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13.1 Introduction and Preliminaries

Multilayer Perceptrons (MLPs) are one of the most common and popular neu-
ral architectures. They are widely used in many different areas like handwrit-
ing recognition, speech recognition, and time series prediction for instance.
In this chapter, we will extend MLPs from the domain of real numbers to
Clifford algebra domains.

MLPs consist of Perceptron–type neurons as processing units grouped
together in layers. The computation in an MLP is feed forward only. The
neurons processing the input to the net are grouped in the input layer. The
output of the net is taken from the output neurons grouped in the output
layer. Usually, there are also one or more layers between input and output
layer called hidden layers, since they are not visible from the outside. Input
neurons are just for making the data available to the net, they do not perform
a computation. Any other single neuron computes as its so–called propagation
function a weighted sum of its received inputs. Thus, the association of the
weights and the inputs is linear. Nonlinearity is achieved by applying a so-
called activation function g. The computation of such a neuron is therefore
given by
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y = g(

n∑

i=1

wixi + θ) (13.1)

in the real case (w, x ∈ R
n, θ ∈ R) and by either

y = g(w ⊗p,q x + θ) (13.2)

or by

y = g(x ⊗p,q w + θ) (13.3)

in the general case of a Clifford algebra (w, x, θ ∈ Cp,q) using the geometric
product ⊗ as associator. The Clifford neuron in comparison with the real
neuron was fully discussed in chapter 12. There we assumed g to be the
identity to discuss propagation functions and linear aspects exclusively.

A suitable nonlinear activation function g allows to built powerful neural
networks out of real neurons by using the superposition principle

y =
∑

i

λi gi(x) . (13.4)

Thus, one hidden layer may be sufficient and no activation function in the
output neurons is needed. This transforms directly in the MLP architecture
shown below in Figure 13.1.
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Fig. 13.1. MLP with one hid-

den layer

Cybenko proved in [53] that for so–called sigmoidal activation functions
MLPs are universal approximators of continuous functions. In [121] these
results were extended to the class of Borel measurable functions. Univer-
sal approximation in that sense means, that for any required approximation
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accuracy an MLP with one hidden layer with finite number of neurons is
sufficient.

The graph representation (Figure 13.1) of a neural network is called its
topology. Since an MLP is fully connected, its topology is therefore fully
determined by the sequence of the number of nodes in any layer starting
from the input layer.

Throughout this chapter let N denote the number of neurons in the input
layer, M denote the number of neurons in the hidden layer, and P denote
the number of neurons in the output layer, respectively. Hence, we can speak
of an (N, M, P )–MLP to denote the topology completely.

Let us denote the other parameters of the network according to Table
13.1.

Table 13.1. Notations of MLP parameters

– w1
nm weight connecting the n–th input neuron to the

m–th hidden neuron
– w2

mp weight connecting the m–th hidden neuron to the
p–th output neuron

– θ1
m bias of the m–th hidden neuron

– θ2
p bias of the p–th output neuron

The detailed structure of the chapter is as follows. Starting with a mathe-
matically precise formulation of required notions of approximation theory we
will derive in section 2 a sufficient criterion on activation functions to make
Clifford MLPs universal approximators as well. In section 3, we will study
activation functions of Clifford MLPs in detail. Reviewing the real, complex,
and quaternionic special cases and proposed activation functions in the lit-
erature, we will get a systematic survey of the topic. We will prove therein
that Clifford MLPs with sigmoid activation functions in every multivector
component are universal approximators. After this we will develop in the
subsequent section a backpropagation algorithm for such Clifford MLPs. In
the final section we will report experimental results.

13.2 Universal Approximation by Clifford MLPs

In the introduction we gave already an informal characterization of the uni-
versal approximation property. Let us start with the formalization thereof by
introducing the notion of “denseness”. Thereby we will use N to indicate the
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class of functions realizable by a certain neural network and F the class of
function that shall be approximated by N . Then, the concept of denseness
can be defined as follows.

Definition 13.2.1. Let F and N be sets of functions of a normed space
(X, p). Let d be the metric induced by p. That is for all x ∈ N , y ∈ F the
distance is defined by d(x, y) = p(x − y). Then N is dense under the norm p
in F if, for any f ∈ F and any ε > 0, there exists some n ∈ N with

d(f, n) < ε . (13.5)

Thus, denseness is always measured with respect to some norm. Typical
norms are the Lp norms (1 < p < ∞)

‖f‖p =

(∫

X

|f(x)|pdx

)1/p

. (13.6)

However, the most relevant norm in our case will be the supremum norm L∞

‖f‖∞ = sup
x∈X

|f(x)| . (13.7)

A well known density theorem is the famous Weierstrass theorem of
real analysis. It states that polynomials of one real variable are dense in the set
C0([a, b], R). A generalization of this, the Stone-Weierstrass theorem, was
used in [121] to prove the universal approximation capability of real valued
MLPs. However, we cannot profit from these results in Clifford algebras.
Moreover, these do not lead to a general density criterion of Clifford MLPs
which is what we are looking for.

To reach this goal, we need functional analysis in Clifford algebras, espe-
cially an appropriate version of the Hahn-Banach theorem. The real and
complex Hahn-Banach theorem has already been used in such a manner in
[53] and accordingly in [6].

Let us first have an informal look at the Hahn-Banach theorem before
going into technical details. In its dominated extended version it states the
following.

Let M be a subspace of a linear space X over R, let p be a sublinear
functional defined on X and let f be a linear form defined on M dominated
by p. The theorem asserts the existence of a linear extension F of f to X
dominated by p everywhere. The diagram below gives an illustration of the
statement of the Hahn-Banach theorem.

F : X F ≤ p

| ↘

f : M → R f ≤ p
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The basic idea now is the following. The neural architecture of f above is
N and F is the class of functions it should be dense in. With this in mind we
will get a nice criterion of denseness as a corollary from that theorem soon.
To go ahead in this direction we have to formulate the theorem in terms of
Clifford algebra. The functionality of a generic Clifford MLP is

Cn
p,q → Cm

p,q . (13.8)

In general, Cn
p,q cannot be a linear space, since Cp,q itself is not a skew field

in general. Thus, we have to replace the concept of a linear space with the
algebraic weaker one of a module.

Definition 13.2.2. Let R be a ring with 1. A left R-module Gl is an abelian
group G = (G, +) together with a mapping R×Gl → Gl : (r, g) 7→ rg in such
a way, that

(a) ∀g1, g2 ∈ G ∀r ∈ R : r(g1 + g2) = rg1 + rg2

(b) ∀g ∈ G ∀r1, r2 ∈ R : (r1 + r2)g = r1g + r2g

(c) ∀g ∈ G ∀r1, r2 ∈ R : (r1r2)g = r1(r2g)

(d) ∀g ∈ G : 1g = g

are fulfilled.

The corresponding definition of right modules is obvious. However, we
only have to choose one version to be formally consistent without loss of
generality. From now on we will always use left modules. To bound a function
as required by the Hahn-Banach theorem we next introduce the notion of
a seminorm.

Definition 13.2.3. Let X be a Cp,q-module. A function p : X → R is called
a seminorm on X if it fulfills for all f, g ∈ X, λ ∈ Cp,q and κ ∈ R

(a) p(f + g) ≤ p(f) + p(g)

(b) p(f) = 0 ⇒ f = 0

(c) p(λf) ≤ C‖λ‖p(f)

p(κf) = |κ|p(f) .

The next definition gives then complete access to the needed concept of
boundness.

Definition 13.2.4. Let X be a Cp,q-module. A family P of seminorms p :
X → R is called a proper system of seminorms on X if for any finite sequence
p1, p2, . . . , pk ∈ P there exist p ∈ P and C > 0 such that for all f ∈ X

sup
j=1,... ,k

pj(f) ≤ Cp(f) . (13.9)
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Hereafter, we will speak of a module equipped with a proper system of
seminorms as a proper module for shortness. We are now in the position to
formulate the Hahn-Banach theorem of Clifford analysis.

Theorem 13.2.1. Let X be a proper Cp,q-module, let Y be a submodule of X
and let T be a bounded left Cp,q–functional on Y . Then there exists a bounded
left Cp,q–functional T ∗ on X such that

T ∗
|Y = T . (13.10)

For a proof of this theorem and the following corollary see again [30]. This
corollary will give us now the desired density criterion.

Corollary 13.2.1. Let X be a left proper Cp,q-module and Y a submodule of
X. Then Y is dense in X, iff for all T ∈ X∗ with T|Y = 0 follows T = 0 on
X.

Let us now return to our neural architecture N that should be dense in
the function class F . If it is not, then the closure N is not completely F .
By corollary 13.2.1 of the Clifford Hahn-Banach theorem there exists a
bounded linear functional L : F → Cp,q, with L(N ) = L(N ) and L 6= 0.
Then furthermore, by the Clifford Riesz theorem [30] there exists a unique
Clifford measure µ on X such that for all g ∈ C0(X, Cp,q)

L(g) =

∫

X

gdµ(x) . (13.11)

Let us assume that the function g has the special property to be discrim-
inatory.

Definition 13.2.5. A function g : Cp,q → Cp,q is said to be discriminatory if
∫

I2p+q
g(w ⊗ x + θ)dµ(x) = 0 (13.12)

implies that µ(x) = 0 for any finite regular Clifford measure µ with support

I2p+q

:= [0, 1]2
p+q

.

If g is discriminatory, then follows immediately by definition that µ(x) =
0. But this is a contradiction to L 6= 0, which was a consequence of the as-
sumption that N is dense in F . Thus, we can conclude, that the use of a
discriminatory activation function is sufficient to make Clifford MLPs uni-
versal approximators of C0(I2p+q

, Cp,q) functions.

13.3 Activation Functions

With the discriminatory property of the preceding section we have already a
criteria on hand regarding the approximation capabilities of activation func-
tions of Clifford MLPs. We will now turn our attention to properties neces-
sary from the algorithmic point of view. We will start with the real case and
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then proceed to the multi–dimensional Clifford algebra case. We can thereby
make extensive use of previous work by other authors in the complex and
quaternionic case.

13.3.1 Real Activation Functions

Let us start with a general property an activation function has to fulfill in-
dependent of the concrete training algorithm. It is simply due to implemen-
tation aspects. The property in mind is boundness to avoid overflows during
simulation on computers.

In the real case, this property is easy to check and expressed by so–called
squashing functions. A function g : R → R is called a squashing function if
limx→−∞ g(x) = a and limx→∞ g(x) = b for a, b ∈ R, a < b.

Since backpropagation is gradient descent in the weight space of the MLP,
the activation function has to be differentiable. A class of squashing functions
with this property are the sigmoid functions.

Definition 13.3.1. The function

σβ(x) : R → R; x 7→
1

1 + exp(−βx)
(13.13)

is called a sigmoid function.

Also the widely used hyperbolic tangent in real MLPs is only a slight
modification of a sigmoid function, since

tanh = 2σ2 − 1 . (13.14)

In the following, we will only proceed with the most used activation func-
tion of real MLPs which is the so–called logistic function σ := σ1. It has a
very simple derivative σ̇ = σ(1 − σ). Figure 13.2 shows a plot of the logistic
function.
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Fig. 13.2. Logistic activation
function
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The logistic function has approximately linear behaviour in [−1, 1] and
saturation is reached quickly outside of this region. To be complete at this
point, we mention again that the universal approximator capability of real–
valued MLPs with sigmoid activation function was first proven by Cybenko
[53].

13.3.2 Activation Function of Clifford MLPs

There are two possible ways of generalization of real activation functions to
Clifford algebra activation functions. One is to use the corresponding Clifford
algebra formulation of such a function, the other is to use the real activation
function in every multivector component separately. A formal characteriza-
tion can be made in the following way.

Definition 13.3.2. Let be G : Cp,q → Cp,q (p + q > 1), n := 2p+q.
G is called a component–wise activation function if

∀i ∈ {1, . . . , n} ∃gi ∈ R → R ∀x = (x1, . . . , xn) ∈ Cp,q : [G(x)]i = gi(xi) ,

otherwise a multivector activation function.

Thus, in the complex case (G : C → C) a multivector activation function
has the generic form

G(z) = u (x, y) + u (x, y) i . (13.15)

On the other hand, the generic form of a component–wise activation function
is given by

G(z) = v (x) + v (y) i . (13.16)

The use of a multivector activation function seems to be more natural and
quiet more sophisticated in comparison to component activation functions.
Hence, as the complex MLP was introduced, the first proposed activation
function (see e.g. [152]) was the extension of the real logistic function σ to
the complex domain

σC : C → C; z 7→
1

1 + exp(−z)
. (13.17)

Later, it was pointed out by Georgiou and Koutsougeras [90] that σC is not
bounded, since it has singularities with value +∞ at 0 + π(2n + 1) i (n ∈ N).
Due to that fact, these authors proposed as alternative the activation function

Gc,r : C → C; z 7→
z

c + 1
r |z|

(c, r ∈ R) . (13.18)

They also gave a complete list of necessary properties that complex activation
functions of the form (13.15) have to fulfill. One of these is with respect to the
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backpropagation algorithm, that all partial derivatives have to exist together
with further conditions on them. Clearly, these requirements are also valid in
the general case of an arbitrary Clifford algebra.

The first Clifford MLP introduced by Pearson [187] used the straightfor-
ward Clifford algebra domain extension of the above function (13.18). How-
ever, he has not paid any attention to the fact that Clifford algebras are
not division algebras in general. The consequence (impossibility) for the for-
mulation of a correct backpropagation algorithm is the subject of the next
section. Also, no universal approximation theorem for such networks could
yet be proven.

Instead, we will use in our Clifford MLP the real logistic activation func-
tion in any component. Let us denote the function derived in this manner
by σ. This function was first introduced by Arena et al. [7] in their work
on the quaternionic MLP (QMLP). For this QMLP they further derived a
quaternionic version of the backpropagation algorithm and proved its univer-
sal approximation capability. To give a proof sketch for the universal approx-
imation capability of Clifford MLPs with activation function σ is the final
part of this section.

Theorem 13.3.1. The function

σ(w; θ) : Cp,q → Cp,q; x 7→
∑

A∈A

σ([w ⊗ x + θ])AeA (13.19)

is discriminatory.

Proof (Sketch). Let µ(x) be a finite regular Clifford measure on the set

C0(I2p+q

, Cp,q) such that

∫

I2p+q
σ(w ⊗ x + θ)dµ(x) = 0 , (13.20)

for all w, x ∈ Cn
p,q, θ ∈ Cp,q. According to the definition of σ, we have for all

i ∈ 1, . . . , 2p+q}

[σ(w ⊗ x + θ)]i = σ([w ⊗ x + θ]i) . (13.21)

Let us now consider the pointwise limit

φi(w ⊗ x + θ) := lim
λ→∞

σ(λ[w ⊗ x + θ]i) , (13.22)

with λ ∈ R. This limit evaluates to

φi(w ⊗ x + θ) =

{
1 : if [w ⊗ x + θ]i > 0
0 : if [w ⊗ x + θ]i ≤ 0

(13.23)

With the Lesbesgue-dominated convergence theorem of Clifford analysis fol-
lows
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0 =

∫

I2p+q
σ(w ⊗ x + θ)dµ(x)

=

∫

I2p+q
(
∑

A∈A

φA(w ⊗ x + θ)eA) dµ(x)

= lim
λ→∞

σ(λ[w ⊗ x + θ]i) .

For all j ∈ {0, 1}2p+q

define the following sets

Hj :=
⋂

i∈{1,... ,2p+q}
j[i]=1

{[w ⊗ x + θ]i > 0} ∩
⋂

i∈{1,... ,2p+q}
j[i]=0

{[w ⊗ x + θ]i ≤ 0} .

(13.24)

Thus, the Hj sets give us a partition of I2p+q

. Therefore, we have with
(13.23), (13.24)

µ(∪Hj) = 0 . (13.25)

Unfortunately, no assumptions on µ can be made. Therefore, one has to prove
that for all j ∈ {0, 1}2p+q

µ(Hj) = 0 . (13.26)

By the real theorem of Cybenko [53] we only know µ(H10...0) = 0. This can
be extended with some effort to show that

µ({Hj |
2p+q

∑

i=1

j[i] = 1}) = 0 (13.27)

However, the other cases remain open problems to be proved.

13.4 Clifford Back–Propagation Algorithm

In this section we will derive the Clifford back–propagation algorithm. For the
sake of simplicity, we only deal with a Clifford MLP with one hidden layer,
reminding the reader that this structure is already a universal approximator.
Let N , M and P denote the number of input, hidden and output nodes,
respectively. Furthermore, let be w1

nm the multivector weight connecting the
n-th input node with the m-th hidden node, and w2

mp the one connecting the
m-th hidden node with the p-th output node. Analogously, the bias nodes
are denoted by θ1

m and θ2
p, respectively.

Using the above nomenclature the feed-forward phase is given as follows:
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- hidden node activation and output value

S1
m :=

N∑

n=1

w1
nm ⊗ xn + θ1

m (13.28)

hm := σ(S1
m) (13.29)

- output node activation and output value

S2
p :=

M∑

m=1

w2
mp ⊗ hm + θ2

p (13.30)

op := σ(S2
p) . (13.31)

We will now apply gradient descent with respect to the weights to mini-
mize the common sum–of–squared error function

E =
1

2

P∑

p=1

(yp − op)
2 , (13.32)

whereby y = (y1, . . . , yp) stands for the expected output value. First, we have
to compute the weights of the output layer according to

∇Ew2
mp

=
∑

A∈A

∂E

∂[w2
mp]A

eA . (13.33)

Applying the chain rule to each term of (13.33) gives

∂E

∂[w2
mp]A

=
∑

B∈A

∂E

∂[S2
p ]B

∂[S2
p ]B

∂[w2
mp]A

. (13.34)

For the partial derivatives of the error function wrt. the output node activa-
tion S2

p we obtain

∂E

∂[S2
p ]B

=
∂E

∂[yp]B

∂[yp]B
∂[S2

p ]B
= ([yp]B − [op]B) σ̇([S2

p ]B) . (13.35)

The computation of the partial derivatives of the output node activation wrt.
the output layer weights is as easy to compute. However, some effort has to be
made to get one single compact formula for it. Let us take a look at the case
of 4–dimensional Clifford algebras. Table 13.2 shows exemplarily the partial

derivatives
∂[S2

p]

∂[w2
mp]e1

.
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Table 13.2. Partial derivatives
∂[S2

p]

∂[w2
mp]e1

C0,2 C1,1 C2,0

∂[S2
p]0

∂[w2
mp]e1

−[hm]e1
+[hm]e1

+[hm]e1

∂[S2
p]e1

∂[w2
mp]e1

+[hm]0 +[hm]0 +[hm]0
∂[S2

p]e2

∂[w2
mp]e1

+[hm]e12
−[hm]e12

+[hm]e12

∂[S2
p]e12

∂[w2
mp]e1

−[hm]e2
−[hm]e2

+[hm]e2

It is easy to conclude from the above example (and also easy to verify
directly), that

∂[S2
p]

∂w2
mp

= h∗
m (13.36)

for some involution ∗ dependent on the underlying Clifford algebra. Clearly,
this involution is already determined uniquely by any partial derivative

∂[S2
p]

∂[w2
mp]A

. For Clifford algebras of the type C(0,q) this involution is just conju-

gation, i.e. we have h∗
m = hm in (13.36). Due to the fact that the geometric

product of a multivector with a scalar is ordinary component–wise real mul-
tiplication we can get a very elegant description of the involution ∗ via the
scalar component. We can then use the fact

[x ⊗ ȳ]0 = xyT (13.37)

to describe ∗ as the unique involution yielding

[x ⊗ y∗]0 = xyT . (13.38)

Putting now all the derived results together and using the symbol � to de-
note component–wise multiplication, we get the following update rule for the
weights of the output layer

∆w2
mp = [ (yp − op) � σ̇(S2

p)
︸ ︷︷ ︸

δ2
p

] ⊗ hm . (13.39)

The derivation of the updating rule for the weights of the hidden layer is
analog, resulting in

∆w1
nm = [ (

P∑

p=1

w 2
mp ⊗ δ2

p) � σ̇(S1
m)

︸ ︷︷ ︸

δ1
m

] . ⊗ xn (13.40)
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Finally, the update rule for the biases is then given by

∆θ2
p = δ2

p and ∆θ1
m = δ1

m . (13.41)

Let us now verify briefly our claim made in section 3 regarding the im-
possibility of a general correctly Clifford back–propagation algorithm for not
component–wise activation functions. This is simply due to the existence of
divisors of zero in general Clifford algebras. Using non component–wise acti-
vation functions results in a geometric product ⊗ instead of a component–wise
product � in (13.39), respectively (13.40). Thus, δ1

m and δ2
p could then always

be zero even if a non–zero error occurred. Due to the definition of ∗ this can
never be the case for the geometric products involving ∗.

The above derived Clifford back-propagation rule therefore avoids prob-
lems with divisors of zero completely.

13.5 Experimental Results

Both real MLPs and Clifford MLPs (CMLPs) are universal approximators
of continuous functions in several variables as we know from the previous
sections. Thus, they have the same theoretical strength in principle. More-
over, they use the ”same” activation function, since our Clifford MLP uses
the logistic function σ in every component. However, alternative activation
functions are rare as argued before. Thus, a potential advantage of CMLPs
versus MLPs seems to be based on the propagation function, i.e. on the in-
volved geometric product. The propagation function was fully discussed in
chapter 12, however only in the case of a single linear neuron. As we know
from that chapter, in a Clifford MLP real vector data can be presented in
many arbitrary different ways. But it is difficult to give general advises for
Clifford MLPs for the optimal choice, especially due to the incorporated non–
linearity.

However, this is only valid in a theoretically provable sense. In this section
instead, we try to conclude from an experimental approach. Thereby, we will
compare the space and time complexity of the real MLP and the CMLP with
respect to their generalization performance. Time complexity is used in the
loose sense of convergence time.

Space complexity is measured by the amount of real parameters. This is
given for an MLP with one hidden layer by the formula

#MLP := M · (N + 1) + P · (M + 1) . (13.42)

The weights of an CMLP can be easily converted into real parameters by
counting them component by component. Thus, one obtains for the number
of real parameters of an CMLP with one hidden layer

#CMLP(p,q) := 2p+q · M · (N + 1) + 2p+q · P · (M + 1) . (13.43)
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An MLP with the same number of component activation functions as an
CMLP would have 2p+q times of real parameters, which follows easily from
(13.42), (13.43). Clearly, the assumption that an MLP would require the same
amount of activation functions as an CMLP to achieve the same performance
is not realistic. However, about 20–25% fewer parameters of an CMLP in
comparison to an MLP where reported by Arena et al. [6], [7] and this result
was also obtained in earlier work of ours [15]. However, it is not easy to find
another reason for this phenomenon than the more compact weight structure
of CMLPs, especially in the case of processing real data. Thus, we will not
make a simulation of the approximation of a real vector function, but one
of a Clifford–valued function. The main goal of the simulations is to check,
whether or not there are indications of algebraic model–based behavior of
Clifford MLPs.

Let us study only one very simple example. The considered function is

f : C → C; (x + y i) 7→ (x2 + y2 + 2xy i) , (13.44)

which is plotted in Figure 13.3.
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Fig. 13.3. Plot of the real and the imaginary parts of f

There is a very good reason to choose a low dimensional example. Namely,
everything can be visualized. This is clearly helpful, to get a real evaluation
of the performance of different networks. As outlined, we want to investigate
whether or not there might be indications of algebraic interpretations of the
approximation capability of the CMLP(0,1). If on the other hand a CMLP(1,0)

achieved an equal or better performance then an algebraic reason would have
to be rejected. Clearly, also if this were true for a real MLP. If both Clifford
networks showed equivalent but better performance than the real MLP, this
would then only be due to their more compact weight structure. As in the
simulations of chapter 12 we will also have a closer look at the performance
of the networks in the presence of noise.
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Next, we report the obtained results in detail.
The training data consisted of 100 randomly drawn points from [0, 1] ×

[0, 1] with uniform distribution. For the test set we sampled this domain with
a regular grid of size 20 × 20. Thus, we got 100 training points and 400 test
points. This 20%/80% ratio of samples is well established and therefore often
used in neural network simulations.

The number of hidden nodes of the Clifford networks was easy to deter-
mine. Two hidden nodes already gave results, which could not be improved
significantly by the use of more hidden nodes. The performance of an MLP
with two hidden nodes was not sufficient. The convergence of the training of
the two CMLPs, a (2,3,2)-MLP and a (2,4,2)-MLP are shown in Figure 13.4.
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Fig. 13.4. Convergence

of the learning

A first look at these results seems to be quite astonishing. The complex
MLP shows the worst performance of all networks, followed by the CMLP(1,0).
Taking into account that the number of parameters of the (2,3,2)-MLP is 17
((2,4,2)-MLP: 22) and that of both CMLPs is 14, no advantage seems visible
from the space complexity point of view either. We should remark, that all
networks have reached a stable and optimal error plateau.

As already observed in the simulations on Clifford neurons in chapter
12, generalization is the measure that counts indeed. The obtained sum-of-
squared errors (SSE) in training and testing are reported together in Table
13.3.
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Table 13.3. SSEs by noise free training

network SSE Training SSE Testing

(1,2,1)-CMLP(0,1) 0.07302 0.00040
(1,2,1)-CMLP(1,0) 0.04175 0.00067

(2,4,2)-MLP 0.00971 0.03298
(2,3,2)-MLP 0.04315 0.15539

As we can see there, the complex MLP showed the best generalization
performance of all nets, followed closely by the CMLP(1,0). Both generaliza-
tion errors are very low, and remarkable orders smaller than the trainings
errors. The MLPs on the other hand have both approximately 4-times higher
generalization errors than training errors. With the generalization errors the
situation has changed completely.

The complex MLP has reached the training error level corresponding to
this superb generalization error very quickly within about 1000 epochs. Thus,
we could say that it converges fastest. Another interesting fact observable
from Figure 13.4 is that all other nets except the complex MLP show the
same behavior during the beginning of the training. Hence, we could argue
that the complex CMLP could match the underlying model of the data very
early in the training, whereas both real MLPs have not observed the right
model as can be concluded from their generalization error. The rapid descent
of the MLP with 4 hidden nodes in comparison to that with 3 hidden nodes
is clearly due to its greater amount of parameters (degrees of freedom).

Let us now have a closer look at the output of the networks shown in Fig-
ure 13.5. Especially compare the numerically nearly identical generalization
of both CMLPs. Thereby, areas of high approximation errors are indicated
by light shading in Figure 13.5.

Between them there are no great differences visible in fact. Both have
learned the two component functions indeed, with less accuracy on the imag-
inary one. However, the learned real and imaginary functions of the MLPs
are similar and (thus) far away from the expected shapes. Obviously, the
MLPs have applied a global numerically concept to match the data, without
notice to the structure of the data. The effect of the 4–th MLP hidden node
is also easy to interpret. With only 3 hidden nodes the MLP learned a similar
concept as with 4 hidden nodes. However, it decided to not descend down to
zero height to approximate the range [0, 0.3]2 accurately. Since the values of
the function are low in this area an error is ”cheap” with respect to the other
areas.

Thus, an MLP is not able to detect the algebraic structure of the data.
But the CMLP(1,0) seems to be able to do so. We should remember that there
is only one sign in the multiplication tables that makes both 2-dimensional
Clifford algebras different.
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In the following we discuss how things changed in the presence of noise.
We therefore added 20% mean–free noise to the training data. The obtained
errors are presented in Table 13.4.

Table 13.4. SSEs by 20% noise in training data

network SSE Training SSE Testing

(1,2,1)-CMLP(0,1) 1.32612 0.72041
(1,2,1)-CMLP(1,0) 1.57850 1.15853

(2,4,2)-MLP 1.24180 0.74325
(2,3,2)-MLP 1.51760 1.12471

The errors of the (2,4,2)-MLP and the (1,2,1)-CMLP(0,1) are nearly equal.
The same can be said about the errors of the (2,3,2)-MLP and the (1,2,1)-
CMLP(1,0). The (1,2,1)-CMLP(0,1) shows now a better performance than the
(1,2,1)-CMLP(1,0). Clearly, that of the MLP with 4 hidden nodes is better
than that with 3 hidden nodes again.

Let us study the outputs of the networks shown in Figure 13.6 beginning
with that of the real MLPs. We can see a clear negative effect of the 4 hidden
nodes there. In the presence of noise, this ”additional” degree of freedom is
just used to learn the noise. Actually, any simulation of an (2,4,2)-MLP with
high noisy training data can produce an arbitrary output scheme. The applied
concept leads then no longer to equally well learned component functions.
This is still the case for the (2,3,2)-MLP. The real part in the case of the
(2,4,2)-MLP shows an additional scaling error, while its imaginary part fits
randomly the imaginary component function.

An important but well known conclusion from the simulations is that
more degrees of freedom in an MLP (which cannot match the model of data)
are only good for memorization. Clearly, things then get worse very quickly
in the presence of noise.

The difference between both CMLPs does not seem too large again. How-
ever, it is significant as seen in Table 13.4. The imaginary part of the function
in the range [0, 0.2]× [0, 0.8] is better approximated by the complex CMLP.
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Fig. 13.5. Approximation results (from top to bottom):
(1,2,1)-CMLP(0,1) , (1,2,1)-CMLP(1,0) , (2,4,2)-MLP, (2,3,2)-MLP
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Fig. 13.6. Approximation results by 20% noise (from top to bottom):
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13.6 Conclusions and Outlook

In this chapter we introduced the Clifford Algebra Multilayer Perceptron
(CMLP) as an extension of the well known real–valued MLP. Thereby, we
applied mainly a theoretical point of view.

We discussed questions regarding the theory of function approximation in
Clifford algebras in some detail. This led us to a criterion on the activation
function that guarantees that CMLPs as MLPs are universal approximators
too. We then reviewed basic facts on activation functions known from the lit-
erature in the complex and quaternionic special cases [90] [7]. We introduced
the notion of component–wise activation functions and argued why this is a
necessary property of activation functions for CMLPs.

A central part of this work was the derivation of the Clifford algebra
back–propagation algorithm. We have found an elegant way to formulate the
updating rules of the weights in terms of generally characterized involutions.
The properties of these involutions guarantee the operativeness of the algo-
rithm because excluding problems with zero divisors.

Although, concentrating on theoretical and technical aspects of computing
with Clifford MLPs throughout this paper, we also made a simple simulation
to compare the performance of Clifford MLPs with real–valued MLPs. Our
interest was thereby to see if CMLPs are also model–based as we showed for
single Clifford neurons in chapter 12. The obtained results were unfortunately
weaker in that sense and partially showed up only in the presence of noise.
However, the model–based property of CMLPs is not in general doubt. On the
other hand it is also very clear, that non–linearity in any MLP architecture
makes things less easy to interpret.

Thus, many more simulations have to be done in the future to get em-
pirical confidence at this points. It is indicated, that such simulations should
be biased in that way, that specifically geometric tasks are chosen for Clif-
ford MLPs. However, such tasks might require a more suitable and flexible
architecture. This could mean using inhomogeneous nodes in a layer, i.e.
nodes of different Clifford algebra type. A step still further in this direction
would be the use of nodes operating on single blades. All these steps would
only require small modifications of the Clifford back–propagation algorithm
as derived herein. From a conceptual point of view this would then invoke
questions of self–organization.

It is our strong belief that a way based on this work towards more complex
Clifford neural computation is worth being considered and would be fruitful.


