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16.1 Introduction

The computation of the intrinsic camera parameters is one of the most impor-
tant issues in computer vision. The traditional way to compute the intrinsic
parameters is using a known calibration object. One of the most important
methods is based on the absolute conic and it requires as input only infor-
mation about the point correspondences [163, 107]. As extension a recent
approach utilizes the absolute quadric [235]. Other important groups of self-
calibration methods either reduce the complexity if the camera motion is
known in advance, for example as translation [66], or as rotation about known
angles [5, 67], or by using active strategies and e.g. the vanishing point [56].

In this chapter we re-establish the idea of the absolute conic in the context
of Pascal’s theorem and we get equations different to the Kruppa equations
[163, 107]. Although the equations are different, they rely on the same prin-
ciple of invariance of the mapped absolute conic. The consequence is that we
can generate equations so that we require only a couple of images whereas
the Kruppa equation method requires at least three views [163]. However, as
a prior knowledge the method requires the translational motion direction of
the camera and the rotation about at least one fixed axis through a known
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angle in addition to the point correspondences. The paper will show that
although the algorithm requires the extrinsic camera parameters in advance
it has the following clear advantages: It is derived from geometric observa-
tions, it does not stick in local minima in the computation of the intrinsic
parameters and it does not require any initialization at all. We hope that this
proposed method derived from geometric thoughts gives a new point of view
to the problem of camera calibration.

The chapter is organized as follows. Section two explains the conics and
the theorem of Pascal. Section three reformulates the well known Kruppa
equations for computer vision in terms of algebra of incidence. Section four
presents a new method for computing the intrinsic camera parameters based
on Pascal’s theorem. Section five is devoted to the experimental analysis and
section six to the conclusion part.

16.2 Conics and the Theorem of Pascal

The role of the conics and quadrics is well known in the projective geom-
etry [213] because of their invariant properties with respect to projective
transformations. This knowledge lead to the solution of crucial problems in
computer vision [177]. The derivation of the Kruppa equations relies on the
conic concept. These equations have been used in the last decade to com-
pute the intrinsic camera parameters. In this chapter we will exploit further
the conics concept and use Pascal’s theorem to establish an equation system
with clear geometric transparency. Next, we will explain the role of conics
and that of Pascal’s theorem in relation with a fundamental projective invari-
ant. This section is mostly based on the interpretation of the linear algebra
together with projective geometry in the Clifford algebra framework realized
by Hestenes and Ziegler [118].

When we want to use projective geometry in computer vision, we utilize
homogeneous coordinate representations. Doing that, we embed the 3–D Eu-
clidean visual space in the 3–D projective space P3 or R4 and the 2–D Eu-
clidean space of the image plane in the 2–D projective space P

2 or R
3. In the

geometric algebra framework we select for P2 the 3–D Euclidean geometric
algebra C3,0,0 and for P3 the 4–D geometric algebra C1,3,0. The reader should
see chapter 14 for more details about the connection of geometric algebra and
projective geometry. Any geometric object of P3 will be linearly projective
mapped to P2 via a projective transformation, for example the projective
mapping of a quadric at infinity in the projective space P3 results in a conic
in the projective plane P2.

Let us first consider a pencil of lines lying on the plane. Doing that,
we will follow the ideas of Hestenes and Ziegler [118]. Any pencil of lines
is well defined by a bivector addition of two of its lines: l = la + slb with
s ∈ R ∪ {−∞, +∞}. If two pencils of lines, l and l′ = l′a + s′l′b, can be
related one–to–one so that l = l′ for s = s′, we can say that they are in



16. Analysis and Computation of the Intrinsic Camera Parameters 395

projective correspondence. Using this idea, the set of intersecting points of
lines in correspondence build a conic. Since the intersecting points x of the
line pencils l and l′ fulfill for s = s′ the following constraints

x∧l = x∧la + sx∧lb = 0

x∧l′ = x∧l′a + sx∧l′b = 0, (16.1)

the elimination of the scalar s yields a second order geometric product equa-
tion in x

(x∧la)(x∧l′b) − (x∧lb)(x∧l′a) = 0. (16.2)

We can also get the parameterized conic equation simply by computing
the intersecting point x, taking the meet of the line pencils as follows

x = (la + slb) ∨ (l′a + sl′b) = la ∨ l′a + s(la ∨ l′b + lb ∨ l′a) + s2(lb ∨ l′b).
(16.3)

Let us for now define the involved lines in terms of wedge of points la =
a∧b, lb = a∧b′, l′a = a′∧b and l′b = a′∧b′ such that la ∨ l′a = b, la ∨ l′b = d,
lb ∨ l′a = d′ and lb ∨ l′b = b′, see Figure 16.1.a. By substituting b′′ = la ∨ l′b +
lb ∨ l′a = d + d′ in the last equation, we get

x = b + sb′′ + s2b
′, (16.4)

which represents a nondegenerated conic for b∧b′′∧b′ = b∧(d + d′)∧b′ 6=0.
Now, using this equation let us compute the generating line pencils. Define
l1 = b′′∧b′, l2 = b′∧b and l3 = b∧b′′. Then using the equation (16.4), its
two projective pencils are

b∧x = sb∧b′′ + s2b∧b′ = s(l3 − sl2)

b′∧x = b′∧b + sb′∧b′′ = l2 − sl1. (16.5)

Considering the points a, a′, b and b
′ and some other point c′ lying on the

conic depicted in Figure 16.1.a, and the equation (16.2) for s = ρs′ slightly
different to s′, we get the bracket expression

[c′ab][c′a′b′] − ρ[c′ab′][c′a′b] = 0

⇔ ρ =
[c′ab][c′a′b′]

[c′ab′][c′a′b]
(16.6)

for some ρ 6= 0. This equation is well known and represents a projective
invariant which has been used quite a lot in real applications of computer
vision [177]. For a thorough study of the role of this invariant using brackets
of points, lines, bilinearities and the trifocal tensor see Bayro and Lasenby
[145, 18]. Now evaluating ρ in terms of some other point c we get a conic
equation fully represented in terms of brackets

[cab][ca′b′] − [c′ab][c′a′b′]

[c′ab′][c′a′b]
[cab′][ca′b] = 0

⇔ [cab][ca′b′][ab′c′][a′bc′] − [cab′][ca′b][abc′][a′b′c′] = 0. (16.7)



396 Eduardo Bayro-Corrochano, Bodo Rosenhahn

Again we get a well known concept, which says that a conic is uniquely
determined by the five points in general position a, a′, b, b′ and c . Now,
considering Figure 16.1.b, we assume six points on the conic and we can iden-
tify three collinear intersecting points α1, α2 and α3. Using the collinearity
constraint and the lines which belong to pencils in projective correspondence
we can write down a very useful equation

α1∧α2∧α3 = 0

⇔
(

(a′∧b) ∨ (c′∧c)
)

∧
(

(a′∧a) ∨ (b′∧c)
)

∧
(

(c′∧a) ∨ (b′∧b)
)

= 0.

(16.8)
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Fig. 16.1. a) Two projective pen-
cils generate a conic b) Pascal’s the-
orem

This expression is a geometric formulation of Pascal’s theorem. This the-
orem proves that the three intersecting points of the lines which connect
opposite vertices of a hexagon circumscribed by a conic are collinear ones.
The equation (16.8) will be used in later section for computing the intrinsic
camera parameters.

16.3 Computing the Kruppa Equations in the

Geometric Algebra

In this section we will formulate in two ways the Kruppa equations in the
geometric algebra framework. First, we derive the Kruppa equations in its
polynomial form using the bracket conic equation (16.7). Secondly, we for-
mulate them in terms of pure brackets. The goal of the section is to compare
the bracket representation with the standard one.

16.3.1 The Scenario

Next, we will briefly summarize the scenario for observing a conic at infinity
(the absolute conic) in the image planes of multiple views with the aim of
self-calibration of the camera. We are applying the standard pinhole camera
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model. As described in chapter 14 a pinhole camera can be described by four
homogeneous vectors in P3: One vector gives the optical centre and the other
three define the image plane. Let {Aµ} be a reference coordinate system,
which consists of four vectors and defines the frame F0. Let X be a point in
a frame {Zµ} = F1. The image XA of the point X on the image plane A of
{Aµ} = F0 can be described by several transformations.

In the first step the frame F1 can be related to F0 by a transformation MF1

F0
.

This transformation represents a 3-D rotation R and a 3-D translation t in
the 3-D projective space P3 and depends on six camera parameters. So the
frames F0 and F1 are first related by a 4 × 4 matrix

MF1

F0
=




R t

0T
3 1



 . (16.9)

The matrix MF1

F0
is the matrix of the extrinsic camera parameters.

In the next step changes between the camera planes have to be considered.
So the focal length, rotations and translations in the image planes have to be
adapted. This affine transformation will be described by the matrix K and
has the well known form

K =








αu γ u0

0 αv v0

0 0 1








. (16.10)

The parameters u0, v0 describe a translation along the image plane and
αu, αv, γ describe scale changes along the image axes and a rotation in the
image plane. So the whole projective transformation can be described by

P = KP0M
F1

F0
, (16.11)

where P0 = [I|0] is a 3 × 4 matrix and I is the 3 × 3 identity matrix. P0

describes the projection matrix from the 3-D camera frame F1 to the nor-
malized camera plane, given in homogeneous coordinates.
The task is to find out the intrinsic camera parameters, which can be found
in the matrix K (see equation 16.10) of the affine transformation from the
normalized camera coordinate plane to the image coordinate plane. As de-
picted in Figure 16.2, the images of the points defining the absolute conic are
observed from different positions and orientations, and the point correspon-
dences between the images are evaluated. Generally, the relation between
points of cameras at different locations depends on both, the extrinsic and
the intrinsic parameters. But in case of formulating the Kruppa equations, it
will happen that these only depend on intrinsic parameters. An often used
notation of equation (16.11), which we want to adopt here for the camera at
the i-th frame Fi with respect to frame F0, is

Pi = K[R|t], (16.12)
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where [R|t] is a 3 × 4 matrix constituted by the rotation matrix R and the
translation vector t, resulting from the fusion of P0 and MFi

F0
. For the sake

of simplicity, we will set for the first camera F1 ≡ F0, thus, its projective
transformation becomes P1 = K[I|0], where I is the 3 × 3 identity matrix.

16.3.2 Standard Kruppa Equations

This approach uses the equation (16.7) for the conic in terms of brackets
considering five points a, b, a′, b′, c′ which lie on the conic in the image
plane:

[cab][ca′b′][ab
′
c′][a′bc′] − [cab

′][ca′b][abc′][a′b′c′] = 0

[abc][a′b′c] − [a′b′c′][abc′]

[ab′c′][a′bc′]
[ab′c][a′bc] = 0. (16.13)
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Fig. 16.2. The conics at infinity, the real 3–D visual space and n uncalibrated
cameras
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These five points are images of points on the absolute conic. A conic at
infinity Ωinf in P3 can be defined employing any imaginary five points lying
on the conic, e.g.

A0 =











1

i

0

0











, B0 =











i

1

0

0











, A′
0 =











i

0

1

0











, B′
0 =











1

0

i

0











, C′
0 =











0

i

1

0











, (16.14)

where i2 = −1. Note that we use upper case letters to represent points of
the projective space P3 in C1,3,0. Because these points at infinity fulfill the

property AT
0 A0 = BT

0 B0 = A
′T
0 A′

0 = B
′T
0 B′

0 = C
′T
0 C′

0 = 0 they lie on
the absolute conic. In geometric algebra a conic can be described by the
points lying on the conic. Furthermore, the image of the absolute conic can
be described by the image of the points lying on the absolute conic. In the
next step, let us first define the point A as a 3 × 1-vector which consists of
the first three elements of A0. Doing similary with the other points we get
the points

A =








1

i

0








, B =








i

1

0








, A′ =








i

0

1








, B′ =








1

0

i








, C ′ =








0

i

1








. (16.15)

Since the projection of the points A0, . . . , C′
0 are translation invariant,

their projections x = PX on any image plane are independent of t and thus
given by

a = K[R|t]A0 = KRA , b = K[R|t]B0 = KRB

a′ = K[R|t]A′
0 = KRA′ , b′ = K[R|t]B′

0 = KRB′

c′ = K[R|t]C ′
0 = KRC′ . (16.16)

In addition the rotated points RT A, RT B, RT A′, RT B′ and RT C′ lie
also at the conic, because they fulfill the property

(RT A)T (RT A) = (RT B)T (RT B) = (RT A′)T (RT A′) =

(RT B′)T (RT B′) = (RT C ′)T (RT C ′) = 0. (16.17)

Using these rotated points, the rotation R of the camera transformation is
canceled and the points on the image of the absolute conic will be described
by

a = KA, b = KB, a′ = KA′, b′ = KB′, c′ = KC′. (16.18)

To use the points a, . . . , c′ in the bracket notation of conics it is use-
full to translate the matrix multiplication x = KX in terms of geometric
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algebra. Suppose an orthonormal basis B1 = {e1, . . . , e3} and X as a lin-

ear combination of B1 i.e. X =
∑3

i=1 xiei. The matrix K describes a linear
transformation. As can be seen in chapter 1.3 this linear transformation can
be expressed by

Kei = K(ei) =

3∑

j=1

ejkji (16.19)

with kji the elements of the matrix K. So the matrix multiplication KX can
be substituted by KX in terms of geometric algebra. Therefore, the point c
lies on the image of the absolute conic iff

[(K
�

)(K � ) � ][(K
�

′)(K � ′) � ] −
[(K

�
′)(K � ′)(K � ′)][(K

�
)(K � )(K � ′)]

[(K
�

)(K � ′)(K � ′)][(K
�

′)(K � )(K � ′)]
·

·[(K
�

)(K � ′) � ][(K
�

′)(K � ) � ] = 0.

(16.20)

We can further extract of the brackets the determinant of the intrinsic
parameters in the multiplicative ratio of the previous equation. This is ex-
plained in chapter 1.3. Now the invariant reduces to a constant

Inv =
([K

�
′)(K � ′)(K � ′)][(K

�
)(K � )(K � ′)]

[(K
�

)(K � ′)(K � ′))][(K
�

′)(K � )(K � ′)]

=
det(K)[

�
′ � ′ � ′]det(K)[

� � � ′]

det(K)[
� � ′ � ′]det(K)[

�
′ � � ′]

=
[

�
′ � ′ � ′][

� � � ′]

[
� � ′ � ′][

�
′ � � ′]

. (16.21)

Substituting the values from equation (16.15) for A, B, A′, B′, C ′ in
this equation, we get the value of Inv = 2. This value will be used for further
computations later on. The equation (16.21) is as expected invariant to the
affine transformation K. Thus, the bracket equation (16.6) of the projective
invariant resulting in the image of the absolute conic can be written as

[(K
�

)(K � ) � ][(K
�

′)(K � ′) � ] − Inv[(K
�

)(K � ′) � ][(K
�

′)(K � ) � ] = 0. (16.22)

Let be Q = K−T K−1 the matrix of the image of the absolute conic, then
cT Qc = 0 in matrix notation means that c is a point on the image of the
absolute conic. According to the duality principle of points and lines the dual
image of the absolute conic, i.e. its matrix Q∗ ∼ Q−1 = KKT is related to
a line lc, tangential to the image of the absolute conic. Because this can be
expressed as

0 = cT Qc = cT QT c = (cT QT )Q−1(Qc) = lTc Q∗lc, (16.23)

we have Qc = lc or c = KKT lc. To use KKT lc in the bracket description
of conics, it is usefull to translate the matrix multiplications in terms of
geometric algebra. The line lc is tangential to the image of the absolute
conic, so it has the form

∑3
i=1 lci

ei. The product KT lc can be described using



16. Analysis and Computation of the Intrinsic Camera Parameters 401

the adjoint K of K by the expression Klc, see chapter 1.3. The expression
c = KKT lc can thus be formulated as c = KKlc. We can substitute this
line tangent in equation (16.22):

[(K � )(K � ) � ][(K � ′)(K � ′) � ] − Inv[(K � )(K � ′) � ][(K � ′)(K � ) � ] = 0

⇔ [(K � )(K � )(KK � c)][(K � ′)(K � ′)(KK � c)] −

−Inv[(K � )(K � ′)(KK � c)][(K � ′)(K � )(KK � c)] = 0

⇔ det(K)[ � � (K � c)]det(K)[ � ′ � ′(K � c)] −

−Inv det(K)[ � � ′(K � c)]det(K)[ � ′ � (K � c)] = 0

⇔ [ � � (K � c)][ � ′ � ′(K � c)] − Inv[ � � ′(K � c)][ � ′ � (K � c)] = 0. (16.24)

To further proceed on the classical way of deriving Kruppa’s equations
[169, 163, 162], it will be possible to formulate two polynomial constraint
equations on the dual of the image of the absolute conic in the frame of
epipolar geometry. Let be p = p1e1 + p2e2 + p3e3 the epipole of an image
and let be q = e1 + τe2 a point at infinity. The aim will be to force the line

lc = (p ∧ q)I−1

=

((
3∑

i=1

piei

)

∧ (e1 + τe2)

)

(e1e2e3)
−1

= (−p3τ)e1 + (p3)e2 + (p1τ − p2)e3, (16.25)

to be tangential to the dual of the image of the absolute conic by means of
the unknown τ . Then we can substitute the term lc in equation (16.24). With

Klc = (−k11p3τ)e1 + (−k12p3τ + k22p3)e2 +

(−k13p3τ + k23p3 + p1τ − p2)e3 (16.26)

and the value for Inv = 2 the equation (16.24) simplifies to a second order
polynomial with respect to τ as follows

[AB(Klc)][A
′B′(Klc)] − Inv[AB′(Klc)][A

′B(Klc)] =

4p1τp2 − 2p2
1τ

2 − 2k2
22p

2
3 − 4k23p3p1τ + 4k23p3p2 − 2k2

13p
2
3τ

2 −
2k2

12p
2
3τ

2 − 2k2
23p

2
3 − 2p2

2 − 2k2
11p

2
3τ

2 + 4k12p
2
3τk22 − 4k13p3τp2 +

4k13p
2
3τk23 + 4k13p3τ

2p1. (16.27)

Expressing the polynomial in the form P (τ) = k0 + k1τ + k2τ
2, we get

the following coefficients

k0 = −2k2
22p

2
3 + 4k23p3p2 − 2k2

23p
2
3 − 2p2

2

k1 = 4p1p2 − 4k23p3p1 + 4k12p
2
3k22 − 4k13p3p2 + 4k13p

2
3k23

k2 = −2p2
1 − 2k2

13p
2
3 − 2k2

12p
2
3 − 2k2

11p
2
3 + 4k13p3p1. (16.28)
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Because lc can be also considered as an epipolar line tangent to the conic
in the first camera, according the homography of a point lying at the line at
infinity of the second camera, we can use the operator F for the describtion
of the fundamental matrix F in terms of geometric algebra, and can compute
lc = F (e1 + τe2). Using the new expression of lc we can gain similarly as
above new equations for the coefficients of the polynomial P (τ), now called
k′

i. Taking now these equations for the two cameras, we finally can write down
the well known Kruppa equations

k2k
′
1 − k′

2k1 = 0

k0k
′
1 − k′

0k1 = 0

k0k
′
2 − k′

0k2 = 0. (16.29)

We get up to a scalar factor the same Kruppa equations as presented by
Luong and Faugeras [162]. The scalar factor is present in all of these equa-
tions, thus it can be canceled straightforwardly. The algebraic manipulation
of this formulas was checked entirely using a Maple program.

16.3.3 Kruppa’s Equations Using Brackets

In this section we will formulate the Kruppa coefficients k0, k1, k2 of the
polynomial P (τ) in terms of brackets. This kind of representation will obvi-
ously elucidate the involved geometry. First let us consider again the bracket
[AB(Klc)] of equation (16.24). Each bracket can be split in two brackets,
one independent of τ and another depending of it

[AB(Klc)] = [AB(K(p3e2 − p2e3))] + [AB(K(−p3e1 + p1e3))]τ. (16.30)

In short, [AB(Klc)] = a1 + τb1. Now using this bracket representation
the equation (16.24) can be written as

[AB(Klc)][A
′B′(Klc)] − Inv[AB′(Klc)][A

′B(Klc)] = 0

⇔ (a1 + τb1)(a2 + τb2) − Inv(a3 + τb3)(a4 + τb4) = 0

⇔ a1a2 + τb1a2 + a1τb2 + τ2b1b2 −
−Inv(a3a4 + a3a4τ + b3a4τ + b3b4τ

2) = 0

⇔ a1a2 − Inv(a3a4)
︸ ︷︷ ︸

k0

+τ(a1b2 + b1a2 − Inv(a3b4 + a4b3)
︸ ︷︷ ︸

k1

) +

+τ2(b1b2 − Inv(b3b4)
︸ ︷︷ ︸

k2

) = 0. (16.31)

Now let us take a partial vector part of Klc and call it

Klc1 := −k11p3e1 − k12p3e2 + (−k13p3 + p1)e3

and the “rest”-part as
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Klc2 := (k22p3)e2 + (k23p3 − p2)e3.

Using both parts we can write the coefficients of the polynomial in a
bracket form as follows:

k0 = [ � � (K � c2)][ � ′ � ′(K � c2)] − Inv[ � � ′(K � c2)][ � ′ � (K � c2)] (16.32)

k1 = [ � � (K � c1)][ � ′ � ′(K � c2)] + [ � � (K � c2)][ � ′ � ′(K � c1)]

−Inv[ � � ′(K � c2)][ � ′ � (K � c1)] − Inv[ � � ′(K � c1)][ � ′ � (K � c2)] (16.33)

k2 = [ � � (K � c1)][ � ′ � ′(K � c1)] − Inv[ � � ′(K � c1)][ � ′ � (K � c1)]. (16.34)

Since A, B, A′, B′ and Inv are known given an epipole p = p1e1 +p2e2 +
p3e3, we can finally compute the coefficients k0, k1, k2 straightforwardly. The
striking aspect of these equations is twofold. They are expressed in terms
of brackets and they depend of the invariant real magnitude Inv. This can
certainly help us to explore the involved geometry of the Kruppa equations
using brackets.

Let us first analyze the k’s. Since the elements of k1 consists of the ele-
ments of k0 and k2, it should be sufficient to explore the involved geometry
of k0 and k2 if these are expressed as follows:

k0 = a1a2 − Inv(a3a4)

= [AB(Klc2)][A
′B′(Klc2)] − Inv[AB′(Klc2)][A

′B(Klc2)]

= ((e1 + ie2) ∧ (ie1 + e2) ∧ (k22p3e2 + (k23p3 − p2)e3)I
−1)

((ie1 + e3) ∧ (e1 + ie3) ∧ (k22p3e2 + (k23p3 − p2)e3)I
−1) −

Inv((e1 + ie2) ∧ (e1 + ie3) ∧ (k22p3e2 + (k23p3 − p2)e3)I
−1)

((ie1 + e3) ∧ (ie1 + e2) ∧ (k22p3e2 + (k23p3 − p2)e3)I
−1) (16.35)

k2 = b1b2 − Inv(b3b4)

= [AB(Klc1)][A
′B′(Klc1)] − Inv[AB′(Klc1)][A

′B(Klc1)]

((e1 + ie2) ∧ (ie1 + e2) ∧
(−k11p3e1 − k12p3e2 + (−k13p3 + p1)e3)I

−1)

((ie1 + e3) ∧ (e1 + ie3) ∧
(−k11p3e1 − k12p3e2 + (−k13p3 + p1)e3)I

−1)

−Inv((e1 + ie2) ∧ (e1 + ie3) ∧
(−k11p3e1 − k12p3e2 + (−k13p3 + p1)e3)I

−1)

((ie1 + e3) ∧ (ie1 + e2) ∧
(−k11p3e1 − k12p3e2 + (−k13p3 + p1)e3)I

−1). (16.36)

Let us analyze some effects of camera motions in these two equations.
If the camera moves on a straight path parallel to the object, the epipole
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lies at infinity. Because p3 = 0 in this case, the intrinsic parameters become
zero resulting a trivial polynomial, i.e. we can not get the coefficients of
the intrinsic camera parameters. On the other hand, for example trying the
values −k13p3 + p1 = 0 or k23p3 − p2 = 0, the rest of the brackets will have
the rank two and their determinant value is also zero. Since the epipole can
be normalized with p3 = 1, the equations are equivalent to k13 = p1 and
k23 = p2. This means there is a superposition of the value of the epipole with
a parameter of the intrinsic camera parameters. These simple examples show
that analyzing the brackets for certain kinds of camera motions can avoid
certain camera motions which generate trivial Kruppa equations. It is also
interesting to see that for k0 = 0 and k2 = 0 we have also conic equations.
So in order to avoid trivial equations we have to consider always k0 6= 0 and
k2 6= 0. In other words, the splitted parts Klc1 and Klc2 of Klc should not
lie on the image of the absolute conic.

Now let us consider the invariant real magnitude Inv of the bracket equa-
tion (16.24).

[AB(Klc)][A
′B′(Klc)] − Inv[AB′(Klc)][A

′B(Klc)] = 0

⇔ Inv =
[AB(Klc)][A

′B′(Klc)]

[AB′(Klc)][A
′B(Klc)]

. (16.37)

That the invariant value Inv like in the equation (16.6) plays a role in the
Kruppa equations is a fact that has been overseen so far. This can be simply
explained as the fact that when we formulate the Kruppa equations using
the condition cT Qc = 0, we are actually implicitly employing the invariant
given by equation (16.37).

16.4 Camera Calibration Using Pascal’s Theorem

This section presents a new technique in the geometric algebra framework for
computing the intrinsic camera parameters. The previous section used the
equation of (16.7) to compute the Kruppa coefficients which in turn can be
used to get the intrinsic camera parameters. Along this lines we will proceed
here.

In section two it is shown that the equation (16.7) can be reformulated to
express the constraint of equation (16.8) known as Pascal’s theorem. Since
Pascal’s theorem fulfills a property of any conic, it should be also possible us-
ing this equation to compute the intrinsic camera parameters. Let us consider
the three intersecting points which are collinear and fulfill

(( � ′∧
�
) ∨ ( � ′ ∧ � ))� � � �

�
1

∧ (( � ′ ∧ � ) ∨ (
�
′ ∧ � ))� � � �

�
2

∧ (( � ′ ∧ � ) ∨ (
�
′ ∧

�
))� � � �

�
3

= 0. (16.38)
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Similar to chapter 1.3.2, in Figure 16.3 at the first camera the projected
rotated points of the conic at infinity are

a = KA, b = KB, a′ = KA′, b′ = KB′, c′ = KC′. (16.39)

The point c = KKlc depends of the intrinsic parameters and of the
line lc tangent to the conic which is computed in terms of the epipole p =
p1e1 + p2e2 + p3e3 and a point q = e1 + τe2 lying at the line at infinity of
the first camera, i.e. lc = (p ∧ q)I−1.

Now using this expression for lc we can simplify equation (16.38) and get
the bracket equations of the α’s�

[ � ′ � � ′] � − [ � ′ � � ] � ′ � ∧ �
[ � ′ � � ′] � − [ � ′ � � ] � ′ � ∧ �

[ � ′ � � ′] � − [ � ′ � � ] � ′ � = 0

⇔
�
[(K � ′)(K � )(K � ′)](KK � c) − [(K � ′)(K � )(KK � c)](K � ′) � ∧�
[(K � ′)(K � )(K � ′)](KK � c) − [(K � ′)(K � )(KK � c)](K � ′) � ∧�
[(K � ′)(K � )(K � ′)](K � ) − [(K � ′)(K � )(K � )](K � ′) � = 0

⇔
�
det(K)K

�
[ � ′ � � ′](K � c) − [ � ′ � (K � c)] � ′ � 	 ∧


det(K)K
�
[ � ′ � � ′](K � c) − [ � ′ � (K � c)] � ′)

	 ∧

det(K)K

�
[ � ′ � � ′] � − [ � ′ � � ] � ′) 	 = 0

⇔ det(K)4

 �

[ � ′ � � ′](K � c) − [ � ′ � (K � c)] � ′ � ∧�
[ � ′ � � ′]K � c − [ � ′ � (K � c)] � ′)∧�
[ � ′ � � ′] � − [ � ′ � � ] � ′ � 	

= 0

⇔
�
[ � ′ � � ′](K � c) − [ � ′ � (K � c)] � ′ �� � 
 ��

1

∧

�
[ � ′ � � ′](K � c) − [ � ′ � (K � c)] � ′ �� � 
 ��

2

∧

�
[ � ′ � � ′] � − [ � ′ � � ] � ′ �� � 
 ��

3

= 0. (16.40)

Note that the scalar det(K)4 is cancelled out simplifying the expression
for the α’s. The computation of the intrinsic parameters will be done first
considering that the intrinsic parameters remain stationary under camera
motions and second when these parameters change.

16.4.1 Computing Stationary Intrinsic Parameters

Let us assume that the basis F0 is attached to the optical center of the first
camera and consider a second camera which has a motion of [R1|t1] with
respect to the first one. Accordingly the involved projective transformations
are given in matrix notation by
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21
e12

e

Fig. 16.3. Pascal’s theorem at the conic images

P1 = K[I|0] (16.41)

P2 = P1




R1 t1

0T
3 1





−1

= P1

(

MF0

FC

)−1

(16.42)

and their optical centres by C1 = (0, 0, 0, 1)T and C2 = MF0

FC
C1. In geometric

algebra we use the notations P1, P2, C1 = e4 and C2 = MF0

FC
C1. Thus, we

can compute their epipoles as e21 = P2C1, e12 = P1C2.
Next, we will show by means of an example that the coordinates of the

points α1, α2, α3 are entirely independent of the intrinsic parameters. This
condition is necessary for solving the problem. Let us choose a camera motion
given by

[R1|t1] =








0 −1 0 2

1 0 0 −1

0 0 1 3








. (16.43)

For this motion the epipoles are

e12 = (2k11 − k12 + 3k13)e1 + (−k22 + 3k23)e2 + 3e3 and

e21 = (k11 + 2k12 − 3k13)e1 + (2k22 − 3k23)e2 − 3e3. (16.44)

By using the rotated conic points given by the equation (16.15) and re-
placing e12 in the equation (16.40), we can make explicit the α’s
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α1 = ((−3 + 3i)k11τ)e1 +

(3k11τ − ik12τ + ik22 + 2ik11τ − 3k12τ + 3k22)e2 +

(ik11τ + 3k12τ − 3k22 + ik12τ − ik22)e3

α2 = (−3ik11τ − 2k12τ + 2k22 − 2k11τ)e1 +

(−6i(k12τ − k22))e2 + (−3k11τ − 4ik12τ + 4ik22 + 2ik11τ)e3

α3 = (1 − i)e1 + (1 − i)e2 + 2e3. (16.45)

Note that α3 is fully independent of K. According to Pascal’s theorem
these three points lie on the same line, therefore, by replacing these points in
the equation (16.38) we get the following second order polynomial in τ

(−40ik2
12 − 52ik2

11 + 16ik11k12)τ
2+

(−16ik11k22 + 80ik12k22)τ − 40ik2
22 = 0. (16.46)

Solving this polynomial and choosing one of the solutions which is nothing
else than the solution for one of the two lines tangent to the conic we get

τ :=
16ik11k22 − 80ik12k22 + 24

√
14k11k22

2(−40ik2
12 − 52ik2

11 + 16ik11k12)
. (16.47)

Now considering the homogeneous representation of these intersection
points

αi = αi1e1 + αi2e2 + αi3e3 ∼ αi1

αi3
e1 +

αi2

αi3
e2 + e3, (16.48)

we can finally express their homogeneous coordinates as follows

α11 = −(2k11−10k12+3ik11

√
14+8ik12+2k12

√
14−10ik11+2

√
14k11)

2ik11−10ik12−3
√

14k11−4k12−4ik12

√
14−16k11+2ik11

√
14

(16.49)

α12 = 2i(−2ik12−3k12

√
14+13ik11)

2ik11−10ik12−3
√

14k11−4k12−4ik12

√
14−16k11+2ik11

√
14

(16.50)

α21 = (1−i)(2ik11−10ik12−3
√

14k11)

5k11−4k12+ik11

√
14+2ik12+3k12

√
14−13ik11+ik12

√
14

(16.51)

α22 = 11ik11+8ik12+3
√

14k11−6k12−ik12

√
14−3k11+2ik11

√
14−3k12

√
14

5k11−4k12+ik11

√
14+2ik12+3k12

√
14−13ik11+ik12

√
14

. (16.52)

In the case of exactly orthogonal image axis, we can set in previous equa-
tion k12 = 0 and get

α11 =
2i − 3

√
14 + 10 + 2i

√
14

2 + 3i
√

14 + 16i + 2
√

14
(16.53)

α12 = 26
i

2 + 3i
√

14 + 16i + 2
√

14
(16.54)

α21 =
(1 + i)(−2i + 3

√
14)

−5i +
√

14 − 13
(16.55)

α22 = −−11 + 3i
√

14 − 3i − 2
√

14

−5i +
√

14 − 13
. (16.56)
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The coordinates of the intersection points are indeed independent of the
intrinsic parameters.

After this illustration by an example we will get now the coordinates
for any general camera motion. For that it is necessary to separate in the
projections the intrinsic parameters from the extrinsic ones. Let us define

s = s1e1 + s2e2 + s3e3 = [I|0] MF0

FC
C1. (16.57)

Thus, the epipole is

e12 = K [I|0] MF0

FC
C1 = Ks. (16.58)

Note that in this expression the intrinsic parameters are separate from
the extrinsic ones. Similar as above for the general camera motion with the
corresponding epipole value the coordinates for the intersecting points read

α11 = −
(−s3s1s2+is3

√
s
2

3
(s2

1
+s

2

2
+s

2

3
)−is

3

3
−is3s

2

1
+s1

√
s
2

3
(s2

1
+s

2

2
+s

2

3
)−is2s

2

3
)

(−is3s1s2−s3

√
s
2

3
(s2

1
+s

2

2
+s

2

3
)−s

3

3
−s3s

2

1
+is1

√
s
2

3
(s2

1
+s

2

2
+s

2

3
)+s2s

2

3
)

(16.59)

α21 =
−2s3(s2

3
+s

2

1
)

−is3s2s1−s3

√
s
2

3
(s2

1
+s

2

2
+s

2

3
)−s

3

3
−s3s

2

1
+is1

√
s
2

3
(s2

1
+s

2

2
+s

2

3
)+s2s

2

3

(16.60)

α12 =
(−1−i)(is1s2+

√
s
2

3
(s2

1
+s

2

2
+s

2

3
))s3

−is3s1s2−s3

√
s
2

3
(s2

1
+s

2

2
+s

2

3
)+s3s

2

1
+s

3

3
+s1

√
s
2

3
(s2

1
+s

2

2
+s

2

3
)−is2s

2

3

(16.61)

α22 =
i(is3s1s2+s3

√
s
2

3
(s2

1
+s

2

2
+s

2

3
)+is1

√
s
2

3
(s2

1
+s

2

2
+s

2

3
)+s2s

2

3
+is3s

2

1
+is

3

3
)

−is3s1s2−s3

√
s
2

3
(s2

1
+s

2

2
+s

2

3
)+s3s

2

1
+s

3

3
+s1

√
s
2

3
(s2

1
+s

2

2
+s

2

3
)−is2s

2

3

. (16.62)

Note that the intrinsic parameters are totally cancelled out. The invari-
ance properties can be used to obtain equations which depend on the four
unknown intrinsic camera parameters. The algorithm can be summarized in
the following steps.

1. Suppose point correspondences between two cameras and motion between
the cameras.

2. Calculate the values of the homogeneous αi by using the known camera
motion and the formulas (16.59–16.62).

3. Calculate Klc with the epipole, evaluated from the point correspon-
dences. To fulfill Pascal’s theorem solve the equations system to τ similar
to (16.47).

4. Replace τ in (16.45) and calculate the homogeneous representation of
these intersection points to get quadratic polynomials which depends on
the four unknown intrinsic parameters. Note that the intrinsic parameters
are not cancelled out because of the insert of the real values from the
epipol. Because of the invariant properties of the α’s the polynomials
must be equal to the evaluated values of the α’s in step 2. This leads to
four quadratic equations.

Since we are assuming that the intrinsic parameters remain constant, we can
consequently gain a second set of four equations depending again of the four
intrinsic parameters from the second epipole.
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The interesting aspect here is that we require only one camera motion to
find a solvable equation system. Other methods gain for each camera motion
only a couple of equations, thus they require at least three camera motions
to solve the problem [169, 163]. This particular advantage of our approach
relies in the investigation of Pascal’s theorem and its formulation in geometric
algebra.

16.4.2 Computing Non–stationary Intrinsic Parameters

In this case we will consider that due to the camera motion the intrisic pa-
rameters may have been changed. The procedure can be formulated along
the same previous ideas with the difference that we compute the line lc using
the operator for the fundamental matrix and a point lying at line at infinite
of the second camera as lc = F (e1 + τ ′e2).

Note that the fundamental matrix can be expressed in terms of the mo-
tion between cameras and the K of the camera, i.e. F = K−T [t]×R12K

T

where [t]× is the tensor notation of the antisymmetric matrix representing
the translation [163]. The term E = [t]×R12 is called the essential matrix. The

decomposition of F can instantaneous be described by F = K
−1

[t]× R12K
in terms of geometric algebra.

Now similar as in previous case we will use an example for facilitating the
understanding. We will use the same camera motion given in equation (16.43).
The fundamental matrix in terms of the intrinsic parameters of the first
camera K and of the second one K ′, with the assumption of perpendicular
pixel grids k12 = k′

12 = 0, and the camera motion reads in matrix notation

F = K−1T
[t]×RK

′−1

=









−3
k′

22
k22

v2

0 − (k′

11
−3k′

13
)k22k′

22

v2

0 −3
k′

11
k11

v2

−k11k′

11
(2k′

22
−3k′

23
)

v2

(2k11+3k13)k22k′

22

v2

− (k22−3k23)k11k′

11

v2

1









(16.63)

where v2 = −3k′
22k22k13k

′
13 + k22k

′
22k

′
11k13 + k22k

′
23k

′
11k11 − 2k22k

′
22k

′
13k11 +

2k23k
′
22k

′
11k11 − 3k23k

′
23k

′
11k11.

The value of the line lc is now computed in terms of the operator of the
fundamental matrix, i.e. lc = F (e1 + τ ′e2) Similar as above we compute
the α’s and according the Pascal’s theorem we gain a polynomial similar as
equation (16.46). This reads

10k′2
11τ

′2 − 4k′
22k

′
11τ

′ + 13k′2
22 = 0. (16.64)

We select one of both solutions of this second order polynomial

τ ′ =
4k′

22k
′
11 + 6ik′

22k
′
11

√
14

20(k′2
11)

(16.65)
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and substitute it in the homogeneous coordinates of the α’s

α11 = − i(−5i− 4 + i
√

14)

5i + 2 + 2i
√

14
(16.66)

α21 =
−2 + 3i

√
14

5i + 2 + 2i
√

14
(16.67)

α12 =
10 − 10i

−4i − 2 + 3i
√

14 −
√

14
(16.68)

α22 = − 8 + 6i −
√

14 + 3i
√

14

−4i− 2 + 3i
√

14 −
√

14
, (16.69)

where α3 = (1 − i)e1 + (1 − i)e2 + 2e3 is again fully independent of the
intrinsic parameters.

Finally, we will show the expression when we consider now a general
motion

[R|t] =








r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3








. (16.70)

In matrix algebra the fundamental matrix reads

F = K−T EK ′−1
(16.71)

=








k11 0 k13

0 k22 k23

0 0 1








−T 






E11 E12 E13

E21 E22 E23

E31 E32 E33















k′
11 0 k′

13

0 k′
22 k′

23

0 0 1








−1

(16.72)

and in geometric algebra the operator of the fundamental matrix reads

F = K
−1

E K
′−1.

Using this formulation we compute the homogeneous coordinates of the
α’s

α11 = i(iE11E
2
22 + iE11E

2
32 − iE12E21E22 − iE12E31E32

−iE12
√

v3 + E21E
2
12 + E21E

2
32 − E22E11E12 − E22E31E32

−E22
√

v3 − E31E
2
12 − E31E

2
22 + E32E11E12 + E32E21E22 + E32

√
v3)/

(iE11E
2
22 + iE11E

2
32 − iE12E21E22 − iE12E31E32 − iE12

√
v3 −

E31E
2
12 − E31E

2
22 + E32E11E12 + E32E21E22 + E32

√
v3 −

E21E
2
12 − E21E

2
32 + E22E11E12 + E22E31E32 + E22

√
v3) (16.73)
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α12 = 2(−E21E
2
12 − E21E

2
32 + E22E11E12 + E22E31E32 + E22

√
v3)/

(iE11E
2
22 + iE11E

2
32 − iE12E21E22 − iE12E31E32

−iE12
√

v3 − E31E
2
12 − E31E

2
22 + E32E11E12 + E32E21E22 +

E32
√

v3 − E21E
2
12 − E21E

2
32 + E22E11E12 + E22E31E32 + E22

√
v3)

(16.74)

α21 = (1 − i)(E11E
2
22 + E11E

2
32 − E12E21E22 − E12E31E32 − E12

√
v3)/

(−iE11E
2
22 − iE11E

2
32 + iE12E21E22 + iE12E31E32

+iE12
√

v3 − E21E
2
12 − E21E

2
32 + E22E11E12 + E22E31E32

+E22
√

v3 − iE31E
2
12 − iE31E

2
22 + iE32E11E12

+iE32E21E22 + iE32
√

v3) (16.75)
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where
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Note that for the general case the α’s are fully independent of the in-
trinsic camera coefficients kij or k′

ij . Together with the equations of the α’s
obtained using the first epipole the intrinsic parameters can be found solving
a quadratic equation system.

16.5 Experimental Analysis

In this section we present tests of the method based on Pascal’s theorem
using firstly simulated images. We explore the effect of different kinds of
camera motion and the effect of increasing noise in the computing of the
intrinsic camera parameters. The experiments with real images show that
the performance of the method is reliable.

16.5.1 Experiments with Simulated Images

Using a Maple simulation we firstly test the method based on the theorem
of Pascal to explore the dependency of the type and the amount of necessary
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camera motions for solving the problem. The experiments show that at least
a rotation about only one axis and a displacement along the three axes are
necessary for stabile computations of all intrinsic parameters. Then, we realize
a test of our approach by increasing noise.

The camera is rotated about the y–axis with translation along the three
camera axes. For the tests we used exact arithmetic of the Maple program
instead of floating point arithmetic of the C language. The Table 1 shows the
computed intrinsic parameters. The most right column of the table shows the
error obtained substituting these parameters in the polynomial (16.64) which
gives zero for the case of zero noise. The values in this column show that by
increasing noise the computed intrinsic parameters cause a tiny deviation of
the ideal value of zero. This indicates that the procedure is relatively stable
against noise. We could image that there is a relative flat surface around the
global minimum of the polynomial. Note that there are remarkable deviations
shown by noise 1.25.

Table 16.1. Intrinsic parameters by rotation about the y–axis and translation
along the three axes with increasing noise

Noise(pixels) k11 k13 k22 k23 Error

0 500 256 500 256 10−8

0.1 505 259 509 261 0.001440

0.5 504 259.5 503.5 258 0.004897

0.75 498 254 503.5 258 0.001668

1 482 242 485 254 0.011517

1.25 473 220 440 238 0.031206

1.5 517 272 518 266 0.015

2 508 262.5 504 258.5 0.006114

2.5 515 268 501.9 257 0.011393

3 510 265 524 276 0.011440

16.5.2 Experiments with Real Images

In this section we present experiments using real images with one general
camera motion, see Figure 16.4.

The motion was done about the three coordinate axes. We use a cali-
bration dice and for comparison purposes we compute the intrinsic param-
eters from the involved projective matrices by splitting the intrinsic pa-
rameters from the extrinsic ones. The reference values were: First camera
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Fig. 16.4. Scenario

k11 = 1200.66, k22 = 1154.77, k13 = 424.49, k23 = 264.389 and second cam-
era k11 = 1187.82, k22 = 1141.58, k13 = 386.797, k23 = 288.492 with mean
errors of 0.688 and 0.494, respectively.

Thereafter, using the gained extrinsic parameters [R1|t1] and [R2|t2] we
compute the relation [R|t] between cameras which is required for the Pas-
cal’s theorem based method. The fundamental matrix is computed using
a non-linear method. Using the Pascal’s theorem based method with 12
point correspondences unlike 160 point correspondences used by the algo-
rithm with the calibration dice we compute the following intrinsic parameters
k11 = 1244, k22 = 1167, k13 = 462 and k23 = 217. The error is computed
using the eight equations gained from the α’s of the first and second camera.
These values resemble quite well to the reference ones and cause an error of
√

|eqn1|2 + ... + |eqn8|2 : 0.004961 in the error function. The difference with
the reference values is attributable to inherent noise in the computation and
to the fact that the reference values are not exact, too.

Fig. 16.5. Superimposed
epipolar lines using the ref-
erence and Pascal’s theorem
based method
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Since this is a system of quadratic equations we resort to an iterative pro-
cedure for finding the solution. First we tried the Newton–Raphson method
[196] and the continuation method [163]. These methods are not practicable
enough due to their complexity. We use instead a variable in size window
minima search which through the computation ensure the reduction of the
quadratic error. This simply approach work faster and reliable.

In order to visualize how good we gain the epipolar geometry we super-
imposed the epipolar lines for some points using the reference method and
Pascal’s theorem based method. In both cases we computed the fundamental
matrix in terms of their intrinsic parameters, i.e. F = K−T [t]×RK−1. Figure
16.5 shows this comparison. It is clear that both methods give quite similar
epipolar lines and interesting enough it is shown that the intersecting point
or epipole coincide almost exactly.

16.6 Conclusions

This paper presents a geometric approach to formulate the Kruppa equations
in terms of pure brackets. This can certainly help to explore the geometry
of the calibration problem and to find degenerated cases. Furthermore this
paper presents an approach to compute the intrinsic camera parameters in the
geometric algebra framework using Pascal’s theorem. We adopt the projected
characteristics of the absolute conic in terms of Pascal’s theorem to propose
a new camera calibration method based on geometric thoughts. The use of
this theorem in the geometric algebra framework allows us the computing
of a projective invariant using the conics of only two images. Then, this
projective invariant expressed in terms of brackets helps us to set enough
equations to solve the calibration problem. Our method requires to know
the point correspondences and the values of the camera motion. The method
gives a new point of view for the understanding of the problem thanks to the
application of Pascal’s theorem and it also explains the overseen role of the
projective invariant in terms of the brackets. Using synthetic and real images
we show that the method performs efficiently without any initialization or
getting trapped in local minima.


