
12. Introduction to Neural

Computation in Clifford Algebra∗

Sven Buchholz and Gerald Sommer

Institute of Computer Science and Applied Mathematics,
Christian-Albrechts-University of Kiel

12.1 Introduction

This is the first of two chapters on neural computation in Clifford algebra.
The name Clifford algebra refers to its inventor William K. Clifford
(1845-1879). We will restrict ourselves on Clifford algebras generated by
non–degenerate quadratic forms. Thus, Clifford algebras are non–degenerated
geometric algebras hereafter.

Any degenerate geometric algebra can be embedded in a larger dimen-
sional non-degenerate geometric (Clifford) algebra as stated in the first chap-
ter of this book. In that sense, our restriction will not be significant. However,
it is necessary because it is not possible to derive learning algorithms for neu-
ral networks in degenerate algebras. We will explain this in full detail in the
second chapter on Clifford multilayer perceptrons (Clifford MLPs).

The idea of developing neural networks in other than the real domain is
not new. Complex valued networks were already introduced at the beginning
of our decade, see e.g. [90]. Recently, [7] proposed a quaternionic valued neural
network. A first attempt of developing neural networks in Clifford algebras
was made by [187]. Unfortunately, the approach proposed there had many
drawbacks. We showed this in [33], [15], where we also sketched an alternative
that leads to correct learning algorithms for Clifford–valued neural networks.
∗ This work has been supported by DFG Grants So-320-2-1 and So-320-2-2.

292 Sven Buchholz, Gerald Sommer

In this chapter we will not speak of Clifford neural networks yet. Instead,
the center of our studies will be the Clifford neuron itself. Thus, we will
develop Clifford neural networks directly from their building blocks. At the
level of neurons it is much easier to understand the principles of neural com-
putation in Clifford algebras. The main principle is, that neural computation
in Clifford algebras can be seen as model-based in comparison to that in the
real case. To show this theoretically and experimentally is the main goal of
this chapter.

The model–based approach will allow us to interpret the non–commutativ-
ity of Clifford algebras in general as a feature of Clifford neural computation.
That aspect is not mentioned in the previous work of [7] and [187]. This will
lead us to a special type of Clifford neuron called spinor neuron.

The split–up of the discussion of Clifford neural computation in one chap-
ter on Clifford neurons and one other on Clifford MLPs follows also a classical
road. That is the design from linear units to non–linear networks. The last
section of this chapter is therefore dedicated to linearization with Clifford
neurons. We will work out this completely on the example of Möbius trans-
formations.

We start with an outline of Clifford algebra now.

12.2 An Outline of Clifford Algebra

A compact and comprehensive introduction on geometric algebras (and there-
fore also on Clifford algebras) has already been given by the first chapter of
this book. Here, we will only review those facts needed in the following.

In addition, we will put more emphasis to the direct generation of algebras
by non-degenerate quadratic forms. This gives the signature of a vector space
in a very natural way.

So let be Q a non–degenerate quadratic form on Rn. For shortness, we
will call (Rn, Q) a quadratic space.

By a theorem of linear algebra there exists a basis of Rn such that

Q(v) = −v2
1 − v2

2 − . . .− v2
p + v2

p+1 . . .+ v2
p+q (12.1)

for all v = (v1, . . . , vn) ∈ Rn, p, q ∈ N and p+ q = n. This allows us to work
with quadratic forms in an abstract fashion. In that sense, a quadratic form
is already determined by (p, q). Then, we will denote a quadratic space by
Rp,q hereafter. For the vectors of an orthonormal basis {e1, . . . , en} of Rn we
get from (12.1)

−Q(ei) = +1 if i ≤ p (12.2)

−Q(ei) = −1 if i > p . (12.3)

With the corresponding scalar product to Q in mind we can also speak of
R0,q as an Euclidean space, Rp,0 as an anti–Euclidean space, and Rp,q (p 6=
0 ∧ q 6= 0) as an indefinite space, respectively.

12. Introduction to Neural Computation in Clifford Algebra 293

Equations (12.1)-(12.3) together now allow the following definition of a
Clifford algebra [159].

Definition 12.2.1. An associative algebra with unity 1 over Rp,q containing
Rp,q and R as distinct subspaces is called the Clifford algebra Cp,q of Rp,q, iff

(a) v ⊗p,q v = −Q(v) , v ∈ Rp,q

(b) Cp,q is generated as an algebra by Rp,q

(c) Cp,q is not generated by any proper subspace of Rp,q .

Examples of Clifford algebras are the real numbers R corresponding to
C0,0, the complex numbers C corresponding to C0,1, and the quaternions H

corresponding to C0,2, respectively.
An element of a Clifford algebra is called a multivector, due to the fact

that it consists of objects of different types by definition. The algebra multi-
plication ⊗p,q of a Clifford algebra Cp,q is called the geometric product.

Condition (a) of the above definition implies equations (12.2),(12.3) and
further for all i, j ∈ {1, . . . , p+ q}

ei ⊗p,q ej = −ej ⊗p,q ei . (12.4)

Clearly, 2p+q is then an upper bound for the dimension of a Clifford
algebra. Condition (c) guarantees that no lower dimensional algebras are
generated. For a complete proof see e.g. [194]. Hence, the dimension of a
Clifford algebra is 2p+q.

A further very important consequence of equation (12.4) is, that only
Clifford algebras up to dimension 2 are commutative ones.

We will now give explicitly a basis of a Clifford algebra in terms of the basis
vectors {e1, . . . , en} of the underlying quadratic space. Using the canonical
order of the power set P({1, . . . , n}) to derive the index set

A := {{a1, . . . , ar} ∈ P({1, . . . , n}) | 1 ≤ a1 ≤ . . . ≤ ar ≤ n} (12.5)

and then defining for all A ∈ A

eA := ea1 . . . ear
, (12.6)

we achieve a basis {eA | A ∈ A} of the Clifford algebra Cp,q. Every x ∈ Cp,q

can then be written as

x =
∑

A∈A

xAeA . (12.7)

For every r ∈ {0, . . . , 2p+q −1} the set {eA | A ∈ A, |A| = r} is spanning
a linear subspace of Cp,q. This linear subspace is called the r–vector part of
the Clifford algebra Cp,q. An element of such a subspace is then called an
r–vector. For r running from 0 to 3 an r–vector is also often called a scalar,
vector, bivector, or trivector, respectively.

294 Sven Buchholz, Gerald Sommer

The vector part of a Clifford algebra Cp,q should get its own notation Rp,q

to be distinguished from the quadratic space Rp,q itself.
All even r-vectors form the even part C+

p,q of the Clifford algebra Cp,q.
C+

p,q is a subalgebra of Cp,q isomorphic to Cp,q−1. Whereas the odd part C−
p,q

formed by all odd r-vectors is not a subalgebra.
Clifford algebras are R–linear

∀λ ∈ R ∀x, y ∈ Cp,q : (λ x)y = x(λ y) = λ (xy) , (12.8)

so every Clifford algebra is isomorphic to some matrix algebra. The matrix
representations of Clifford algebras Cp,q up to dimension 16 are given in Table
12.1. As we can see, there are many isomorphic Clifford algebras.

Table 12.1. Matrix representations of Clifford algebras up to dimension 16

p\
q 0 1 2 3 4

0
� � �

2
� �

(2)
1 2

� �
(2)

�
(2)

�
(2) 2

�
(2)

2
�
(2) 2

�
(2)

�
(4)

�
(4)

�
(4)

3
�
(2)

�
(4) 2

�
(4)

�
(8)

�
(8)

4
�

(2)
�
(4)

�
(8) 2

�
(8)

�
(16)

Next, we will deal with involutions of Clifford algebras. An involution is
an algebra mapping of order 2. Thus the set of all involutions of a Clifford
algebra is given by

In(Cp,q) := {f : Cp,q → Cp,q | f2 = id} . (12.9)

The most important involutions of a Clifford algebra are the following
ones. The first, called inversion

x̂ =
∑

A∈A

(−1)|A| xAeA (12.10)

is an automorphism (x̂ŷ = x̂y), whereas reversion

x̃ =
∑

A∈A

(−1)
|A| (|A|−1)

2 xAeA , (12.11)

and conjugation

x̄ =
∑

A∈A

(−1)
|A| (|A|+1)

2 xAeA (12.12)

are anti–automorphisms (x̃ỹ = ỹx, x̄ȳ = yx). Conjugation is obviously a
composition of inversion and reversion. The conjugation of complex numbers
results a special case of (12.12).

Finally, we want to analyse which Clifford algebras are division algebras.
The answer is given by the famous Frobenius theorem. That theorem states,
that there are no other real division algebras despite of R, C, and H. A

12. Introduction to Neural Computation in Clifford Algebra 295

finite-dimensional associative algebra A is a division algebra, iff it contains
no divisors of zero. Therefore, any other Clifford algebras except the ones
mentioned above will contain divisors of zero. Thereby, an element a ∈ A is
a divisor of zero, iff there exists an element b ∈ A\{0} with ab = 0 or ba = 0.

The existence of divisors of zero can cause many problems in the design of
neural algorithms in the frame of Clifford algebras. We will see this already
in outlines in the next section.

12.3 The Clifford Neuron

In this section we will start with a generic neuron as computational unit. From
this, a standard real valued neuron is then derived. Finally, we will introduce
the Clifford neuron based on the geometric product. Through this way, we
will also introduce some basics of neural computation in general very briefly.
To characterize the computation with Clifford neurons as model–based in
relation to that with real neurons is the main goal of this section.

A generic neuron is a computational unit of the form shown in Figure 12.1.
The computation within such a neuron is performed in two steps. Firstly, a
propagation function f associates the input vector x with the parameters
of the neuron comprised in the weight vector w. Then, the application of a
activation function g follows. Thus, the output of a generic neuron is given
by

y = g(f(x;w)) . (12.13)

f g

1
x

y

x
n

w

wn

1

Fig. 12.1. Generic neuron

In general, the propagation function f is a mapping

f : Dn → D (12.14)

for a domain D. The activation function g is a mapping

296 Sven Buchholz, Gerald Sommer

g : D → D′ (12.15)

to a domain D′. Mostly, D is a continuous domain. In this case, we have
usually D′ = D for function approximation. On the other hand, the neuron
computes a classification if D′ is discrete.

From now on, we will assume if no other statement is made, that g is set
to be the identity. We will also speak of a neuron with this in mind.

12.3.1 The Real Neuron

For a real neuron we have with our previous notation D = R and w, x ∈ Rn.
The most common propagation function for such a neuron simply computes
a weighted sum of the inputs of a real neuron

f(x) =

n∑

i=1

wixi + θ , (12.16)

with an additional parameter θ ∈ R, that works as a bias. By extending the
domain by one dimension and then using an extended input vector x+ :=
(x, 1) and an extended weight vector w+ := (w, θ) we can rewrite (12.16) in
the form

f(x+) =

n+1∑

i=1

w+
i x

+
i . (12.17)

A real neuron with the above propagation function is therefore a linear asso-
ciator. Non-linearity of the neuron could be achieved by applying a non-linear
activation function g.

As a linear associator we can use the real neuron for linear regression. This
(neural computation) is done by formulating linear regression as a learning
problem.

So let us consider a training set T := {(x1, t1), . . . , (xm, tm)} consisting
of input–output pairs (xi, ti) with xi ∈ Rn, ti ∈ R. The aim of learning is
to find a weight vector w = (w1, . . . , wn) that minimizes the sum-of-squared
error (SSE)

E =
1

2

m∑

i=1

(ti −
n∑

j=1

wjx
i
j)

2 (12.18)

iteratively. A well known method to do so is using gradient descent. Then,
at each step the following correction of the weights

∆wj = − ∂ E

∂ wj

. (12.19)

12. Introduction to Neural Computation in Clifford Algebra 297

has to be made. In terms of neural networks this is called back–propagation,
due to the fact that the error is propagated back from the output.

Since the error function (12.18) is convex, back–propagation will always
find the global minimum.

Provided with the above basic knowledge about generic and real neurons
we are now able to study Clifford neurons in detail.

12.3.2 The Clifford Neuron

An abstract Clifford neuron is easily derived as a special case of a generic
neuron by taking in (12.13) a Clifford algebra as domain. However, some
care has to be taken already. The propagation function of a generic Clifford
neuron should obviously be a mapping of the form

f : Cp,q → Cp,q. (12.20)

The above function is then just a special case of (12.14) with D = Cp,q and
n = 1. In that case the illustration of a generic neuron in Figure 12.1 has no
great strength anymore, because we have just one input and one weight. But
through that, we can also see immediately that f has lost its independent
function. More precisely, it is fully determined by the way the association of
the one input with the one weight is done. Clearly, there is only one intented
way of association — the geometric product.

The propagation function f of a Clifford neuron is given either by

f(x) = w ⊗p,q x+ θ (12.21)

or by

f(x) = x⊗p,q w + θ . (12.22)

All the entities are now multivectors, i.e. x,w, θ ∈ Cp,q.
Of course, we have to distinguish left–sided and right–sided weight mul-

tiplication in the general case of a non-commutative Clifford algebra.
Formally, we have just replaced the scalar product by the geometric prod-

uct. As in the real case, we can interpret the parameter θ as a bias. However,
now an extension of the form (12.17) is possible to treat θ as a normal weight.

The input-weight association of a Clifford neuron should now be made
concretely. For the sake of simplicity let us choose the complex numbers C0,1

as an example. A complex neuron computes just a complex multiplication,
say xw = y. Further, let be x = x1 + x2 i and y = y1 + y2 i.

Now assume we want to compute a complex multiplication with real neu-
rons. Clearly, this requires 2 real input and 2 real output neurons. We are
looking then for a weight matrix W ∈ R(2) that fulfills (x1, x2)W = (y1, y2).
This is achieved by setting w11 = w22 and w12 = −w21, which just results in

298 Sven Buchholz, Gerald Sommer

the well-known matrix representation of complex numbers. Figure 12.2 gives
an illustration of the situation.

1

x 2

1 y

y 2

1x

1 1

2 2

y
y

x

x

w

w

w

w

w

w

1

2

2

1

1

21

2

2

1

w
1 1

= w
2 2

w =
1 2

w
21

-

Fig. 12.2. Computation of a complex neuron (right) and simulation with
real neurons (left)

Thus, complex multiplication is just a certain linear transformation,
namely a dilatation-rotation, which easily follows from the polar form of
complex numbers. This means in terms of neural computation, a complex
neuron can be seen as model-based. Instead of an unspecified linear function
(real neurons) we use a dilatation-rotation (complex neuron). If this model
is applicable to given data, we would only need half of the parameters (see
again Figure 12.2) for computation. Furthermore, the real neurons have to
imitate the model “by finding the given weight constraints” with independent
weights. This approach should then also be less efficient with respect to time
complexity or less accurate.

To be able to verify this experimentally, we now need a correct learning
algorithm for a complex neuron. Yet, we will give here the rule for updating
the weight in the general case of an arbitrary Clifford neuron. So let be
T := {(x1, t1), . . . , (xm, tm)} the training set consisting of input–output pairs
(xi, ti) with xi, ti ∈ Cp,q. The SSE defined analogously to (12.18) is then
minimized by applying the correction step

∆w = x̄i ⊗p,q (ti − w ⊗p,q x
i) . (12.23)

for left–sided weight multiplication and

∆w = (ti − xi ⊗p,q w) ⊗p,q x̄i . (12.24)

for right–sided weight multiplication, respectively. Here, the function ¯ stands
for that univocally determined involution yielding

x⊗p,q y =
∑

i

xiyi . (12.25)

Using this function avoids the appearance of divisors of zeros during back–
propagation. This is necessary, otherwise learning could stop for an non–zero

12. Introduction to Neural Computation in Clifford Algebra 299

error. The proof of correctness of the algorithm will be postponed to the next
chapter.

Now, we can perform our first intented experiment.

Experiment 1 (Complex multiplication).
The task for a complex neuron and for real neurons as in Figure 12.2 was
simply to learn the complex multiplication with 2 − 4 i. As training set T =
{(−0.3, 0), (−0.5,−0.3), (−0.6, 0)} was used. After 116 epochs (which means
after applying the training patterns 116 times) the SSE of the complex neuron
where dropped under 0.000001. The learned weight of the complex neuron
was w = 2.0000 − 4.0000 i. In contrast, the SSE of the real neurons dropped
under 0.000001 after 246 steps but the weight matrix was

W =

(
1.99741 −3.99738
4.00252 1.99700

)
.

Thus, our very plain considerations are right. Simulation of a model seems
worse than using a model directly.

In the case of complex numbers we have identified the input–weight as-
sociation by the geometric (complex) product completely and characterized
it as model-based. The generalization of this is quiet easy. Due to the R-
linearity of Clifford algebras (12.8), any geometric product can be expressed
as a special matrix multiplication. This means that the computation of an
arbitrary single Clifford neuron can also be performed by the corresponding
number of real neurons. However, this point of view on the neuron level is
too artificial. In practice we have to deal with real data of any dimension.

We have introduced Clifford algebras as the algebras of quadratic spaces
in section 2. Therefore, a natural computation of a Clifford neuron should
process (real) data of the underlying quadratic space. In fact, the complex
multiplication of a Clifford neuron should also be seen in this way. As we
know already, a complex neuron computes a dilatation–rotation. More pre-
cisely, it computes a transformation of vectors of R2 in such a manner. As
real vector spaces of the same dimension R2 and C are isomorphic. In that
sense a complex neuron processes also indeed points of R2. However, complex
numbers are no vectors.

This interpretation problem will be easily resolved in the next section.
That section will be fully dedicated to the processing of data drawn from
quadratic spaces with Clifford neurons in a formally consistent manner. By
doing so we will also get a better understanding of the model–based nature
of Clifford neurons.

12.4 Clifford Neurons as Linear Operators

Following the ideas developed at the end of the previous section, we are now
interested how a linear transformation of the form

300 Sven Buchholz, Gerald Sommer

f : Rp,q → Rp,q (12.26)

can be computed with Clifford neurons. To be able to do so, we need a
theoretical method to describe such transformation in Clifford algebras.

Fortunately, any multivector that has a multiplicative inverse defines such
a transformation already. Thus, the mathematical object we have to look at
is the group formed by these multivectors. This group is called the Clifford
group.

Applying a group to the elements of a set is generally formalized in the
following way.

Definition 12.4.1. Let G be a group and M be a non–empty set. The map

? : G×M →M ; (a, x) 7→ a ? x (12.27)

is called the operation of G on M, if 1G ? x = x and a ? (b ? x) = (a ? b) ? x
for all x ∈M, a, b ∈ G.

For example, the general linear group GL(n,R) of Rn operates on (col-
umn) vectors by matrix multiplication

· : GL(n,R) × R
n → R

n; (A, x) 7→ Ax . (12.28)

The Clifford case is more complicated than that. It will be studied in detail
in the next subsection. The results of this study will then be transposed to
the level of Clifford neurons and will be verified there experimentally.

12.4.1 The Clifford Group

Let us start directly with the definition of the Clifford group.

Definition 12.4.2. The Clifford group Γp,q of a Clifford algebra Cp,q is de-
fined as

Γp,q := {s ∈ Cp,q | ∀x ∈ Rp,q : sx ŝ−1 ∈ Rp,q} . (12.29)

From that definition we get immediately

Γp,q × Rp,q → Rp,q ; (s , x) 7→ sx ŝ−1 (12.30)

as the operation of the Clifford group Γp,q on Rp,q. Thus, the operation of
Γp,q is not one single primitive operation, as it was the case in the example
of GL(n,R) (12.28). Another important difference to that case is, that the
elements of the group are of the same type as the elements of the set on which
the group is operating. Actually, this is one of the great advantages of Clifford
algebra. We shall call an element of Γp,q a linear operator to distinguish it
from an ordinary multivector. It is indeed a linear operator since the Clifford
group Γp,q consists of linear transformations of Rp,q by definition (12.26).

12. Introduction to Neural Computation in Clifford Algebra 301

Hence, Γp,q is isomorphic to a general linear group or one of its subgroups.
The relation of Γp,q to those classical groups can be concluded from the map

ψs : R
p,q → R

p,q; x 7→ sxŝ−1 . (12.31)

For all x ∈ Rp,q, s ∈ Γp,q we have

Q(ψs(x)) = ̂(sxŝ−1)sxŝ−1 = ŝx̂s−1sxŝ−1 = x̂x = Q(x) , (12.32)

so ψs is an orthogonal map. In fact, it is easy to see that ψs is even an
orthogonal automorphism of Rp,q. Thereby, we have proofed the following
theorem in principle.

Theorem 12.4.1. The map Ψs : Γp,q → O(p, q); s 7→ ψs is a group epi-
morphism.

Indeed, Γp,q is a multiple cover of the orthogonal group O(p, q) since the
kernel of Ψs is R\ {0}.

Altogether, we know now that the Clifford group Γp,q is an orthogonal
transformation group. However, it is still unnecessarily large. Therefore, we
first reduce Γp,q to a two-fold cover of O(p, q) by defining the so–called Pin
group

Pin(p, q) := {s ∈ Γp,q | ss̃ = ±1} . (12.33)

The even elements of Pin(p, q) form the spin group

Spin(p, q) := Pin(p, q) ∩ C+
p,q (12.34)

which is a double cover of the special orthogonal group SO(p, q). Finally,
those elements of Spin(p, q) with Clifford norm equal 1 form a further sub-
group

Spin+(p, q) := {s ∈ Spin(p, q) | ss̃ = 1} (12.35)

that covers SO+(p, q) twice. Thereby, SO+(p, q) is the connected component
of the identity of O(p, q).

As usual, we write Pin(p) for Pin(p, q) and so on. We shall remark here,
that Spin(p, q) ' Spin(q, p) and Spin(p) = Spin+(p). Both follows easily
from the properties of the orthogonal groups together with C+

p,q ' C+
q,p.

For the spin group Spin(p, q) there exists another way besides the stan-
dard one (12.30) of operating as a dilatation–rotation operator. This way will
allow the reduction of the dimension of the Clifford algebra in use. Also it will
resolve the interpretation problem regarding complex multiplication noticed
earlier in section 3.

Spin(p, q) consists by definition only of even elements. Remembering
C+

p,q ' Cp,q−1, we can interpret a spinor also as an element of Cp,q−1.

302 Sven Buchholz, Gerald Sommer

Let us denote by λRp,q−1 both the scalar and vector part of Cp,q−1. This
space is called the space of paravectors. Then the operation of Spin(p, q) on
Rp,q−1 is the same as on Rp,q [194]. More precisely, for every s ∈ Spin(p, q)
the map

φs : λRp,q−1 → λRp,q−1; x 7→ sxŝ−1 (12.36)

is a dilatation–rotation of Rp,q. If the underlained Clifford algebra in (12.36)
is commutative in addition we have

φs(x) = sxŝ−1 = xsŝ−1 = xs′ (s′ := sŝ−1 ∈ Spin(p, q)) . (12.37)

In the special case of complex numbers the above relations together with
C0,1 = λR0,1 implies that any complex multiplication is indeed a dilatation–
rotation.

All the obtained results will be transposed to the computational level of
Clifford neurons now.

12.4.2 Spinor Neurons

In the previous section we have studied the group of linear transformations
Γp,q of a Clifford algebra. Actually, we have found out that Γp,q consists of
orthogonal transformations only. The operation of Γp,q can be simulated by
concatenation of a left–sided and a right-sided (or vice versa) Clifford neuron.
This architecture is shown in Figure 12.3.

x y
w w

1 2

1xw

y = w
1
x w

2

Fig. 12.3. Simulation of the operation of Γp,q with Clifford neurons

Every orthogonal transformation is computable by this architecture. This
is just done by using the vector part of the input and output neuron to process
the data. However, there might exist other suitable ways of representing the

data. In general there are
(
n
k

)2
possibilities of input-output representations of

k–dimensional data in n dimensions. Therefore, we will only study the case of
plane transformations in Clifford algebras of dimension 4. In that case there
are 36 possibilities of data representation.

12. Introduction to Neural Computation in Clifford Algebra 303

Table 12.2. Used codes for 2 dimensional data in 4 dimension

Representation

1 0xx0
2 0x0x
3 00xx
4 xx00
5 x0x0
6 x00x

Using the notations of Table 12.2 the number 11 then denotes input rep-
resentation 1 and output representation 1 and thus input–output represen-
tation 0xx0 − 0xx0. This is the representation corresponding directly to the
definition of Γp,q. The results for the computation of 2-D Euclidean transfor-
mations are listed in Table 12.3.

Table 12.3. Suitable data representations for SO(2) and O(2) computation

Algebra Weight multiplication Data representation

left-right, right-left all
C0,2 left 11,22,33,44,55,66,25,52

right 11,22,33,44,55,66,16,61,34,43

left, left-right, right-left 22,55,25,52C1,1
right 55,22

left, left-right, right-left 11,66,16,61C2,0 right 11,66

As we can see, there is no difference between the computation of SO(2) and
O(2). Remarkable, all representations with two weights in C0,2 are suitable.
Due to the existence of complex number representations we get also repre-
sentations that work with only one weight. In the case of an anti–Euclidean
transformation we have to distinguish SO(1,1) and O(1,1). The suitable data
representations can be found in Table 12.4 and Table 12.5, respectively.

Before starting to discuss the above listed results we should re-think the
situation in general. All the reported results were obtained by applying data
of a transformation of one of the mentioned types. So we actually just checked
which representation will not work. Having in mind that all the transforma-
tions could also be computed by real neurons as in Fig. 12.2, we should extend
our point of view again.A main idea of this introductory chapter is to develop
interpretations of the computation of Clifford neurons. This should always
be done by characterizing Clifford neurons as model–based ones as in section
3.

304 Sven Buchholz, Gerald Sommer

Table 12.4. Suitable data representations for SO(1,1) computation

Algebra Weight multiplication Data representation

C0,2 left, right, left-right, right-left none

left-right, 44,64,14,34,46,66,16,36,
right-left 41,61,11,31,53,63,13,33C1,1

left 44,66,16,61,11,33
right 44,34,66,11,43,33

left-right, 44,54,24,34,45,55,25,35,
right-left 42,52,22,32,43,53,23,33C2,0 left 44,55,25,52,22,33

right 44,34,55,22,43,33

Table 12.5. Suitable data representations for O(1,1) computation

Algebra Weight multiplication Data representation

C0,2 left, right, left-right, right-left none

left-right, 44,64,14,34,46,66,16,36
right-left 41,61,11,31,53,63,13,33C1,1

left 34,43
right 16,61

left-right, 44,54,24,34,45,55,25,35,
right-left 42,52,22,32,43,53,23,33C2,0

left 34,43
right 25,52

This step has to be made for the computation of orthogonal transforma-
tions with Clifford neurons now. That is, we have to determine the conditions
so that the computation of Clifford neurons as in Figure 12.3 can be forced
to be an orthogonal computation. In that case we would apply this model
independent of the processed data. To be able to do so, we have to constrain
the weights of the left–sided and right–sided Clifford neurons in Figure 12.3
together. This should result in one neuron with one weight that is multiplied
from the left and from the right. But this will be not possible for an orthog-
onal transformation in general. However, it is possible for the operation of a
spinor. The corresponding neuron is then named a spinor neuron. Computa-
tion with such neurons is always model–based. In the case of a 2–dimensional
Clifford algebra this is also valid for any orthogonal transformation due to
the commutativity of the algebra. However, this could require a special data
representation as shown in Tables 12.3-12.5. So we use the notion of a spinor
neuron in that sense that the operation of the neuron as a linear operator
is performed by one weight. After we have reflected that spinor neurons are
model–based, we will now perform simulations to compare them with real
neurons.

12. Introduction to Neural Computation in Clifford Algebra 305

12.4.3 Simulations with Spinor Neurons

With the following two experiments we want to test the strength of the model
of single spinor neurons in comparison with multiple real neurons, especially
in the presence of noise. We will just speak of real neurons, since the number
of real input and output neurons to compute a linear transformation of Rn

is always n. See again Figure 12.2.

Experiment 2 (Euclidean 2D similarity transformation).
The transformation that should be learned was a composition of a Euclidean
2D rotation about -55◦, a translation of [+1, -0.8], and a scaling of factor 1.5.
The training and test data is shown in Figure 12.4.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Input
Output

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Input
Output

Fig. 12.4. Training data (left) and test data (right)

The experiment was performed using real neurons, a complex neuron, and
a spinor neuron in C0,2. The convergence of the training is reported in Figure
12.5.

0

0.05

0.1

0.15

0.2

0 20 40 60 80 100 120 140

S
S

E

Epoch

complex
spinor

real

Fig. 12.5. Convergence of the
learning

306 Sven Buchholz, Gerald Sommer

The spinor neuron learned indeed a spinor representation. Its weights in
the odd components were zero. This required some more epochs of learning
in comparison with the complex neuron. But it learned the task still faster
than the real neurons. Besides the qualitative difference of the learning curve
of the spinor neuron to the curves of the other neurons, no great quantitative
difference could be noticed.

To test the generalization performance of the different neurons we also
made simulations with noisy training data, by adding median-free uniform
noise up to a level of 20%. The obtained results are shown in Figure 12.6.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

0 5 10 15 20

M
S

E

Noise level (%)

real
complex

spinor

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

0 5 10 15 20

M
S

E

Noise level (%)

real
complex

spinor

Fig. 12.6. Training errors (left) and generalization errors (right) by different
noise levels

Due to the fact that the real neurons compute a general linear transfor-
mation, they have learned the noise better than the Clifford neurons. As a
consequence, the generalization was then much worse in comparison with the
Clifford neurons. There was no significant difference in generalization between
the both Clifford neurons. The output on the test data of the real neurons
and the complex neuron is shown in Figure 12.7.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

w/o noise

10% noise

20% noise

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

w/o noise

10% noise

20% noise

Fig. 12.7. Generalization obtained by the real neurons (left) and the complex
neuron (right) by different noise levels

12. Introduction to Neural Computation in Clifford Algebra 307

Using the model–based Clifford neurons for data fitting this model gave
better results than using real neurons, especially on training with noisy data.

Experiment 3 (Euclidean 3D similarity transformation).
The only 4–dimensional Clifford algebra in which a Euclidean 3D rotation
can be computed is C0,2. Thus, we can only compare experimentally the
quaternionic and the real way of neural computation of such transformations.
Actually, a quaternionic spinor neuron with any input-output representation
can compute such a transformation. For the following experiment we use the
standard spinor representation. That is we used the input–output represen-
tation xxx0−xxx0. For this single quaternionic spinor neuron and a network
of real neurons the task was to learn a rotation of -60◦ about the axis [0.5,√

0.5, 0.5] with translation about [0.2,-0.2,0.3]. The data for training is shown
in Figure 12.8.

0
0.2

0.4
0.6

0.8
1

1.2

0
0.2

0.4
0.6

0.8
1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

0
0.2

0.4
0.6

0.8
1

1.2

0
0.2

0.4
0.6

0.8
1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 12.8. Training data input (left) and training data output(right)

As test set we use a transformed version of the training data as shown in
Figure 12.9.

0
0.2

0.4
0.6

0.8
1

1.2

0
0.2

0.4
0.6

0.8
1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

0
0.2

0.4
0.6

0.8
1

1.2

0
0.2

0.4
0.6

0.8
1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 12.9. Test data input (left) and test data output (right)

308 Sven Buchholz, Gerald Sommer

The convergence of the training is shown in Figure 12.10. As we can see,
the quaternionic spinor neuron converges much faster than the real neurons.
The real neurons have to learn the matrix representation of the quaternionic
multiplication. Due to that fact, it was impossible to drop the SSE < 0.00001
for the real neurons. Thus, there exists already a numerical boundary value
of reachable accuracy for the computation with real neurons.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

100 200 300 400 500 600 700 800 900 1000

S
S

E

Epoch

real
spinor

Fig. 12.10. Convergence of the
learning

Clearly, this effects the performance of the real neuron on noisy training
data in a quiet negative way. The errors for different noise level are shown in
Figure 12.11.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 5 10 15 20

M
S

E

Noise level (%)

real
spinor

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

M
S

E

Noise level (%)

real
spinor

Fig. 12.11. Training errors (left) and generalization errors (right) by different noise
levels

The real neurons simply learned the noise. Therefore, their generalization
is worse than that of the Clifford neuron by a factor two. Actually, the real
neurons performed much worse than indicated by that, as it can be seen
by looking at the obtained generalization results shown in Figure 12.12 and
Figure 12.13, where crosses indicate the desired output.

12. Introduction to Neural Computation in Clifford Algebra 309

0
0.2

0.4
0.6

0.8
1

1.2

0
0.2

0.4
0.6

0.8
1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

0
0.2

0.4
0.6

0.8
1

1.2

0
0.2

0.4
0.6

0.8
1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 12.12. Generalization obtained with spinor neurons by 10% noise (left) and
by 20% noise (right)

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 12.13. Generalization obtained with real neurons by 10% noise (left)
and by 20% noise (right)

The pose of the object generalized by the real neurons is completely
wrong. In fact, this is already caused by the way the real neurons learned the
task. The model applied is that of the noise. Instead of still separating the
problem in a rotation part (weight matrix) and a translation part (biases)
they will always use the biases strongly to fit the noise. Instead, a Clifford
neuron applies this model of separation.

With this simulation we will finish our study of Clifford neurons as linear
operators.

12.5 Möbius Transformations

In this section we will demonstrate, that Clifford neurons are able to learn
transformations that are not learnable with real neurons. Clearly, this will
require to linearize a non-linear transformation in a unique way in the frame-
work of Clifford algebras.

310 Sven Buchholz, Gerald Sommer

The transformations in mind are the plane projective transformations.
These are the most general transformations mapping lines to lines.

Of course, some theoretical preparations have to be made first. The idea
is to relate the projective transformation groups to Möbius transformation
groups. So let therefore the complex general projective group, denoted by
PGL(2,C), Ĉ := C ∪ {∞}, be the one-point compactification of C.

The biholomorphic functions of Ĉ in itself are isomorphic to the group of
the fractional-linear transformations

z 7→ τA(z) :=
az + b

cz + d
, A =

(
a b

c d

)
∈ GL(2,C) . (12.38)

This group is also called the Möbius group of Ĉ, denoted by M(Ĉ). Further
then, the map

GL(2,C) →M(Ĉ) , A 7→ τA (12.39)

is a group isomorphism with kernel identical to the center of GL(2,C). Due
to the fact, that PGL(2,C) is GL(2,C) factorized to its center, we then have

PGL(2,C) 'M(Ĉ).
The definition of Möbius transformations of the complex plane C, can

be easily generalized to the general case of a quadratic space Rp,q, where no
explicit notion of the corresponding one-point compactification will be made
anymore.

Definition 12.5.1. The map

Cp,q → Cp,q, x 7→ (ax+ b)(cx+ d)−1 a, b, c, d ∈ Cp,q, (cx+ d) ∈ Γp,q

is called a Möbius transformation of Rp,q.

Again, the group formed by Möbius transformations of Rp,q is called the
Möbius group and will be denoted by M(p, q), that is, M(Ĉ) is now de-
noted by M(0, 1). The Möbius group M(p, q) is covered by the orthogo-
nal group O(p + 1, q + 1), and is therefore (section 3.2) four times covered
by Pin(p + 1, q + 1). Clearly then, we have immediately M(p, q) ' M(q, p).
However, Pin(p + 1, q + 1) acts not directly on elements of Cp,q in Cp+1,q+1.

To be able to achieve the intented embedding of Cp,q in Cp+1,q+1, i.e. to
find a way to let M(p, q) (or Pin(p + 1, q + 1), respectively) operate on Cp,q,
we must proceed our study of Möbius transformations in terms of matrix
groups. We will restrict ourselves thereby essentially to the case of interest,
that is Möbius transformations of anti–Euclidean spaces R0,n. The following
characterization theorem for that was given already by Vahlen, 1902.

Theorem 12.5.1. A matrix A=

(
a b

c d

)
with entries in C0,n represents a

Möbius transformation of R0,n, iff

12. Introduction to Neural Computation in Clifford Algebra 311

(a) a, b, c, d ∈ Γ0,n ∪ {0}
(b) āb, bd̄, d̄c, cā ∈ R0,n

(c) ad̃− bc̃ ∈ R\{0} .

Matrices fulfilling these conditions are called Vahlen matrices.
A characterization of Möbius transformations of Euclidean spaces is easily

obtained by switching the signature (0, n) to (n, 0) in the above theorem. For
the general case of a quadratic space with an arbitrary signature one has to
allow all products of vectors (not only invertible) in Rp,q in condition (a) of
Theorem 12.5.1, which is just the same if p = 0 or q = 0.

We will now develop the representation of Möbius transformations of the
complex plane in detail. Due to the fact that Cp,q(2) ' Cp+1,q+1, the algebra
to concern is C1,2, for which we need a matrix representation firstly. This is
given by defining the following basis

e0 :=

(
1 0
0 1

)
e1 :=

(
0 1
1 0

)
e2 :=

(
i 0
0 −i

)
e3 :=

(
0 −1
1 0

)

and the remaining basis vectors are easily obtained by matrix multiplica-
tion, e.g.

e123 =

(
−i 0
0 −i

)
.

A complex number z can therefore be represented as a matrix in an obvious
way either by

Z ′ :=

(
z 0
0 z

)

or equivalently by

Z ′′ :=

(
z 0
0 z̄

)

with the corresponding multivectors (Re(z), 0, 0, 0, 0, 0, 0,−Im(z)) and
(Re(z), 0, Im(z), 0, 0, 0, 0, 0), respectively. Although outside our main focus,
we should remark as a warning, that none of them gives a multivector rep-
resentation of complex numbers in C1,2, because complex multiplication is
not preserved. For a complex Vahlen matrix V neither V Z ′V ˜ nor V Z ′′V ˜

represent a Möbius transformation in general.
The right embedding to choose is

Z :=

(
z zz̄

1 z̄

)
, (12.40)

312 Sven Buchholz, Gerald Sommer

which can be deduced by using the concept of paravectors, mentioned earlier
in section 3.2.
The corresponding multivector is then given by

(Re(z),
1

2
(1 + zz̄), Im(z),

1

2
(1 − zz̄), 0, 0, 0, 0) .

Applying now a complex Vahlen matrix

(
a b

c d

)
as a spinor to Z one

obtains
(
a b

c d

)(
z zz̄

1 z̄

) (
a b

c d

)̃

=

(
a b

c d

) (
z zz̄

1 z̄

)(
d̄ b̄

c̄ ā

)

= λ

(
z′ z′z̄′

1 z̄′

)

where λ = |bz+ d|2 and z′ = (az+ b)(cz+ d)−1. Thus, we have found the
spinor representation of a complex Möbius transformation in C1,2. With some
effort λ could be expressed only in terms of the parameters of the Möbius
transformation. Therefore, we can speak of it as a scaling factor.

Experiment 4 (Möbius transformation).
As an example, we will now study how the Möbius transformation

z 7→ 0.5(1 + i)z + 0.5(1 − i)

−0.5(1 + i)z + 0.5(1 − i)

can be learned by C1,2-Neurons, but not by real valued neurons.
The training and test data used for this task is shown below in Fig. 12.14.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

Input
Output

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

2.5

Input
Output

Fig. 12.14. Training data (left) and test data (right)

12. Introduction to Neural Computation in Clifford Algebra 313

Neither on the pure complex input-output pairs nor on the coded data
(12.40) an MLP can generalize the transformation. In the first case a training
SSE of 0.00326 results in a generalization SSE of 6.15109 on the test set, in
the second case a generalization SSE of 2.31305 was reached, although the
training SSE was only 0.00015. So the MLP has in both cases just memorized
the training examples, but not learned the structure within the data, because
of its missing abilities to do so, namely the to embed the 4-dimensional data
correctly in the required 8-dimensional space. This was done, as theoretically
derived, by the Clifford neurons with nice robustness with respect to noise
as shown in Figs. 12.15 and 12.16, respectively.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

w/o noise

5% noise

10% noise

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

2.5

w/o noise

 5% noise

10% noise

Fig. 12.15. Learned transformation on training data (left) and test
data(right)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0 5 10 15 20 25

M
S

E

Noise level (%)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 5 10 15 20 0.25

M
S

E

Noise level (%)

Fig. 12.16. MSE vs. noise level for training (left) and testing (right)

314 Sven Buchholz, Gerald Sommer

12.6 Summary

In this first of two chapters on Clifford neural computation we discussed
the Clifford neuron in detail. We showed how the geometric product can be
used with an associator. We introduced the special neuron model of spinor
neurons that allows to compute orthogonal transformations very elegantly.
This way of computation was proven to be faster and much more robust
against noise as real single–layer neural networks. Moreover, we were able to
show on the example of Möbius transformations that there exist geometric
transformations that are only exclusively computable by Clifford neurons.
This was done by using a non–linear coding of the data which resulted in a
linearization in Clifford algebras.

We now will make the transition from the Clifford neuron and linearity
to Clifford neural networks and non–linearity in the subsequent chapter.

