).

In the spatial domain this definition reads:

fA(x) = f(x) + ifHi(x) = f(x) ∗
(

δ(x) +
i

πx

)

. (11.6)

Thus, the analytic signal of f is constructed by taking the Fourier transform
F of f , suppressing the negative frequencies and multiplying the positive
frequencies by two. Note that, applying this procedure, we do not lose any
information about f because of the Hermite symmetry of the spectrum of a
real function.

The analytic signal enables us to define the notions of the instantaneous
amplitude and the instantaneous phase of a signal [92].

Definition 11.2.3 (Instantaneous amplitude and phase). Let f be a
real 1-D signal and fA its analytic signal. The instantaneous amplitude and
and phase of f are then defined by

instantaneous amplitude of f(x) = |fA(x)| (11.7)

instantaneous phase of f(x) = atan2(IfA(x),RfA(x)). (11.8)

For later use we introduce the notion of a Hilbert pair.

Definition 11.2.4 (Hilbert pair). Two real one-dimensional functions f
and g are called a Hilbert pair if one is the Hilbert transform of the other,
i.e.

fHi = g or gHi = f.

If fHi = g it follows that gHi = −f .
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We illustrate the above definitions by a simple example: The analytic signal of
f(x) = a cos(ωx) which is a cosA(ωx) = a cos(ωx) + ia sin(ωx) = a exp(iωx).
The instantaneous amplitude of f is given by |fA(x)| = a while the in-
stantaneous phase is atan2(IfA(x),RfA(x)) = ωx. Thus, the instantaneous
amplitude and phase of the cosine-function are exactly equal to the expected
values a and ωx, respectively. Furthermore, cos and sin constitute a Hilbert
pair. Figure 11.2 shows another example of an oscillating signal together with
its instantaneous amplitude and its instantaneous phase.

−300 −200 −100 0 100 200 300
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0
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4

Fig. 11.2. An oscillating signal, its instantaneous amplitude (signal envelope)
and its instantaneous phase (dashed)

However, the close relation of the instantaneous amplitude and phase to
the local structure of the signal gets lost if the signal has no well defined
angular frequency. Most of the time it is sufficient to require the signal to be
of narrow bandwidth ([92], p. 171).

For this reason later (in section 11.3.1) Gabor filters will be introduced
which establish a relation between the local structure and the local phase of
a broader class of signals.

11.2.2 Complex Approaches to the Two-Dimensional
Analytic Signal

The construction of the analytic signal is of interest not only in one-
dimensional signal processing but in image processing and multidimensional
signal processing as well. So far, however, we have merely presented a def-
inition of the one-dimensional analytic signal. Thus, an extension to higher
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dimensions is needed. There have appeared different approaches to a 2-D ana-
lytic signal in the literature. All of these approaches use a combination of the
original signal and its Hilbert transform. In this section we will present and
discuss these approaches. A novel approach which is based on the quater-
nionic Fourier transform (see chap. 8, Def. 8.3.4) is introduced in section
11.2.3.

In order to evaluate the different approaches to the analytic signal to 2-
D we need some guidelines. As such a guideline we give a list of the main
properties of the analytic signal in 1-D. Any new definition will be mea-
sured according to the degree to which it extends these properties to higher
dimensions.

Table 11.1. Four properties of the analytic signal

1. The spectrum of an analytic signal is right-sided (FA(u) =
0 for u < 0).

2. Hilbert pairs are orthogonal.
3. The real part of the analytic signal fA is equal to the original

signal f .
4. The analytic signal is compatible with the associated harmonic

transform (in case of the 1-D analytic signal with the Fourier
transform.)

We will explain the forth point. The analytic signal is called compati-
ble with the associated harmonic transform with transformation kernel K
if RK and IK are a Hilbert pair. In case of the one-dimensional Fourier
transform this property is fulfilled, since the real part of the Fourier kernel,
i.e. R(exp(−i2π ux)) = cos(−2π ux) is the Hilbert transform of sin(−2π ux),
as was shown above.

The first definition is based on the 2-D Hilbert transform [226]:

Definition 11.2.5 (Total 2-D Hilbert transform). Let f be a real two-
dimensional signal. Its Hilbert transform is given by

fHi(x) = f(x) ∗
(

1

π2xy

)

, (11.9)

where ∗ denotes the 2-D convolution. In the frequency domain this reads

FHi(u) = −F (u)sign(u)sign(v).

Sometimes fHi is called the total Hilbert transform of f [101].

For later use, we define also the partial Hilbert transforms of a 2-D signal.
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Definition 11.2.6 (Partial Hilbert transform).
Let f be a real two-dimensional signal. Its partial Hilbert transforms in x-
and y-direction are given by

fHi1(x) = f(x) ∗
(

δ(y)

πx

)

, and (11.10)

fHi2(x) = f(x) ∗
(

δ(x)

πy

)

, (11.11)

respectively. In the frequency domain this reads

FHi1(u) = −iF (u)sign(u) and FHi2 (u) = −iF (u)sign(v).

The partial Hilbert transform of a 2-D signal can of course be defined with
respect to any orientation.

In analogy to 1-D an extension of the analytic signal can be defined as
follows:

Definition 11.2.7 (Total analytic signal). The analytic signal of a real
2-D signal f is defined as

fA(x) = f(x) ∗ (δ2(x) +
i

π2xy
) (11.12)

= f(x) + ifHi(x), (11.13)

where fHi is given by (11.9). In the frequency domain this definition reads

FA(u) = F (u)(1 − i sign(u)sign(v)).

The spectrum of fA according to definition 11.2.7 is shown in figure 11.3.
It does not vanish anywhere in the frequency domain. Hence, there is no
analogy to the causality property of an analytic signal’s spectrum in 1-D.
Secondly, Hilbert pairs according to this definition are only orthogonal if
the functions are separable [101]. Furthermore, the above definition of the
analytic signal is not compatible with the two-dimensional Fourier transform,
since sin(2πux) is not the total Hilbert transform of cos(2πux). Thus, the
properties 1, 2 and 4 from table 11.1 are not satisfied by this definition. A

F (u) − iF (u)

F (u) − iF (u) F (u) + iF (u)

F (u) + iF (u)
v

u

Fig. 11.3. The spectrum of the analytic signal according to definition 11.2.7
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common approach to overcome this fact can be found e.g. by Granlund [92].
This definition starts with the construction in the frequency domain. While
in 1-D the analytic signal is achieved by suppressing the negative frequency
components, in 2-D one half-plane of the frequency domain is set to zero in
order to fulfill the causality constraint (property no. 1 in table 11.1). It is not
immediately clear how negative frequencies can be defined in 2-D. However,
it is possible to introduce a direction of reference defined by the unit vector
ê = (cos(θ), sin(θ)). A frequency u with ê · u > 0 is called positive while a
frequency with ê ·u < 0 is called negative. The 2-D analytic signal can then
be defined in the frequency domain.

Definition 11.2.8 (Partial analytic signal). Let f be a real 2-D signal
and F its Fourier transform. The Fourier transform of the analytic signal is
defined by:

FA(u) =







2F (u) if u · ê > 0
F (u) if u · ê = 0

0 if u · ê < 0







= F (u)(1 + sign(u · ê)). (11.14)

In the spatial domain (11.14) reads

fA(x) = f(x) ∗
(

δ(x · ê) +
i

πx · ê

)

δ(x · ê⊥). (11.15)

The vector ê⊥ is a unit vector which is orthogonal to ê : ê · ê⊥ = 0.

Please note the similarity of this definition with the one-dimensional def-
inition (11.5). For ê> = (1, 0) (11.15) takes the form

fA(x) = f(x) ∗
(

δ(x) +
i

πx

)

δ(y) (11.16)

= f(x) + ifHi1 . (11.17)

Thus, the reason for the name partial analytic signal lies in the fact that it
is the sum of the original signal and the partial Hilbert transform as imagi-
nary part. The partial analytic signal with respect to the two coordinate axes
has been used by Venkatesh et al. [242, 241] for the detection of image fea-
tures. They define the energy maxima of the partial analytic signal as image
features.

According to this definition the analytic signal is calculated line-wise along
the direction of reference. The lines are processed independently. Hence, def-
inition 11.2.8 is intrinsically 1-D, such that it is no satisfactory extension of
the analytic signal to 2-D. Its application is reasonable only for simple sig-
nals, i.e. signals which vary only along one orientation [92]. The orientation
ê can then be chosen according to the direction of variation of the image.

If negative frequencies are defined in the way indicated above, we can say
that property 1 of table 11.1 is fulfilled. Properties 2 and 3 are valid as well.
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This follows from the fact that merely the 1-D analytic signal is evaluated line-
wise, which leads to a trivial extension of these properties. Even property 4 is
”almost” valid: sin(ux+vy) is the partial Hermite transform (i.e. with respect
to the x direction) of cos(ux+ vy) for all frequencies u with u 6= 0. However,
the main drawback of definition 11.2.8 is the intrinsic one-dimensionality
of the definition and the non-uniqueness with regard to the orientation of
reference ê.

2F (u)

0

ê

u

v

Fig. 11.4. The spectrum of the analytic signal according to definition 11.2.8

The both definitions presented so far seem to establish the following
dilemma: Either an intrinsically two-dimensional definition of the analytic
signal based on the total Hilbert transform can be introduced, which does
not extend the main properties of the 1-D analytic signal, or these proper-
ties are extended by an intrinsically one-dimensional definition based on the
partial Hilbert transform.

An alternative to these approaches was recently introduced by Hahn [100,
101]. Hahn avoids the term ”analytic signal” and uses Gabor’s original term
”complex signal” instead.

Definition 11.2.9. Let f be a real, two-dimensional function and F its
Fourier transform. The 2-D complex signal (according to Hahn [101]) is de-
fined in the frequency domain by

FA(u) = (1 + sign(u))(1 + sign(v))F (u).

In the spatial domain this reads

fA(x) = f(x) ∗
(

δ(x) +
i

πx

)(

δ(y) +
i

πy

)

(11.18)

= f(x) − fHi(x) + i(fHi1(x) + fHi2(x)), (11.19)

where fHi is the total Hilbert transform, and fHi1 and fHi2 are the partial
Hilbert transforms.
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The meaning of definition 11.2.9 becomes clear in the frequency domain:
Only the frequency components with u > 0 and v > 0 are kept, while the
components in the three other quadrants are suppressed (see figure 11.5):

FA(u) = (1 + sign(u))(1 + sign(v))F (u).

0

0 0

4F (u)

v

u

Fig. 11.5. The spectrum of the analytic signal according to Hahn [100] (def-
inition 11.2.9)

Thus, the problem of defining positive frequencies is solved in another
way then in definition 11.2.8.

A main problem of definition 11.2.9 is the fact that the original signal is
not reconstructible from the analytic signal, since due to the Hermite symme-
try only one half-plane of the frequency domain of a real signal is redundant.
For this reason Hahn proposes to calculate not only the analytic signal with
the spectrum in the upper right quadrant but also another analytic signal
with its spectrum in the upper left quadrant. It can be shown that these two
analytic signals together contain all the information of the original signal
[101]. When necessary we distinguish the two analytic or complex signals by
referring to them as definition 11.2.9a and 11.2.9b, respectively.

Thus, the complete analytic signal according to definition 11.2.9 consists
of two complex signals, i.e. two real parts and two imaginary parts or, in polar
representation, of two amplitude- and two phase-components which makes the
interpretation, especially of the amplitude, difficult. Furthermore, it would
be more elegant to express the analytic signal with only one function instead
of two. Definition 11.2.9 fulfills properties 1 and 2 from table 11.1. The very
important property that the signal should be reconstructible from its analytic
signal is only fulfilled if two different complex signals are calculated using two
neighbored quadrants of the frequency domain. Hahn [101] mentions that
his definition of the 2-D analytic signal is compatible with the 2-D Fourier
transform for the following reason: The 2-D Fourier kernel can be written in
the form
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exp(i2πux) = cos(2πux) cos(2πvy) − sin(2πux) sin(2πvy) (11.20)

+ i(cos(2πux) sin(2πvy) + sin(2πux) cos(2πvy)) (11.21)

where for convenience we have omitted the minus sign in the exponential.
According to definition 11.2.9 this is exactly the complex signal of f(x) =
cos(2πux) cos(2πvy). However, this fulfills only a weak kind of compatibility
and not the one defined by us above. This would require that the analytic
signal of R exp(i2πux) would equal exp(i2πux).

The remaining problems can be summarized as follows. The original signal
cannot be recovered from Hahn’s analytic signal. This restriction can only be
overcome by introducing two complex signals for each real signal, which is not
a satisfactory solution. Furthermore, Hahn’s analytic signal is not compatible
with the 2-D Fourier transform in the strong sense.

Apart from these disadvantages, it is clear from the above analysis, that,
among the definitions introduced so far, Hahn’s definition is closest to a
satisfactory 2-D extension of the analytic signal. In the following section we
will show how Hahn’s frequency domain construction can be applied to the
construction of a quaternionic analytic signal, which overcomes the remaining
problems.

11.2.3 The 2-D Quaternionic Analytic Signal

Hahn’s approach to the analytic signal faces the problem that a two-
dimensional complex hermitian signal can not be recovered from one quadrant
of its domain. For this reason Hahn introduced two complex signals to each
real two-dimensional signal. We will show how this problem is solved using
the QFT.

Since the QFT of a real signal is quaternionic hermitian (see chapter 8,
theorem 8.4.8) we do not lose any information about the signal in this case.
This fact is visualized in figure 11.6.

β(F q(u, v)) F q(u, v)

α(F q(u, v))γ(F q(u, v))

v

u

Fig. 11.6. The quaternionic spectrum of a real signal can be reconstructed
from only one quadrant
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Thus, we define the quaternionic analytic signal in the frequency domain
as in definition 11.2.9, with the only difference that we use the quaternionic
frequency domain defined by the QFT instead of the complex frequency do-
main.

Definition 11.2.10 (Quaternionic analytic signal). Let f be a
real two-dimensional signal and F q its QFT. In the quaternionic frequency
domain we define the quaternionic analytic signal of a real signal as

F qA(u) = (1 + sign(u))(1 + sign(v))F q(u),

where x = (x, y) and u = (u, v). Definition 11.2.10 can be expressed in the
spatial domain as follows:

f qA(x) = f(x) + n · fHi(x), (11.22)

where n = (i, j, k)> and fHi is a vector which consists of the total and the
partial Hilbert transforms of f according to definitions 11.2.5 and 11.2.6:

fHi(x) =





fHi1(x)
fHi2(x)
fHi(x)



 . (11.23)

Note that, formally, (11.22) resembles the definition of the one-dimensional
analytic signal (11.6). Since the quaternionic analytic signal consists of four
components we replace the notion of a Hilbert pair (definition 11.2.4) by the
notion of a Hilbert quadruple.

Definition 11.2.11 (Hilbert quadruple). Four real two-dimensional
functions fi, i ∈ {1, . . . 4} are called a Hilbert quadruple if

I(fk)
q
A = fl (11.24)

J (fk)
q
A = fm (11.25)

K(fk)
q
A = fn (11.26)

for some permutation of pairwise different k, l,m, n ∈ {1, . . . 4}.

Theorem 11.2.1. The four components of the QFT-kernel build a Hilbert
quadruple.

Proof. Since the quaternionic analytic signal of f(x) = cos(ωxx) cos(ωyy) is
given by f qA(x) = exp(iωxx) exp(jωyy), which is the QFT-kernel, we have

I(R exp(iωxx) exp(jωyy))
q
A = I exp(iωxx) exp(jωyy) (11.27)

J (R exp(iωxx) exp(jωyy))
q
A = J exp(iωxx) exp(jωyy) (11.28)

K(R exp(iωxx) exp(jωyy))
q
A = K exp(iωxx) exp(jωyy). (11.29)

which concludes the proof. ut
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11.2.4 Instantaneous Amplitude

One main feature of the analytic signal is that it makes accessible instanta-
neous phase and amplitude information directly. In the following we define
the instantaneous amplitude of real 2-D signal as the absolute value of its
analytic signal. Clearly, the different definitions of the analytic signal given in
the last section result in different definitions of the instantaneous amplitude
of a signal. We summarize these definitions in table 11.2. Figure 11.7 shows

analytic signal instantaneous amplitude

Def. 11.2.7
�
f2( � ) + f2

Hi
( � )

Def. 11.2.8 � f2( � ) + f2

Hi1
( � )

Def. 11.2.9
�

[f( � ) − fHi( � )]2 + [fHi1
( � ) + fHi2

( � )]2

Def. 11.2.10 � f2( � ) + f2

Hi1
( � ) + f2

Hi2
( � ) + f2

Hi
( � )

Table 11.2. The tabular shows the different possible definitions of the instanta-
neous magnitude in 2-D. On the right hand side the instantaneous amplitude of the
2-D signal f is given according to the definition of the analytic signal indicated on
the left hand side

an image of D. Hilbert and the instantaneous amplitude of this image. The
instantaneous amplitude is expected to take high values wherever the image
has considerable contrast. From this point of view only the instantaneous
amplitude constructed via the partial analytic signal and the quaternionic
analytic signal yield acceptable results. However, at positions where the local
structure is intrinsically 2-D the quaternionic analytic signal yields better
results.

11.2.5 The n-Dimensional Analytic Signal

All approaches to the 2-D analytic signal can easily be extended to n-
dimensional signals. We merely give the definitions here and forego a detailed
discussion, since the main properties of and differences between the different
approaches remain the same in n-D as in 2-D.

Definition 11.2.12 (Total analytic signal). The analytic signal of a real
n-D signal f is defined as
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Fig. 11.7. An image of Hilbert and its instantaneous amplitude according to the
different definitions of the 2-D analytic signal given in section 11.2.3. From top left
to bottom right: The original image, the instantaneous amplitude (IA) according to
the total analytic signal, the partial analytic signal (with respect to the x-direction),
the definition of Hahn (maintaining the upper right quadrant and the upper left
quadrant, respectively), and the IA with respect to the quaternionic analytic signal
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fA(x) = f(x) ∗ (δn(x) +
i

πn
∏n

j=1 xj
) (11.30)

=: f(x) + ifHi(x), (11.31)

where fHi is the n-D total Hilbert transform of f . In the frequency domain
this definition reads

FA(u) = F (u)(1 − i

n
∏

j=1

sign(uj)).

Definition 11.2.13 (Partial analytic signal). Let f be a real n-D signal
and F its Fourier transform. The Fourier transform of the analytic signal
with respect to some n-D unit vector ê is defined by:

FA(u) =







2F (u) if u · ê > 0
F (u) if u · ê = 0

0 if u · ê < 0







= F (u)(1 + sign(u · ê)). (11.32)

Definition 11.2.14. Let f be a real, n-dimensional function and F its
Fourier transform. The n-D complex signal (according to Hahn [101]) is de-
fined in the frequency domain by

FA(u) =

n
∏

j=1

(1 + sign(uj))F (u).

In the spatial domain this reads

fA(x) = f(x) ∗
n

∏

j=1

(

δ(xj) +
i

πxj

)

. (11.33)

Finally we define the n-dimensional version of the quaternionic analytic sig-
nal, namely the Clifford analytic signal.

Definition 11.2.15 (Clifford analytic signal).
Let f be a real, n-dimensional function and F c its Clifford Fourier transform.
The n-D Clifford analytic signal is defined in the frequency domain by

F cA(u) =

n
∏

j=1

(1 + sign(uj))F
c(u).

In the spatial domain this reads

f cA(x) = f(x) ∗
n

∏

j=1

(

δ(xj) +
ej
πxj

)

. (11.34)
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11.3 Local Phase in Image Processing

We have shown how the instantaneous phase can be evaluated using the
analytic signal. However, the instantaneous phase loses its direct relation
to the local signal structure, when the signal is not of narrow bandwidth
[92]. In order to overcome this restriction, bandpass-filters with a one-sided
transfer function can be applied to a signal. According to the definition of
the 1-D analytic signal the impulse responses of these filters, and the filter
responses to any real signal as well, are analytic signals. Filters of this kind are
called quadrature filters. The angular phase of the quadrature filter response
to a real signal is called the local phase. In the following we will introduce
complex Gabor filters as approximations to quadrature filters. Using these
filters we will define the local complex phase of an n-D signal. Since the local
complex phase is an intrinsically 1-D concept it is a reasonable concept merely
for simple or locally intrinsically 1-D signals. In section 11.3.2 we introduce
quaternionic Gabor filters based on the quaternionic Fourier transform. Using
these filters the concept of local phase of 2-D signals is extended.

11.3.1 Local Complex Phase

Complex Gabor filters are defined as linear shift-invariant filters with the
Gaussian windowed basis functions of the Fourier transform as their basis
functions.

Definition 11.3.1 (1-D Complex Gabor filter). A one-dimensional
complex Gabor filter is a linear shift-invariant filter with the impulse response

h(x;N, u0, σ) = g(x;N, σ) exp(i2πu0x), (11.35)

where g(x;N, σ) is the Gauss function

g(x;N, σ) = N exp

(

− x2

2σ2

)

.

The Gabor filters have as parameters the normalization constant N , the
center frequency u0 and the variance σ of the Gauss function. However, most
of the time we will not write down these arguments explicitly. Where no
confusion is possible we use the notation h(x) and g(x) for the Gabor filter
and the Gaussian function at position x, respectively.

We will use the normalization N = (
√

2πσ2)−1 such that
∫

R g(x)dx = 1
in the following. Analogously the definition of 2-D complex Gabor filters is
based on the 2-D Fourier transform:

Definition 11.3.2 (2-D Complex Gabor filter). A two-dimensional
complex Gabor filter is a linear shift-invariant filter with the impulse response

h(x; u0, σ, ε, φ) = g(x′, y′) exp(2πi(u0x+ v0y)) (11.36)
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with

g(x, y) = N exp

(

−x
2 + (εy)2

σ2

)

where ε is the aspect ratio. The coordinates (x′, y′) are derived from (x, y) by
a rotation about the origin through the angle φ:

(

x′

y′

)

=

(

cosφ sinφ
− sinφ cosφ

)(

x
y

)

. (11.37)

Again, we will choose the normalization such that
∫

R g(x, y)dx dy = 1,
i.e. N = ε

2πσ2 . In frequency domain the 1-D Gabor filters take the following
form:

h(x;u0, σ) ◦−• H(u;u0, σ) = exp(−2π2σ2(u− u0)
2).

The transfer function of a 2-D Gabor filter is given by

h(x; u0, σ, ε, φ) ◦−• H(u; u0, σ, ε, φ) = exp(−2π2σ2[|(u′ − u′
0)|2/ε]).

Thus, Gabor filters are bandpass filters. The radial center frequency of
the 2-D Gabor filter is given by F =

√

u2
0 + v2

0 and its orientation is
θ = atan(v0/u0). In most cases it is convenient to choose θ = φ such that the
orientation of the complex sine gratings is identical with the orientation of
one of the principle axes of the Gauss function. Figure 11.8 shows the transfer
function of a one-dimensional complex Gabor filter. Figure 11.8 shows that
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Fig. 11.8. The transfer function of a one-dimensional Gabor filter with u0 = 100
and σ = 0.01

the main amount of energy of the Gabor filter is centered around the center
frequency u0 in the positive half of the frequency domain. However, the en-
ergy in the negative half is not equal to zero. Because of this property, the
filter response of the Gabor filter to a real signal is only an approximation
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to an analytic signal (which is only one-sided in the frequency domain). The
error of this approximation decreases with increasing u and with increasing
σ.

The local phase of a signal is defined as the angular phase of its complex
Gabor filter response. The relation to the local structure of the signal becomes
clear in the following way. At a signal position with locally even symmetry
only the even part of the Gabor filter, which is real-valued matches. The
angular phase of a real number is either 0 for a positive number or π for a
negative one. Thus, if the even filter component matches the signal positive,
the local phase is 0, if it matches negative, the local phase is π. A similar
reflection clarifies the case of a locally odd structure. In this case only the
odd, and thus imaginary, filter component matches the signal. Since the an-
gular phase of a pure imaginary number is π/2 for a positive imaginary part
and −π/2 otherwise, these values represent odd local structures. Figure 11.9
sketches the relation between structure and phase: the orientation in the cir-
cle indicates the value of the local phase. At the values 0, π/2, π and −π/2
the related structure is shown. An important feature of the local phase is

φ

Fig. 11.9. The relation between local signal structure and local phase (See [92].)

that it is independent of the signal energy. This makes the local phase
very robust against changing lighting conditions.

It should be mentioned here that the value of the local phase at a certain
signal position depends on the chosen filter parameters. I.e. Gabor filters will
only detect features at the scale to which they are tuned.

11.3.2 Quaternionic Gabor Filters

In analogy to the complex Gabor filters we introduce quaternionic Gabor
filters.
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Definition 11.3.3 (Quaternionic Gabor filter). The impulse response of
a quaternionic Gabor filter is a Gaussian windowed basis function of the QFT:

hq(x; u0, σ, ε) = g(x;σ, ε) exp(i2πu0x) exp(j2πv0y). (11.38)

Note that we do not use rotated Gaussian windows here.
It follows from the modulation theorem of the Fourier transform that com-

plex Gabor filters are shifted Gaussians in the frequency domain. In section
8.4.2 of chapter 8 we showed that there exists a modulation theorem for the
QFT as well. Consequently, quaternionic Gabor filters are shifted Gaussian
functions in the quaternionic frequency domain. Quaternionic Gabor filters
thus belong to the ”world” of the QFT rather than to the ”complex Fourier
world”. The QFT of a quaternionic Gabor filter is given by

hq(x; u0, σ, ε)
H
◦−• Hq(u; u0, σ, ε) = exp(−2π2σ2[|u − u0|2/ε2])

Thus, for positive frequencies u0 and v0 the main amount of the Gabor filter’s
energy lies in the upper right quadrant. Therefore, convolving a real signal
with a quaternionic Gabor filter yields an approximation to a quaternionic
analytic signal.

A typical quaternionic Gabor filter is shown in figure 11.10.

Fig. 11.10. A quaternionic Gabor filter with parameters σ1 = 20, σ2 = 10,
2πu0σ1 = 2πv0σ2 = 2. The size of the filter mask is 100 × 100

11.3.3 Local Quaternionic Phase

We now define the local quaternionic phase of a real two-dimensional signal
as the angular phase of the filter response to a quaternionic Gabor filter. The
angular phase is evaluated according to the rules given in table 8.1. If kq is
the quaternionic Gabor filter response of some image f the local quaternionic
phase (φ(x), θ(x), ψ(x) is defined by

kq(x) = |kq(x)|eiφ(x)ekψ(x)ejθ(x)

according to def. 8.3.1 given in chapter 8.
In 1-D we can make the statement: The local phase estimates and

spatial position are equivariant [92]. I.e. generally the local phase of a
signal varies monotonically up to 2π-wrap-arounds. There are only singular
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points with low or zero signal energy where this equivariance cannot be found
anymore. A simple example is the cosine function cos(x). If we apply a well
tuned Gabor filter for estimating the local phase φ of this function, we find
that it is almost equal to the spatial position: φ(x) ≈ x for x ∈ [−π, π[ (see
figure 11.11). This leads us to an interpretation of the local quaternionic
phase.
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Fig. 11.11. The cosine function and its local phase

We make a similar example as in the one-dimensional case by replacing
cos(x) by cos(x) cos(y). The first two components of the local phase φ and
θ turn out to approximate the spatial position: φ(x) ≈ x and θ(x) ≈ y for
(x, y) ∈ [0, 2π[×[0, π[. In general it turns out that these two components
of the local phase are equivariant with spatial position. The reason for the
interval [0, 2π[×[0, π[, which follows mathematically from the definition of the
angular phase of unit quaternions, can be understood from figure 11.12.

 θ

ϕ
2π

π

0

0

π
φ

Fig. 11.12. The function f(x, y) = cos(x) cos(y) with (x, y) ∈ [0, 4π[×[0, 3π[
(left) and (x, y) ∈ [0, 2π[×[0, π[ (right)
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While the spatial position can be recovered uniquely from the local signal
structure within the interval [0, 2π[×[0, π[, there will occur ambiguities if
the interval is extended. The whole function cos(x) cos(y) can be build from
patches of the size 2π × π. Considering this example the third component of
the local phase is always zero: ψ = 0. The meaning of this phase component
becomes obvious if we vary the structure of the test signal in the following
way. The function cos(x) cos(y) can be written as the sum

cos(x) cos(y) =
1

2
(cos(x+ y) + cos(x− y)).

If we consider linear combinations of the form

f(x) = (1 − λ) cos(x + y) + λ cos(x− y)

we find that ψ varies monotonically with the value of λ ∈ [0, 1]. This behavior
is shown in figure 11.13.
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Fig. 11.13. Dependence of the third phase component ψ on the local image
structure

The first two phase components, namely φ and θ do not change their
meaning, while λ varies. Only for the values λ = 0 and λ = 1, i.e. ψ = ∓ π

4 the
structure degenerates into an intrinsically one-dimensional structure. Hence,
the spatial position cannot any longer be recovered from the local structure.
This corresponds to the singularity in the evaluation the angular phase of
a quaternion when ψ = ±π

4 . In this case only φ ∓ θ can be evaluated. The
remaining degree of freedom can be eliminated by setting θ = 0.



276 Thomas Bülow, Gerald Sommer

11.3.4 Relations between Complex and Quaternionic Gabor
Filters

There is a simple relation between complex and quaternionic Gabor filters.
Each component of a complex Gabor filter with aspect ratio ε = 1 may be
written as the sum of two quaternionic Gabor filter components:

he(x, y) = g(x, y) cos(ω1x+ ω2y)

= g(x, y)(cos(ω1x) cos(ω2y) − sin(ω1x) sin(ω2y))

= hqee(x, y) − hqoo(x, y) (11.39)

ho(x, y) = g(x, y) sin(ω1x+ ω2y)

= g(x, y)(cos(ω1x) sin(ω2y) + sin(ω1x) cos(ω2y))

= hqeo(x, y) + hqoe(x, y). (11.40)

From the same quaternionic Gabor filter a second complex Gabor filter can
be generated by

he(x, y) = g(x, y) cos(ω1x− ω2y) (11.41)

= hqee(x, y) + hqoo(x, y)

ho(x, y) = g(x, y) sin(ω1x− ω2y) (11.42)

= hqoe(x, y) − hqeo(x, y).

Thus, each quaternionic Gabor filter corresponds to two complex Gabor fil-
ters. Sometimes these two complex filters are denoted by h+ (11.39, 11.40)
and h− (11.41, 11.42), respectively. The response of a signal f(x, y) to a Ga-
bor filter will be denoted by k(x, y) for a complex Gabor filter and kq(x, y) for
a quaternionic Gabor filter:

k(x, y) = (h ∗ f)(x, y)

= ((he + iho) ∗ f)(x, y)

= ke(x, y) + iko(x, y) (11.43)

kq(x, y) = (hq ∗ f)(x, y)

= ((hqee + ihqoe + jhqeo + khqoo) ∗ f)(x, y)

= kqee(x, y) + ikqoe(x, y) + jkqeo(x, y) + kkqoo(x, y). (11.44)

Theorem 11.3.1. The filter responses of the complex Gabor filters h+ and
h− can be obtained from kq by

k+(x) = (kqee − kqoo) + i(kqoe + kqeo) (11.45)

k−(x) = (kqee + kqoo) + i(kqoe − kqeo). (11.46)

Proof. The theorem follows from the definition of h+ and h− and the fact
that hq is an LSI-filter. ut

Algebraically, the relation between quaternionic and complex Gabor filters
can be illuminated if we apply a mapping from the algebra H to the four-
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Fig. 11.14. Relation between quaternionic and complex Gabor filters

dimensional commutative hypercomplex algebra H2 introduced in chapter 9
called switching.

Definition 11.3.4 (Switching). The one-to-one mapping S2 : H → H2 is
defined by

S2(a+ bi+ cj + dk) = a+ bi1 + ci2 + di3.

The multiplication table of H2 is given in table 11.3 (see also table 9.2)

Table 11.3. Multiplication table of H2

i1 i2 i3

i1 −1 i3 −i2
i2 i3 −1 −i1
i3 −i2 −i1 1

Theorem 11.3.2. Let hq be a quaternionic Gabor filter. Then

η(S2(h
q(x))) = (h+(x), h−(x)) ∈ C

2,

where η establishes the isomorphism between H2 and C
2:
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η : H2 → C
2 (11.47)

(α+ βi1 + γi2 + δi3) 7→ ((α− δ) + i(β + γ), (α+ δ) + i(β − γ)).(11.48)

The same is true for the filter responses to real images

η(S2(k
q(x))) = (k+(x), k−(x)) ∈ C

2.

Proof. The theorem follows directly from applying η to S2(h
q(x)) and the

definition of h+ and h−. ut

11.3.5 Algorithmic Complexity of Gabor Filtering

When performing a Gabor filtering on the computer we have to use discrete
Gabor filter masks of the form: h = [hm,n]m,n∈{1,...M} with

hm,n = h(m− M − 1

2
, n− N − 1

2
), (11.49)

where the right hand side is the continuous Gabor filter as in Def. 11.3.2.
Using this convention the Gabor filter mask is an M ×M matrix. The

origin is located at the center of the matrix, therefore it is advantageous
to choose M odd, in order to have a pixel in the center of the filter mask.
The frequencies u and v count how many periods fit into the filter mask in
horizontal and vertical direction, respectively.

The number of multiplications required by the convolution of an N ×N
image with an M ×M filter mask in a direct manner is O(N 2M2). When the
filter mask h is separable (h = hc ∗ hr), where hc and hr are a column vector
and a row vector of length M , respectively, the filtering operation is of linear
asymptotic complexity. Since the convolution operation is associative we can
write the filtering as

F = f ∗ (hc ∗ hr) = (f ∗ hc) ∗ hr. (11.50)

Thus, the number of required multiplications reduces to O(N 2M). It has
been shown how complex Gabor filter components can be constructed as the
sum of components of a quaternionic Gabor filter. Since quaternionic Gabor
filters are separable, this opens the possibility of implementing the
convolution with complex Gabor filters in a separable way. This
result is especially important since Gabor filters are known to be not exactly
steerable [174]. Figure 11.15 clarifies this result in ”image notation”.



11. Local Hypercomplex Signal Representations 279

−

=∗

∗ =

Fig. 11.15. The real part of a complex Gabor filter as linear combination of
separable quaternionic Gabor filter components

11.4 Texture Segmentation Using the Quaternionic

Phase

The task addressed in this section is: Segment a given image into uniformly
textured regions. This so-called texture segmentation problem is one branch
of the general problem of image segmentation which is one important step
in many computer vision tasks. Regarding global variations of gray values or
mean gray values over some neighborhood is in most cases not sufficient for
a correct segmentation. For this reason rather the global variations of local
measures characterizing the texture have to be regarded.

The posed problem is rather vague since the term texture is not well
defined and there is no unique way of characterizing mathematically the
local gray-value variations perceived as texture by human observers. For this
reason very different approaches to texture segmentation have been taken. As
local measure for the characterization of texture local statistical properties
[103, 125] and local geometric building blocks (textons) [127] have been used
among others. Another whole branch in texture segmentation research is
based on the local spatial frequency for characterizing texture. On the one
hand the Gabor filter based approaches to texture analysis are motivated
by psychophysical research since 2-D Gabor filters have proven to be a good
model for the cortical receptive field profiles [57] while on the other hand they



280 Thomas Bülow, Gerald Sommer

are supported by the observation that a whole class of textures (so-called
deterministic textures) give rise to periodic gray value structures. We will
restrict ourselves to the Gabor filter based approaches here. In the following
the term texture will always be understood as image texture in contrast to
surface texture. While surface texture is a property of a 3D real-world object,
image texture in this context is a property of a 2-D intensity image.

In the following sections we analyze in detail the pioneering work of Bovik
et al. [26] and in parallel introduce the corresponding quaternionic Gabor
filter based approach to texture segmentation. In the final section we discuss
our result and make some remarks on other texture segmentation approaches
based on Gabor filters.

11.4.1 The Gabor Filter Approach

Bovik et al. [26] introduced a Gabor filter based approach to texture segmen-
tation. As mentioned above, texture segmentation is the task of segmenting
an image into uniformly textured regions. According to Bovik’s approach a
uniform texture is described by a dominant frequency and orientation. Thus,
different textures occurring in a given image are supposed to differ signifi-
cantly at least in either the dominant frequency or the dominant orientation.

This assumption leads to the following simple texture model. An image
containing only one homogeneous texture is modeled as

fi(x) = ci(x) cos(2π(uix+ viy)) + si(x) sin(2π(uix+ viy))

= ai(x) cos(2π(uix+ viy) + pi(x)), (11.51)

where the amplitude ai =
√

c2i + s2i and the phase pi = − tan−1
(

si

ci

)

are

assumed to vary slowly, i.e. in such a way that the dominant frequency com-
ponent is always well approximated by (ui, vi). The characterizing domi-
nant frequency and orientation of the texture fi are |ui| =

√

u2
i + v2

i and
αi = − tan−1( vi

ui

), respectively.
A textured image containing n different textures fi is then given by n

textures of the form (11.51) each of which occurs in exactly one connected
region Ri of the image. Defining the characteristic functions zi of the regions

zi(x) =

{

1 if x ∈ Ri

0 else,

we can write the texture image f as

f(x) =

n
∑

i=1

fi(x)zi(x). (11.52)

The regions Ri are assumed to define a partitioning of the domain of f ,
i.e.

∑n

i=1 zi(x) ≡ 1 and zi(x)zj(x) ≡ 0 if i 6= j. The set of all possible
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textures f will be denoted by T . This texture model fits optimally the texture
segmentation technique applied by Bovik et al.

The first step in the segmentation procedure is devoted to filter selec-
tion. In this stage the parameters of a number of Gabor filters that will
be used for the segmentation are chosen. For a review of possible methods
we refer to Bovik’s article [26]. The image f is convolved with the set of
selected Gabor filters hi which yields n filtered images ki, where n is the
number of selected filters. The complex filtered images are transformed into
the amplitude/phase-representation according to

mi = |ki|, φ = − tan−1

( I(ki)

R(ki)

)

. (11.53)

The first level of segmentation is based on the comparison of the channel
amplitudes. At this stage each pixel of the image is assigned to one channel.
We will denote the region of pixels belonging to channel i by Ri. The clas-
sification is simply based on the comparison of the amplitudes mi at each
position in the image:

x ∈ Ri ⇐⇒ arg

(

max
j∈{1,... ,n}

(mj(x))

)

= i, (11.54)

where the function arg returns the index of m. A second segmentation step
is based on phase discontinuities. In this step regions which contain the same
texture but which are shifted against each other are separated.

11.4.2 Quaternionic Extension of Bovik’s Approach

The extension of Bovik’s approach to texture segmentation using quater-
nionic Gabor filters is straightforward. Before outlining the segmentation
procedure in the quaternionic case we modify the texture model given above.
If quaternionic Gabor filters are applied instead of complex filters the fol-
lowing texture model is more appropriate. A textured image is assumed to
consist of homogeneously textured regions

f q(x) =

n
∑

i=1

f qi (x)zi(x), (11.55)

where this time the homogeneous textures are of the form

f qi (x) = cci(x) cos(2πuix) cos(2πviy)

+ sci(x) sin(2πuix) cos(2πviy)

+ csi(x) cos(2πuix) sin(2πviy)

+ ssi(x) sin(2πuix) sin(2πviy).

Again, the functions cci, sci, csi and ssi are assumed to vary slowly. The set of
all possible textures f q will be denoted by T q. Obviously, this model is most
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appropriate for the use of quaternionic filters, since the four terms exactly
correspond to the modulation functions of the components of a quaternionic
Gabor filter. In figure 11.16 two model textures are shown which demonstrate
the difference between the two models.

Fig. 11.16. Two examples of textured images. Left: A textured image fitting
Bovik’s texture model (11.52). Right: An image fitting the extended texture
model (11.55). For simplicity, in both examples constant coefficients have
been chosen

Note that the quaternionic texture model comprises Bovik’s model as a
special case, i.e. T ⊂ T q.

The first stages of the segmentation procedure stay basically the same
as described in the previous section. Only slight modifications have to be
made. The filter selection stage is performed by a peak-finding algorithm in
the quaternionic power spectrum. The difference is that here the peak find-
ing is only performed over one quadrant of the frequency domain instead of
one half in the complex approach. As we have shown when introducing the
quaternionic analytic signal in section 11.2.3, one quadrant of the quater-
nionic frequency domain contains the complete information about the image.

Having selected a set of n quaternionic Gabor filters hqi the textured image
is convolved with these filters, which yields the filtered images kqi . These
image values are transformed into the polar representation of quaternions
introduced in section 8.3.1. This leads to an amplitude/phase-representation
(mi, φi, θi, ψi) of the filtered images.

Since we have shown that complex Gabor filters are contained in the
quaternionic Gabor filters, the first levels of Bovik’s approach, i.e. channel
assignment and detecting phase discontinuities, can as well be performed
using quaternionic Gabor filters. Thus, we do not go into details on these
steps but show which additional information is contained in the quaternionic
Gabor filter response, which can be used for segmentation purposes.

As shown in Fig. 11.13 the ψ-component of the phase holds the informa-
tion about the mixture of two superimposed frequency components, i.e. f1

and f2. Denoting the mixed texture by f = (1 − λ)f1 + λf2 there is a one-
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to-one mapping of ψ to λ. Thus, it is possible to use the ψ-component of the
local quaternionic phase in order to separate regions belonging to the same
frequency channel but having different structure according to the continuum
of structures shown in Fig. 11.13.

11.4.3 Experimental Results

We demonstrate the segmentation power of the ψ-component of the local
quaternionic phase first on a synthetic texture consisting of three different
textures (figure 11.17). This image resembles an image used by Bovik ([26]
p. 64, fig. 6), with the difference that in [26] only two different regions are
used. The third region (upper right and lower left region), which is the super-
position of the two orthogonally oriented sinusoidals, can not be segmented
using the complex approach. In contrast, the ψ-component of the quater-
nionic phase distinguishes not only local frequency and orientation but also
local structure as explained in the last section. See also figure 11.19 for clar-
ification.

Fig. 11.17. The textured image, its QFT-magnitude spectrum, and the ψ-
component of the local phase (top), and the segmentation result, the pixels
which were misclassified (1.22%) and the edges of the ψ-component found by
a Sobel filter superimposed to the original texture (bottom)

We tested the robustness of ψ for segmentation by adding Gaussian noise
to the synthetic texture in figure 11.17. The result is shown in figure 11.18.
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We added noise with zero mean and variance 1.5 and 5, respectively. The
texture itself has zero mean and takes values between −1 and 1. The SNR is
−2.7 dB and −13.2 dB, respectively. Although it is almost impossible for a
human observer to segment the image with the strongest noise, by means of
ψ more than 78% of the pixels are correctly classified.

Fig. 11.18. The texture from figure 11.17 with added Gaussian noise. In the
upper row the SNR is −2.7 dB, and more than 97% of the pixels are classified
correctly. In the lower row the SNR is −13.2 dB and about 78% of the pixels
are classified correctly. From left to right the rows show the contaminated
texture, the median filtered ψ-component of the local phase, the segmented
texture and the false classified pixels

11.4.4 Detection of Defects in Woven Materials

As a practical application we demonstrate how the quaternionic Gabor seg-
mentation method can be used for the detection of defects in woven materials.
We regard this task as a texture segmentation problem, where we want to
segment the regular texture from defective regions. However, defects are of-
ten so small that they do not exhibit periodic structure. That makes the
defect detection not feasible for a channel assignment method — complex or
quaternionic — based on the magnitude of response to a certain channel filter.
We test the following method here. Given a homogeneous woven texture we
extract the dominant quaternionic frequency component. The image is con-
volved with the corresponding quaternionic Gabor filter (where the remain-
ing parameters are chosen as ch = cv = 3) and the ψ-component of the local
phase is extracted. A flaw in the texture manifests itself in a change of the lo-
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complex

Demodulation

ψ

Thresholding

Error

φ

Convolution with GF

Add noise
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Fig. 11.19. Comparison of the complex and the quaternionic segmentation ap-
proach. The input image (top) is convolved with an optimally tuned complex (right
column) and quaternionic (middle column) Gabor filter. In the second row the real
parts of the filter responses are shown. The filtered images are transformed into
amplitude/phase-representation. In the complex case the magnitude (not shown)
is constant, and the phase φ is varying monotonically. No segmentation is possi-
ble. In the quaternionic case segmentation based on the ψ-component (magnitude
and other phase-components are not shown) is possible. The left column is like the
middle column, but with added noise (SNR=0dB)
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cal structure, which is what is measured by the ψ-phase. As the experiments
show, ψ varies only very modestly within a homogeneously textured region.
The mean ψ-value of a homogeneous texture f will be denoted as ψf . For
the segmentation we chose an interval of acceptance ITexture = [ψf − δ, ψf + ε].
The defective region will be denoted by RFlaw. The assignment rule is then
given by

x ∈ RFlaw ⇔ ψ(x) 6∈ ITexture.

As a second example we use a subregion of the texture D77 (see figure 11.20
taken from Brodatz album [32]). We apply one QGF whose central frequencies
have been tuned to the main peak in the power (QFT)-spectrum of the
image. In this case the frequencies are 21 cycles/image in vertical direction
and 12 cycles per image in horizontal direction. In the regular part of the
texture we find ψ ≈ 0.5 while at the irregularity we get ψ ≤ 0. Before
applying a threshold, the ψ-image is smoothed with a Gaussian filter with
σGauss = 1.5σQGF where σ = (σ1, σ2)

>. This choice is based on an empirical
result by Bovik et al. [26].

Fig. 11.20. A subregion of Brodatz texture D77 (top, left). The smoothed
ψ-component of the local quaternionic phase as intensity image (top, right)
and after applying a threshold (bottom, left). The edges of the thresholded
ψ-phase superimposed to the input image (bottom, right)
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Since at the flaw the applied filters do not match optimally, also the am-
plitude of the filter output yields a hint for the defect searched for. However,
the amplitude is very sensitive to changing lightning conditions as shown in
the following experiments. However, ψ is insensitive to changes in contrast.
This is important, because of the fact that the lighting conditions are not
necessarily optimal (e.g. not homogeneous) in practical applications [74].

We simulate changing lighting conditions by adding a gray-value ramp
with constant slope (figure 11.21) and by changing the contrast inhomoge-
neously (figure 11.22). In figure 11.23 the amplitude of the filter responses
are shown for the different lighting conditions. A segmentation on the basis
of the amplitude envelopes is not possible by a thresholding procedure.

Fig. 11.21. As in figure 11.20. To the original image a gray value ramp with
constant slope is added
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Fig. 11.22. As in figure 11.20. The contrast is modified to vary from left
(low contrast) to right (high contrast)

Fig. 11.23. The amplitude envelopes of the quaternionic Gabor filter re-
sponse to the texture D77 under different lighting conditions. Left: Original
illumination. Middle: A gray value ramp added. Right: Changing contrast
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Fig. 11.24. Another subregion of D77. As in figure 11.20

The flaw detection method presented here has the advantage of being
fast, since only separable convolutions have to be performed and only the
ψ-component of the local phase has to be evaluated which is a pointwise
nonlinear operation. The method is robust to changing lighting conditions.

11.5 Conclusion

In this chapter the quaternionic Fourier transform has been used in order
to generalize the concept of the analytic signal which is well-known in 1-D
signal theory to 2-D in a novel manner. Based on the quaternionic analytic
signal the instantaneous quaternionic phase has been introduced. The local
phase concept as introduced in this chapter is based on the approximation
of an analytic signal by a Gabor filtered image. In order to introduce a lo-
cal quaternionic phase, quaternionic Gabor filters have been introduced as
windowed basisfunctions of the quaternionic Fourier transform. The local
quaternionic phase has been used for texture segmentation where it could be
shown that the ψ-component of the quaternionic phase yields a novel feature
and provides useful information for the segmentation.


