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19.1 Introduction

In the literature we find a variety of mathematical approaches for solving
problems in robotics which we will review now briefly. Denavit and Harten-
berg [60] introduced the mostly used kinematic notation for lower pair mech-
anisms based on matrix algebra, Walker [243] used the epsilon algebra for
the treatment of the manipulator kinematics, Gu and Luh [99] utilized dual–
matrices for computing the Jacobians useful for kinematics and robot dy-
namics and Pennock and Yang [188] derived closed–form solutions for the
inverse kinematics problem for various types of robot manipulators employ-
ing dual–matrices. McCarthy [171] used the dual form of the Jacobian for the
analysis of multi–links similarly. Funda and Paul [87] gave a detailed compu-
tational analysis of the use of screw transformations in robotics. These au-
thors explained that since the dual quaternion can represent the rotation and
translation transformations simultaneously it is more effective than the unit
quaternion formalism for dealing with the kinematics of robot chains. Kim
and Kumar [132] computed a closed–form solution of the inverse kinematics
of a 6 degree of freedom robot manipulator in terms of line transformations
using dual quaternions. Aspragathos and Dimitros [9] confirmed once again
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that the use of dual quaternion and Lie algebra in robotics were overseen so
far and that their use helps to reduce the number of representation parame-
ters.

We can see in all these mathematical approaches that the authors take
into account basically two key aspects: the obvious use of dual numbers and
the representation of the screw transformations in terms of matrices or dual
quaternions. In this regard in this chapter we are concerned with the ex-
tension of the representation capabilities of the dual numbers, particularly
using the motor algebra beside the point and line representation we are able
to model the motion of planes. This widens up the possibilities for the mod-
elling of the motion of the basic geometric objects referred to frames attached
to the robot manipulator which according to the circumstances simplify the
complexity of the problem preserving the underlying geometry. After giving
the modelling of prismatic and revolute transformations of a robot manipu-
lator using points, lines and planes we solve the direct and inverse kinematics
of robot manipulators. Using the motion of points, lines and planes in terms
of motors we present constraints for a simple grasping task. The chapter
shows clearly the advantages of the use of representations in motor algebra
for solving problems related to robot manipulators.

The organization of the chapter is as follows: section two describes the
prismatic and revolute transformations of robot manipulators in the motor
algebra framework. The third section deals with the computation of the direct
kinematics of robot manipulators. The fourth section is dedicated to the
solution of the inverse kinematics of one standard robot manipulator. Finally,
section five presents the conclusions.

19.2 Motor Algebra for the Kinematics of Robot

Manipulators

The study of the rigid motion of objects in 3D space plays an important
role in robotics. In order to linearize the rigid motion of the Euclidean space
homogeneous coordinates are normally utilized. That is why in the geometric
algebra framework we choose the special or degenerated geometric algebra to
extend the algebraic system from 3D Euclidean space to the 4D space. In this
system we can nicely model the motion of points, lines and planes with com-
putational advantages and geometric insight, see chapter 18 for more details.
Let us start with a description of the basic elements of robot manipulators in
terms of the special or degenerated geometric algebra G+

3,0,1 or motor algebra.
The most basic parts of a robot manipulator are revolute joints, prismatic
joints, connecting links and the end–effectors. In the next subsections we will
treat the kinematics of the prismatic and revolute manipulator parts using
the 4D geometric algebra G+

3,0,1 and will illustrate an end–effector grasping
task.
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Fig. 19.1a. SCARA type manipulator according to the DH parameters in table
19.1. Variable parameters are encircled

19.2.1 The Denavit–Hartenberg Parameterization

The computation of the direct or inverse kinematics requires both the exact
description of the robot manipulators structure and its configuration. The
mostly used description approach is known as Denavit–Hartenberg proce-
dure [60]. This is based on the uniform description of the position of the
reference coordinate system of a joint relative to the next one in considera-
tion. Figure 19.2a shows how coordinate frames are attached to a joint of a
robot manipulator. Table 19.1 presents the specifications of two robot ma-
nipulators: the SCARA and the Stanford manipulator as shown in figures
19.1a and 19.1b, respectively.

In table 19.1 a variable parameter is indicated by the letter v and a
constant one by c. This tells us whether the joint is for rotation (revolute ) or
for translation (prismatic ). The transformation of the reference coordinate
system between two joints will be called joint–transition . Figure 19.2b shows
the involved screws in a joint–transition according to the Denavit–Hartenberg
parameters . The frame or reference coordinate system related to the i-th
joint is attached at the end of this link and it is called Fi. The position and
orientation of the end–effector in relation to the reference coordinate system
of the robot basis can be computed by linking all joint–transitions. In this
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Fig. 19.1b. Stanford
type manipulator ac-
cording to the DH pa-
rameters in table 19.1.
Variable parameters are
encircled

way we get straightforwardly the direct kinematics.
Conversely for the inverse kinematics given the position and orientation

of the end–effector we have to find values of the variable parameters of the
joint–transitions which satisfy this requirement. In the next sections we will
go more into details about the computation of direct and inverse kinematics
of robot manipulators.

19.2.2 Representations of Prismatic and

Revolute Transformations

The transformation of any point , line or plane between coordinate systems
Fi−1 and Fi is a revolute one when the degree of freedom is only a variable
angle θi and a prismatic one when the degree of freedom is only a variable
length di. The transformation motor i−1

M i between Fi and Fi−1 consists of
a sequence of two screw transformations , one fixed, i.e. M

x
α̂i

, and another

variable , i.e. M
z
θ̂i

, see figure 19.2b. Note that we use dual angles θ̂i = θi+Idi

and α̂i = αi + Ili, see chapter 18. In the revolute case the latter has as a
variable parameter the angle θi and in the prismatic case the displacement
di. The transformation reads
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Table 19.1. Kinematic configuration of two robot manipulators

Robot type link revolute θi v/c prismatic di v/c twist link
angle αi length li

SCARA 1 θ1 v d1 c 0 l1
2 θ2 v d2 c 0 l2
3 θ3 v 0 0 0
4 0 d4 v 0 0

Stanford 1 θ1 v d1 c -90 deg 0
2 θ2 v d2 c 90 deg 0
3 0 d3 v 0 0
4 θ4 v 0 -90 deg 0
5 θ5 v 0 90 deg 0
6 θ6 v d6 c 0 0
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Fig. 19.2. a) The i-th joint of a robot manipulator and the attached coordinate
frames according to the Denavit–Hartenberg procedure. Here the encircled θi is the
variable parameter, b) the transformation from frame Fi to Fi−1 is represented by
i−1

J
i. The motor i−1

J
i consists of two screw transformations

J x
α̂i

and
J z

θ̂i

i−1
M i = M

z
θ̂i

M
x
α̂i

= T
z
di

R
z
θi

T
x
liR

x
αi

= (1 +
I

2




0

0

di


)Rz

θi
(1 +

I

2




li

0

0


)Rx

αi
. (19.1)

For the sake of clearness the dual bivectors of translators are given as a
column vector simply to make the variable parameters explicit.

Since i−1
M i

i−1
M̃ i = 1, we obtain

i
M i−1 = M̃

x
α̂i

M̃
z
θ̂i

= T̃
x
liR̃

x
αi

T̃
z
di

R̃
z
θi

. (19.2)
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Be aware for the rest of the chapter that j
M i denotes a motor transformation

from Fi to Fj .
We will now give general expressions for the transformation of points, lines

and planes with one of the parameters θi and di, respectively, as a variable
and with two fixed parameters αi and li. In the joint depicted in figure 19.2b
a revolute transformation will take place only when θi varies and a prismatic
transformation only when di varies. Now taking a point X represented in the
frame Fi−1, we can describe its transformation from Fi−1 to Fi in the motor
algebra according to chapter 18 with either θi or di as variable parameter.
We will call this transformation a forward transformation .

The multivector representation of point X related to the frame Fi will
be expressed as i

X with

i
X = i

M i−1
i−1

X
i
M̃ i−1 = M̃

x
α̂i

M̃
z
θ̂i

i−1
X M

z
θ̂i

M
x
α̂i

= T̃
x
liR̃

x
αi

T̃
z
di

R̃
z
θi

i−1
X R

z
θi

T̃
z
di

R
x
αi

T̃
x
li

= 1 + I i
x , (19.3)

where i
x is a bivector representing the 3D position of X referred to Fi.

Thinking in a transformation in the reverse sense we call it a backward trans-

formation which transforms a point X represented in the frame Fi to the
frame Fi−1 as follows

i−1
X = i−1

M i
i
X

i−1
M̃ i = M

z
θ̂i

M
x
α̂i

i
X M̃

x
α̂i

M̃
z
θ̂i

= 1 + I i−1
x . (19.4)

Note that the motor applied from the right side is not purely conjugated as in
the line case. This will be also the case for a plane, see chapter 18 for details
of the point and plane transformations.

Consider a line L represented in the frame Fi−1 by i−1
L = i−1

n+ Ii−1
m,

where n and m are bivectors indicating the orientation and moment of the
line, respectively. We can write its forward transformation related to the
frame Fi according to chapter 18 as follows

i
L = i

M i−1
i−1

L
i
M̃ i−1 = M̃

x
α̂i

M̃
z
θ̂i

i−1
L M

z
θ̂i

M
x
α̂i

= i
n + I i

m . (19.5)

Its backward transformation reads

i−1
L = i−1

M i
i
L

i−1
M̃ i = M

z
θ̂i

M
x
α̂i

i
L M̃

x
α̂i

M̃
z
θ̂i

= i−1
n + I i−1

m . (19.6)

Finally, the forward transformation of a plane H represented in Fi−1

reads

i
H = i

M i−1
i−1

H
i
M̃ i−1 = M̃

x
α̂i

M̃
z
θ̂i

i−1
H M

z
θ̂i

M
x
α̂i

= i
n + I idH . (19.7)



19. Kinematics of Robot Manipulators in the Motor Algebra 477

� �

� ��

� �

� �
	 


� �


 ��

� �

� �

�

Fig. 19.3. Two finger grasper approaching to an object

and similarly as above, its backward transformation equation is

i−1
H = i−1

M i
i
H

i−1
M̃ i = M

z
θ̂i

M
x
α̂i

i
H M̃

x
α̂i

M̃
z
θ̂i

= i−1
n + I i−1dH . (19.8)

19.2.3 Grasping by Using Constraint Equations

In this subsection we will illustrate grasping as a manipulation related task.
grasping operation. This task involves the positioning of a two finger grasper
in front of a static object. Figure 19.3 shows the grasper and the consid-
ered object O. The manipulator moves the grasper near to the object and
together they should fulfill some conditions to grasp the object firmly. In or-
der to determine the overall transformation 0

Mn, which moves the grasper
to an appropriate grasping position, we claim that 0

Mn has to fulfill three
constraints. For the formulation of these constraints we can take advantages
of the point, line and plane representations of the motor algebra. In the fol-
lowing we assume that the representations of geometric entities attached to
the object O in frame F0 are known.

Attitude condition: The grasping movement of the two fingers should
be in the reference plane HO of O. That is, the yz-plane of the end–effector
frame Fn should be equal to the reference plane HO. The attitude condition
can be simply formulated in terms of a plane equation as follows

0
Mn

n
H

yz
n

0
M̃n − 0

HO ≈ 0 , (19.9)

where n
H

yz
n = (1, 0, 0)T + I 0 = (1, 0, 0)T , see figure 19.3.

Alignment condition: The grasper and object should be aligned parallel
after the application of the motor 0

Mn. That is, the direction of the y-axis
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and the line LO should be the same. This condition can be simply expressed
in terms of a line equation

〈0Mn
n
L

y
n

0
M̃n〉d − 〈0LO〉d ≈ 0 , (19.10)

where n
L

y
n = (0, 1, 0)T + I(0, 0, 0)T = (0, 1, 0)T and 〈L〉d denotes the compo-

nents of direction of line L.
Touching condition: The motion 0

Mn should also guarantee that the
grasper is in the right grasping position. That is, the origin P

o
n of the end–

effector frame Fn should touch the reference point XO of O. A formulation
of this constraint in our framework is

0
Mn

n
P

o
n

0
M̃n − 0

XO ≈ 0 . (19.11)

By these three conditions we get constraints for the components of 0
Mn,

and we can determine 0
Mn numerically. The next step is to determine the

variable joint parameters of the robot manipulator which leads to the position
and orientation of the end–effector frame Fn described by 0

Mn. This problem
is called the inverse kinematics problem of robot manipulators and will be
treated in section 19.4.

19.3 Direct Kinematics of Robot Manipulators

The direct kinematics involves the computation of the position and orien-
tation of the end–effector or frame Fn given the parameters of the joint–
transitions, see figure 19.4. In this section we will show how the direct kine-
matics can be computed when we use as geometric object a point, line or
plane. The notation for points, lines and planes we will use in the next sec-
tions is illustrated in figure 19.5. The direct kinematics for the general case
of a manipulator with n joints can be written as follows

0
Mn = 0

M1
1
M2

2
M3 · · ·

n−1
Mn =

n∏

i=1

i−1
M i . (19.12)

Now we can formulate straightforwardly the direct kinematics in terms of
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Fig. 19.5. Notations for frame specific entities as the origin, the coordinate axis
and coordinate planes

point, line or plane representations as follows

0
X = 0

Mn
n
X

0
M̃n =

n∏

i=1

i−1
M i

n
X

n∏

i=1

n−i
M̃n+1−i ,

0
L =

n∏

i=1

i−1
M i

n
L

n∏

i=1

n−i
M̃n+1−i ,

0
H =

n∏

i=1

i−1
M i

n
H

n∏

i=1

n−i
M̃n+1−i . (19.13)

Let us now write the motor 0
M4 for the direct kinematics for points, lines

and planes like equation (19.13) for the SCARA manipulator specified by the
Denavit–Hartenberg parameters of table 19.1. Firstly, using equation (19.12)
with n=4, we can write down straightforwardly the required motor 0

M4 as
follows

0
M 4 = 0

M1
1
M2

2
M3

3
M 4 = (Mz

θ̂1

M
x
α̂1

) · · · (M z
θ̂4

M
x
α̂4

)

= (T z
d1

R
z
θ1

T
x
l1R

x
α1

) · · · (T z
d4

R
z
θ4

T
x
l4R

x
α4

)

= (1 +
I

2




0

0

d1


)Rz

θ1
(1 +

I

2




l1

0

0


)(1 +

I

2




0

0

d2


)

R
z
θ2

(1 +
I

2




l2

0

0


)Rz

θ3
(1 +

I

2




0

0

d4


) . (19.14)
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4 of
4 o

4 in frame F0 is computed using 0
5

4

Note that translators with zero translation and rotors with zero angle become
1.

Applying the motor 0
M4 from the left and 0

M̃ 4 from the right for point

and plane equations and the motor 0
M 4 from the left and 0

M̃ 4 from the
right for line equations as indicated by equations (19.13), we get the direct
kinematics equations of points, lines and planes for the SCARA robot ma-
nipulator.

19.3.1 Maple Program for Motor Algebra Computations

Since the nature of our approach requires symbolic computation we chose
Maple to implement a program suitable for computations in the motor algebra
framework G+

3,0,1. We have developed a comfortable program for computations
in the frame of different geometric algebras. When dealing with the motor
algebra we have simply to specify its vector basis. The program has a variety
of useful algebraic operators to carry out computations involving reversion,
Clifford conjugations, inner and wedge operations, rotations, translations,
motors, extraction of the i–blade of a multivector etc.

As a first illustration using our Maple program, we computed the direct
kinematic equation of the origin P

o
4 of F4 for the SCARA manipulator spec-

ified by the Denavit–Hartenberg parameters of table 19.1. The figure 19.6



19. Kinematics of Robot Manipulators in the Motor Algebra 481

shows the frames and the point P
o
4 refered to F0. The final result is

0
P

o
4 = 0

M4
4
P

o
4

0
M̃4 = 0

M 4

(
1 + I




0

0

0




)
0
M̃4

= 1 + I




l2 cos(θ1 + θ2) + l1 cos(θ1)

l2 sin(θ1 + θ2) + l1 sin(θ1)

d1 + d2 + d4


 . (19.15)

19.4 Inverse Kinematics of Robot Manipulators

Since the inverse kinematics is more complex than the direct kinematics our
aim should be to find a systematic way to solve it exploiting the point, line
and plane motor algebra representations. Unfortunately the procedure is not
amenable for a general formulation as in the case of the direct kinematics
equation (19.12). That is why we better choose a real robot manipulator and
compute its inverse kinematics in order to show all the characteristics of the
computational assumptions.

The Stanford robot manipulator is well known among researchers con-
cerned with the design of strategies for the symbolic computation of the
inverse kinematics. According to table 19.1 the variable parameters to be
computed are θ1, θ2, θ4, θ5, θ6 and d3. By means of this example we will
show that in the motor algebra approach we have the freedom to switch be-
tween the point, line or plane representation according to the geometrical
circumstances. This is one of the most important advantages of our motor
algebra approach.

According to the mechanical characteristics of the Stanford manipula-
tor we can divide it into two basic parts: one dedicated for the positioning
involving the joints 1,2 and 3 and one dedicated for the orientation of the
end–effector like a wrist comprising the joints 4 to 6. Since the philosophy of
our approach relies on the application of point, line or plane representation
where it is needed, we should firstly recognize whether a point or a line or a
plane representation is the suitable representation for the joint–transitions.
As a result on the one hand a better geometric insight is guaranteed and
on the other hand the solution method is easier to be developed. The first
three joints of the Stanford manipulator are used to position the origin of the
coordinate frame F3. Therefore we apply a point representation to describe
this part of the problem. The last three joints are used to achieve to desired
orientation of the end–effector frame. For the formulation of this subproblem
we use a line and a plane representation because with these entities we can
model orientations.
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Fig. 19.7. Rendezvous method: If iL
and jL

are known, we can compute kL
for

each i ≤ k ≤ j in two different ways: by successive forward transformations of iL
and by successive backward transformation of jL

19.4.1 The Rendezvous Method

The next important step is to represent the motor transformations from the
beginning of a chain of joint–transitions to the end and vice versa as it is de-
picted in figure 19.7. As a result we gain a set of equations for each meeting
point. In each of these points the forward equation is equal with the back-
ward equation. Using these equalities we have a guideline to compute the
unknowns. We will call this procedure the rendezvous method . This simple
idea has proved to be very useful as a strategy for the solution of the inverse
kinematics.

19.4.2 Computing θ1, θ2 and d3 Using a Point Representation

In the case of the Stanford manipulator the orientation and position of frame
F6 uniquely determines the position of frame F3. This will be explained in
the following.

The position of frame F3 with respect to F0 is described by the multi-
vector representation 0

P
o
3 of P

o
3 in F0. By successive forward transformation

applied on 3
P

o
3 = 1 we get the representation 6

P
o
3 of P

o
3 in F6 by

6
P

o
3 = 6

M3
3
P

o
3

6
M̃3 = 1 − I




0

0

d6


 . (19.16)

Now we can compute 0
P

o
3 by
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0
P

o
3 = 0

M6
6
P

o
3

0
M̃6 = 0

M 6 (1 − I




0

0

d6


) 0

M̃6

= 1 + I




Px

Py

Pz


 , (19.17)

note that 0
M 6 is given. The vector (Px, Py, Pz)

T describes the position of the
origin P

o
3 of frame F3 in frame F0 for a given overall transformation 0

M6.
Now we can apply the rendezvous method since we know the representation
of P

o
3 in the two different frames F0 and F3, see figure 19.8.

Applying successive forward transformations we obtain

1
P

o
3 = 1

M0
0
P

o
3

1
M̃0 ,

2
P

o
3 = 2

M1
1
P

o
3

2
M̃1 ,

3
P

o
3 = 3

M2
2
P

o
3

3
M̃2 . (19.18)

These computations were carried out with our Maple program getting the
left hand sides of the four groups of equations of the table 19.2.

On the other hand, applying successive backward transformations to the
origin of F3 given by
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3
P

o
3 = 1 + I




0

0

0


 = 1 , (19.19)

we get

2
P

o
3 = 2

M3
3
P

o
3

2
M̃3 = 1 + I




0

0

d3


 ,

1
P

o
3 = 1

M2
2
P

o
3

1
M̃2 = 1 + I




d3 sin(θ2)

−d3 cos(θ2)

d2


 ,

0
P

o
3 = 0

M1
1
P

o
3

0
M̃1 = 1 + I




d3 sin(θ2) cos(θ1) − d2 sin(θ1)

d3 sin(θ2) sin(θ1) + d2 cos(θ1)

d3 cos(θ2) + d1


.(19.20)

These equations correspond to the right hand sides of the four groups of
equations of table 19.2. For simplicity we use the abbreviations si for sin(θi)
and ci for cos(θi). Using the third equation of the rendezvous frame F1, we

Table 19.2. Rendezvous equations obtained for � o
3 regarding

frames F0,F1,F2 and F3

Frame Eq. forward backward

1 Px = d3s2c1 − d2s1

F0 2 Py = d3s2c1 + d2c1

3 Pz = d3c2 + d1

1 Pys1 + Pxc1 = d3s2

F1 2 d1 − Pz = −d3c2

3 Pyc1 − Pxs1 = d2

1 −Pzs2 + d1s2 + Pxc1c2 + Pys1c2 = 0
F2 2 d2 − Pyc1 + Pxs1 = 0

3 Pzc2 − d1c2 + Pxc1s2 + Pys1s2 = d3

1 −Pzs2 + d1s2 + Pxc1c2 + Pys1c2 = 0
F3 2 d2 − Pyc1 + Pxs1 = 0

3 Pzc2 − d1c2 + Pxc1s2 + Pys1s2 − d3 = 0
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compute

θ1 = arctan2(x1/2, y1/2) , (19.21)

where

x1/2 =
d2 − Pyy1/2

−Px
, y1/2 =

Pyd2 ± Px

√
P 2

x + P 2
y − d2

2

P 2
x + P 2

y

(19.22)

and

arctan2(x, y) =





arctan(x
y ) : y > 0

π
2

: y = 0 and x > 0

undefined : y = 0 and x = 0

−π
2

: y = 0 and x < 0

arctan(x
y ) + π : y < 0 .

(19.23)

This gives two values for θ1. Now let us look for d3 and θ2. For that we
consider the first and second equation of the rendezvous frame F1. With
a1/2 = Pyx1/2 + Pxy1/2 and b = Pz − d1 we get two values for d3. Since for
the Stanford manipulator d3 must be positive, we choose

d31/2
=

√
a2
1/2

+ b2 . (19.24)

Using this value in equations 1 and 2, we compute straightforwardly

θ2 = arctan2(
a1/2

d31/2

,
b

d31/2

) . (19.25)

19.4.3 Computing θ4 and θ5 Using a Line Representation

These variables will be computed using the joint–transition from F3 to F6.
According to the geometric characteristics of the manipulator it appears ap-
pealing that we should use the line representation to set up an appropriate
equation system. The representation 0

L
z
6 of the line L

z
6 in frame F0 can be

computed using 0
M6

0
L

z
6 = 0

M6
6
L

z
6

0
M̃6 = 0

M 6

(



0

0

1


 + I




0

0

0




)
0
M̃6 . (19.26)

Since the z-axis of F6 frame crosses the origin of F3, we can see that the
z-axis line related to this frame has zero moment. Thus we can claim that Lz

6

in F3 frame is



486 Eduardo Bayro-Corrochano, Detlef Kähler

3
L

z
6 = 3

M 0
0
L

z
6

3
M̃0 =




Ax

Ay

Az


 + I




0

0

0


 . (19.27)

Note that 3
M 0 is known since we have already computed θ1, θ2 and d3.

Now applying successively forward transformations as follows

4
L

z
6 = 4

M3
3
L

z
6

4
M̃3 ,

5
L

z
6 = 5

M4
4
L

z
6

5
M̃4 ,

6
L

z
6 = 6

M5
5
L

z
6

6
M̃5 , (19.28)

we get the left hand sides of the four groups of equations of table 19.3. The z-
axis line L

z
6 of F6 represented in F6 has zero moment, thus it can be expressed

as

6Lz
6 =




0

0

1


 + I




0

0

0


 . (19.29)

Now applying successive backward transformations, we have

5
L

z
6 = 5

M6
6
L

z
6

5
M̃6 ,

4
L

z
6 = 4

M5
5
L

z
6

4
M̃5 ,

3
L

z
6 = 3

M4
4
L

z
6

3
M̃4 . (19.30)

Using our Maple program, we compute the right hand sides of the four groups
of equations of table 19.3. We will consider the equations of rendezvous frame

Table 19.3. Rendezvous equations obtained for � z
6 regarding frames

F3,F4,F5 and F6

Frame Eq. forward backward

1 Ax = −c4s5

F3 2 Ay = −s4s5

3 Az = −c5

1 Ays4 + Axc4 = −s5

F4 2 Az = −c5

3 Ayc4 − Axs4 = 0

1 −Azs5 + Axc4c5 + Ays4c5c6 = 0
F5 2 Ayc4 − Axs4 = 0

3 −Azc5 − Axc4s5 − Ays4s5 = 1

1 Axs4s6 − Ayc4s6 + Ays4c5c6 + Axc4c5c6 − Azs5c6 = 0
F6 2 −Axs4c6 + Ayc4c6 + Ays4c5c6 + Axc4c5s6 − Azs5s6 = 0

3 −Azc5 − Axc4s5 − Ays4s5 = 1
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F4. Using the third equation, we compute

θ4 = arctan2(x1/2, y1/2) , (19.31)

where

x1/2 = −
Ayy1/2

−Ax
= ±

Ay√
A2

x + A2
y

, y1/2 = ±
Ax√

A2
x + A2

y

. (19.32)

This results in two values for θ4 which substituted in the first and second
equation helps us to find two solutions for θ5

θ5 = arctan2(s5, c5) = arctan2

(
(−Ays4 − Axc4),−Az

)
. (19.33)

19.4.4 Computing θ6 Using a Plane Representation

Since θ1, θ2, d3, θ4 and θ5 are now known, we can compute the motor 5
M0.

The yz–plane H
yz
6 represented in F6 has the Hesse distance 0, thus

6
H

yz
6 =




1

0

0


 + I0 =




1

0

0


 . (19.34)

Its transformation to F0 reads

0
H

yz
6 = 0

M6
6
H

yz
6

0
M̃ 6 = 0

M6




1

0

0




0
M̃6 . (19.35)

Now we compute 5
H

yz
6 by

5
H

yz
6 = 5

M0
0
H

yz
6

5
M̃0 =




Nx

Ny

Nz


 + I 5dHyz

6
. (19.36)

The orientation bivector (Nx, Ny, Nz)
T describes the orientation of the yz-

plane of frame F6 in frame F5 given the values of the joint variables
θ1, θ2, θ4, θ5 and d3. Now applying forward transformation from F5 to F6,
we obtain

6
H

yz
6 = 6

M5
5
H

yz
6

6
M̃5 . (19.37)

Using our Maple program, we get the left hand sides of the two groups of
equations of the table 19.4. Since the values for θ1, θ2, d3, θ4 and θ5 are not



488 Eduardo Bayro-Corrochano, Detlef Kähler

Table 19.4. Rendezvous equations obtained
for � yz

6
regarding frames F5 and F6

Frame Eq. forward backward

1 Nx = c6

F5 2 Ny = s6

3 Nz = 0

1 Nys6 + Nxc6 = 1
F6 2 Nxs6 − Nyc6 = 0

3 Nz = 0

unique we, will get different values for the equations. Applying 5
M6 to 6

H
yz
6

we get, the right hand sides of the two groups of equations of table 19.4 by

5
H

yz
6 = 5

M6
6
H

yz
6

5
M̃6 = 5

M6




1

0

0




5
M̃6 =




sin(θ6)

cos(θ6)

0


 . (19.38)

We will consider the equations of the rendezvous frame F5. Using the first
and second equation, we can compute θ6 by

θ6 = arctan2(s6, c6) = arctan2(Nx, Ny) . (19.39)

Note that since we had two values for θ4 and two values for θ5, there is more
than one solution for θ6.

19.5 Conclusion

This chapter presented the application of the algebra of motors for the treat-
ment of the direct and inverse kinematics of robot manipulators. When deal-
ing with 3D rigid motion it is usual to use homogeneous coordinates in the
4D space to linearize this non–linear 3D transformation. With the same effect
we model the prismatic and revolute motion of points, lines and planes using
motors which are equivalent to screws. The fact that in our approach we can
also use the representation of planes widens up the geometric language for
the treatment of robotic problems.

The chapter has shown the flexibility of the motor algebra approach for
the solution of the direct and inverse kinematics of robot manipulators. Using
a standard robot manipulator, we show that according to the need we can
resort for solving its inverse kinematics either to a point, a line or a plane
representation. Thus, the main contribution of this chapter is to show that
while preserving the geometric insight during the computation our approach
gains more flexibility. The authors of this chapter believe that the increasing
complexity of future multi–links mechanisms will profit from the versatility
of the motor algebra framework.


