
Online Learning for Hierarchical Networks of Locally Arranged
Models using a Support Vector Domain Model

Florian Hoppe and Gerald Sommer

Abstract— We propose two new developments for our su-
pervised local linear approximation technique, the so called
Hierarchical Network of Locally Arranged Models. A new model
will be presented that defines those local regions of the input
space in which linear models are trained to approximate the
target function. This model is based on a one-class support
vector machine and helps to improve the approximation quality.
Secondly, an online learning algorithm for our approach will be
described that can be used in applications where training data
is only available as a continuous stream of samples. It allows
to adapted a network to a function that may change over time.
The success of these two developments is proven with three
benchmark tests.

I. INTRODUCTION

Supervised local (or also called piecewise) linear approx-
imation (LLA) methods (such as [16], [10], [6]) use a set
of linear models to approximate a non-linear target function.
These approaches follow the divided and conquer strategy to
achieve good global approximation by the right combination
of good local linear models. These models are trained in
a way that they can only approximate the target function
in a local region of the input space. Such a local region is
commonly called the domain of a linear model.

The different LLA approaches have to answer two basic
questions: How is the domain of a local model defined? And,
how is the input space split up into a set of such domains?
An answer to the first question conditions the possible shapes
of the local region that is governed by a linear model.
If a domain model is very flexible, it is more likely that
the corresponding linear model can approximate the target
function perfectly. Otherwise more linear models are required
to divide the input space on a finer scale to realize similar
approximation quality. Hence, the shapes of the domains
i.e. its model strongly influences the needed number and the
possible approximation performance of the linear models in
a network. On the other hand side, a domain model should
not be too complicated as this can become computational too
demanding: the needed number of parameters should be kept
small so that their estimation remains feasible. So, it is the
goal of LLA approaches to find a good compromise between
a flexible but still simple domain model.

Given such a model, one can decide on a strategy to divide
the input space in order to answer the second question. The
needed process should meet two main goals: the achieved
approximation performance of the linear models should be
as good and their number as small as possible. Since these

Florian Hoppe and Gerald Sommer are with the Department of Cognitive
Systems, Institute of Computer Science, Christian Albrechts University,
Kiel, Germany (email: {fh,gs}@ks.informatik.uni-kiel.de).

two goals are strongly dependent on each other, again a good
compromise has to be established to fulfill both.

II. STATE OF THE ART LLA TECHNIQUES

The k-nearest neighbor (k-NN) approach (e.g. [4]) is a
straightforward realization of the local linear model idea. It
solves for each input x ∈ Rn the least squares problem:

min
α(x),β(x)

k∑
i=1

(
yi − α(x)− β(x)xi

)2

, (1)

where the training samples (xi, yi) with i = 1, . . . , k are
the k-nearest neighbors to the input x. The set of nearest
neighbors is determined by comparing the distances between
the input x and all samples from the training set w.r.t. some
metric (typically, the Euclidean distance). The estimated
output ŷ ∈ Rm is consequently given by ŷ = α(x) + β(x)x.
Note, that the k-NN approach is non-parametric and has no
explicit domain model since it uses the whole training set to
compute an output value. Hence it is very inefficient in both
memory and computational costs.

In contrast to that, approaches like [16], [10], [6] can be
formalized as:

ŷ(x) =
M∑

k=1

gk(x)βT
k x̃, (2)

where M is the number of used linear models with
their coefficient βk ∈ Rn+1 and x̃ = (x, 1)T ∈ Rn+1

is the extended input x that allows a constant term in the
linear equation. With the weighting function gk(·) ∈ R the
domain of the k-th linear model is defined. This definition
is specific to the different approaches. Their common idea is
that depending on the distance of the input x to the domain,
the weighting factors are larger or smaller and hence, will
weight the output βT

k x̃ of the linear models differently. The
typical definition of the weighting functions gk(·) is based on
a radial basis function (RBF). The resulting domains have the
shape of hyper-ellipsoids in the input space. Depending on
the approach specific definition of the weighting functions
these hyper-ellipsoids have different degrees of freedom.
E.g. in [10] the main axis of the hyper-ellipsoids are restricted
to be parallel to the axis of the input space, while in [6] these
can be oriented in any direction.

Besides differences in the definition of the domain model
the approaches vary more importantly in their strategies to
split up the input space. In [10] the position and size of the
domains are changed with Hebbian adaptation steps and by a
gradient decent approach to minimize the least squares error
function over the training set. The authors of [16] prefer to

1-4244-1380-X/07/$25.00 ©2007 IEEE

Proceedings of International Joint Conference on Neural Networks, Orlando, Florida, USA, August 12-17, 2007

minimize a so-called locally weighted error function which
emphasizes that training samples only effect the domain’s
parameter they belong to. Our own offline learning algorithm
(introduced in [5] and extended in [6], [7]) is a recursive
scheme that divides by means of a special clustering process
the input space into single domains. This divide and conquer
strategy is repeated until the required approximation quality
is achieved in each domain or no more data samples are
available in a local region to divide it furthermore.

In the following, we will present two new developments
in our LLA the so called Hierarchical Network of Locally
Arranged Models (HLAM) approach. A new domain model
is described that allows more flexible shapes than those of a
hyper-ellipsoid. More important an online learning algorithm
for our network was realized. It is designed to be used in
an application where training data is only available as a
continuous stream of samples. The idea is that the input
space of the target function is being explored during the
runtime of the implemented system. Furthermore a HLAM
should capture dynamic changes of the target function. This
is different to the offline learning scenario where a certain
input value always corresponds to a certain output value. The
online learning algorithm can adapted a HLAM to a function
that may change over time.

III. NEW DEVELOPMENTS FOR HIERARCHICAL
NETWORKS OF LOCALLY ARRANGED MODELS

The basic definition of a HLAM is given with (2). The
weighting functions are defined as:

gk(x) =
{

1 : k = argi max ai(x)
0 : else , (3)

where ai(·) with i = 1, . . . ,M are so called activation
functions of the M linear models (their definition will be
given below). So, in the HLAM approach only one linear
model is exclusively selected to compute the output of the
whole network. Only the output of the linear model with
maximal activation value will be weighted with one, all the
other weights will be set to zero. This exclusive selection
stands in contrast to the other LLA approaches which mix
the output of different models. Our definition promotes that
the linear models are strictly specialized for their domain.
This is supported by our learning algorithms as these train
the linear models only with the data from their own domains.
This parameter estimation is done individually for each linear
model with a standard least squares method (e.g. [4]). Other
approaches determine the parameters of the linear models
with all available data using weighted least squares schemes.

The Support Vector Domain Model

The definition of the activation functions are based on
a special distance function that defines the shape of a
domain. In [6] these functions were basically radial basis
functions defining domains shaped like hyper-ellipsoids. As
an alternative we propose to use a one-class support vector
machine (SVM) to define the distant function dk : Rn → R
as:

(a) (b)

Fig. 1. Example of a support vector domain. Panel (a) shows a set of data
samples and the domain boundary realized with a radial basis SVD. These
samples that are support vectors are marked with circles. Panel (b) shows
the corresponding activation function.

dk(x) =
Sk∑
i=1

αk,iK(sk,i, x), (4)

where Sk ∈ N is the number of the support vectors sk,i ∈ Rn

with their weights αk,i ∈ R and K : Rn×Rn → R is a kernel
function. The user can choose any kernel function. Popular
options are:

K(x, y) = (1 + xT y)d, (polynomial)
K(x, y) = exp(− 1

σ‖x− y‖2), (radial basis) (5)
K(x, y) = tanh(κ1x

T y + κ2). (sigmoidal)

Given the function dk(·) of the k-th domain, its activation
functions is defined with:

ak(x) =
{

dk(x) : dk(x) ≥ γk

−∞ : else , (6)

where the threshold γk is a scalar parameter. The acti-
vation value is equal to the value of (4) if the threshold
is met or exceeded. This draws a sharp boundary around
the domain which strictly separates the domain’s inside
from its outside. Figure 1 shows an example of such a
support vector domain (SVD). In the following all the
parameters of the k-th domain will be denoted with Φk =
(sk,1, . . . , sk,Sk

, αk,1, · · · , αk,Sk
, γk).

The support vectors and the weights of a domain are deter-
mined with a standard method for one-class support vector
machines (see e.g. [14]) for a set of input samples {xi}.
This set is selected by the HLAM learning algorithm which
ensures that the samples belong to a local region of the
input space. Given the support vectors and their weights the
threshold γk is set to the minimum value of the function dk(·)
of all support vectors sk,i, i.e. γk = minsk,i

d(sk,i). This
establishes a domain boundary that encloses all the training
data.

Note, that the user has to specify additional parameters
(the regulation parameter ν and e.g. for a radial basis kernel
its width σ) for the employed SVM learning algorithm and
the chosen kernel function. These parameters have to be
manually optimized for a specific data set.

The thresholds γk have two purposes in the HLAM
approach. On one hand side, it allows to realize an automatic
outlier rejection mechanism. A data sample with input values
that are atypical for a specific application can be detected
by simply testing if the sample belongs to any domain.

If not, an exception can be thrown by the program that
the input acquisition method produced data that can not be
handled by the trained network. This mechanism increases
the reliability of a system that employs a HLAM. Standard
machine learning technique do not offer this feature as they
always calculate some output regardless how invalid the input
was. If such an outlier rejection mechanism is not needed all
thresholds γk should be set to minus infinity. Then this local
model will compute the output which domain is closest to
the input, regardless if this belongs to the domain or not.
This kind of nearest neighbor selection suits well the basic
idea of the HLAM approach that assigns linear models to
local regions of the domain space.

On the other hand, the sharp domain boundary defined
by the threshold γ can be exploited for a novelty detection.
It depends on the view point i.e. on the task at hand if a
data sample should be regarded as an invalid input or if
the same sample is taken as a new piece of information.
In the first case the sample should not be processed as it
may cause harmful effects. In the latter it could be used to
extend a trained HLAM. This idea is utilized in the new
online learning algorithm.

The advantage of the new support vector domain model
is the great flexibility of its boundary. In contrast to the
former hyper-elliptical domain, the SVD model can enclose
non-convex regions of the input space because the kernel
functions can induce complex non-linear boundaries. Hence
a given set of training samples can be more tightly enclosed.
This ensures that only those regions of the input space
belong to domains that really contain data samples. The
positive effect is that the corresponding linear models are
only responsible for those local regions where they received
training data. Hence they can be better specialized to their do-
mains. That should improve the approximation performance
of the whole network. Furthermore, data samples which
may be widespread in the domain space can be adequately
enclosed by one single support vector domain and hence
approximated by one linear mode. Since in such a case more
data is available to train a linear model its approximation
performance should be improved. Furthermore, with larger
domains HLAMs become smaller. If more data can be
assigned to the single domains, their number will be reduced.

The Online Learning Algorithm

Two basic ideas ground the development of the online
learning algorithm. The activation function of a domain
defines the responsibility of the corresponding linear model
to a given training sample. This information is used to
decide which linear model should be adapted to the new
training sample. On the other hand, a so called neighborhood
graph is used to divide the domain space into local regions
w.r.t. established domains. This is important to decide where
new domains should be established. The pseudo code is given
in Algorithm 1. It defines the procedure UpdateHLAM that
should be called when a new sample (x, y) is available.

The algorithm works as follows: A HLAM is initialized
with no local model at all. The algorithm has a meta-

Algorithm 1: Pseudo code of online learning algorithm.
Function UpdateHLAM
Input : (x, y),M t = {(βt

k,Φt
k, T t

k)}, Bt

Output: M t+1 = {(βt+1
k ,Φt+1

k , T t+1
k)}, Bt+1

begin
if M = ∅ then

Bt+1 ← Bt ∪ {(x, y)}
if |Bt+1| ≥minSamples then

(βt+1,Φt+1)←TrainModel(Bt+1)
M t+1 = (βt+1,Φt+1, Bt+1)
Bt+1 = ∅

else
Err← mink L(x̃T βt

k, y)
if Err ≤maxError then

l← argk max dk(x)
(βt+1

l ,Φt+1
l , T t+1

l)←UpdateM(T t
l , (x, y))

else
l← argk max ak(x)
if dl(x) ≥ γk then

(βt+1
l ,Φt+1

l , T t+1
l)←UpdateM(T t

l , (x, y))
Bt+1 ← Bt ∪ {(x, y)}
G←GetNeighborhoodGraph(Bt+1, {Φt

k})
(l, s)← argi,j max Gi,j

if Gl,s ≥ minSamples then
T t+1 ←GetSamples(Bt+1, l, s)
Bt+1 ←RemoveSamples(Bt+1, l, s)
(βt+1,Φt+1)←TrainModel (T t+1)
M t+1 ←M t ∪ (βt+1,Φt+1, T t+1)

end
Function UpdateModel
Input : T t, (x, y)
Output: (βt+1,Φt+1, T t+1)
begin

T t+1 ← T t ∪ {(x, y)}
if |T t+1| > maxBufferSize then

T t+1 ← RemoveOldestSample(T t+1)
(βt+1,Φt+1)←TrainModel (T t+1)

end
Function GetNeighborhoodGraph
Input : T = {(xj , yj)}, {Φl},
Output: G ∈ NM×M

begin
G← 0
forall j do

k1 ← argl min ‖xj − 1
Sl

∑Sl

i=1 sl,i‖
k2 ← arg{l|l 6=k1} min ‖xj − 1

Sl

∑Sl

i=1 sl,i‖
Gk1,k2 ← Gk1,k2 + 1
Gk2,k1 ← Gk2,k1 + 1

end

TABLE I
RESULTS OF THE MACKEY-GLASS BENCHMARK TEST (SEE TEXT FOR

AN EXPLANATION ABOUT THE HLAM MARKED WITH A STAR).

Number of RMSEMethod
Hidden Units Train Set Test Test

HALM offline 100 0.0006 0.0015
HLAM online 123 0.0046 0.0048

HLAM offline* 39 0.0040 0.0043
GMN [10] 7 0.0100 0.0091

RBF-AFS [2] 21 0.0158 0.0128
OLS [1] 132 0.0107 0.0163

parameter minSamples that specifies how many samples
at least have to be assigned to one linear model. After
initialization, this user chosen number of samples have to
be collected before the first linear model and its domain
will be added to the HLAM. Therefore new samples are
temporary stored in a buffer T t. Throughout the runtime of
the system, this buffer will contain all the samples that could
not be assigned to a linear model of the HLAM. If the size of
buffer T t equals minSamples, the first model and its domain
will be established with all the sample from the buffer.

The model’s parameters βt are estimated with a standard
least squares method, while the domain’s parameter Φt are
determined as described above. In the pseudo code this
both is encapsulated in the procedure TrainModel. Along
with βt and Φt an extra buffer T t containing all the used
training samples is added to the HLAM. This buffer T t

represents the sample history of each local model. How it
works in detail will be explained down below.

After the first model was added to a HLAM, for each
new training sample it will be decided if an already existing
linear model should be updated or a new model should
be added to the HLAM. The criterion for this decision is
if the sample could be successfully approximated or not.
Therefore the minimal loss L(x̃T βt

k, y) of all linear models
of a HLAM is determined and compared with a user chosen
threshold maxError. This loss function can be selected as
appropriate. We use: L(ŷ, y) = (ŷ − y)2.

If the approximation performance is good enough, the
new sample is used to update one linear model. Before the
question which model should be updated can be settled one
should first discuss how this is done: As noted above, the
online algorithm stores for each linear model the history of
samples that were assigned to the model during runtime. The
samples are collected in a buffer T t which serves as a single
training set. The update process first adds the new sample
to T t and then trains the linear model and its domain with T t.
Obviously, the usability of the algorithm would be quite
limited if the size of the buffer is not. The computational
costs in time and memory could easily become exhausting.
The buffer could grow arbitrarily as long as the system keeps
running and collecting new samples. As a result of, the re-
training of the linear models and domains would become too
time demanding. Beside such practical problems, a HLAM
could not adapted to a dynamically changing target function.
No sample of an input-output correspondence would be
forgotten. Over time, the linear models would have to solve

the impossible task to cope with data that contradicts itself.
Hence the size of the buffer T t is limited by another meta-
parameter called maxBufferSize. The access to the buffer
has to be implemented like a queue, so that the oldest
sample will be discarded if a new sample is available and
the buffer’s maximal size is reached. How this can be done
exactly is left to a programmer. In the pseudo code, it keeps
hidden behind the procedure RemoveOldestSample. The
parameter maxBufferSize has to be chosen by the user in
accordance with the assumptions about the dynamics of the
target function and the available memory and CPU power.
The buffer should be small if the target function is quickly
changing and the computational burden has to be kept low.
In any case maxBufferSize must be larger or equal to the
other meta-parameter minSamples.

So, the question remains which linear model should be
updated by this process. The basic idea is to adapteth this
model to the new sample which domain contains or is the
nearest to it. Therefore the algorithm selects the model
that has the highest value of dk(x) defined with (4). It is
important to use the function dk(·) instead of the proper
activation function ak(·) because these drop to minus infinity
at the boundary of a domain. Hence those domains, that
do not contain the new sample, have the same activation
value. So, it can not be decided which domain is the nearest
to the sample. Only domains that enclose the new sample,
hence overlap each other, could be discriminated with their
activation function value. But if only such domains would
be taken into account for an update, domains could never
expand, instead their size would shrink over time. The reason
for that is grounded in the update process with the history
buffer. The size of a domain is determined by the samples
that are located at the boundary of the domain. But these will
eventually be pushed out of the history buffer by samples that
must lay inside of the domain to be accepted for an update.
Hence the new samples from within the former domain will
define the new but tightened boundary. In contrast to that,
a domain can expand if samples are used for an update
that are in the vicinity and not necessarily inside of it. This
conception is implemented by the selection mechanism that
updates this model that has the highest value of dk(x).

If the approximation performance of a HLAM is not
satisfying for the new sample, the online algorithm improves
the network by following two ideas. If a linear model already
exists that should handle the new sample, this model will be
updated with it. Additionally, the structure of the network
may be changed by inserting a new linear model. The first
idea is implemented in a straightforward manner taking
advantage of the sharp boundaries of the SVD model: The
model with the highest activation value ak(x) is checked if
its domain contains the new sample, and updated in such a
case.

The second idea needs more effort to be implemented. It
relies essentially on the so called Neighborhood Graph G
which was proposed in [7]. The graph G is given as a
symmetric NM×M matrix and expresses which domains of a

TABLE II
RESULTS OF THE ABALONE BENCHMARK TEST.

Number of RMSEMethod
Hidden Units Train Set Test Set

HLAM offline 22 0.0440 0.0471
HALM online 20 0.0441 0.0477
RANEKF [9] 144 0.0655 0.0601
GAP-RBF [8] 18 0.0670 0.0613
MRAN [17] 33 0.0764 0.0669
RAN [12] 143 0.0838 0.0768

MRAN-OLS [11] 19 0.0965 0.0901

HLAM are adjacent to each other. The graph offers the ad-
vantage that a set of samples can be grouped w.r.t. already es-
tablished domains of the HLAM. It clusters samples together
that have the same domains as their nearest neighbors, hence
are located in the same region of the domain space. Given
G, the algorithm inserts new domains in those regions where
enough samples could be collected. Therefore every new
sample that is not approximated good enough is first stored
in the extra buffer Bt. Then the neighborhood graph G is
computed for these samples. The components of G represent
the number of samples located in the neighborhood of these
domains that correspond to the indices of the component.
So, if there exists a component Gl,s that is equal or larger
than the threshold minSamples, a new linear model is created
with a domain that is located in the vicinity of the l-th
and s-th domain. Therefore these samples belonging to this
local region are removed from the buffer Bt and used as a
training set for the new linear model and its domain. Again,
to simplify the pseudo code the definitions of the procedures
GetSamples and RemoveSamples are omitted. They
only have to manage the samples with an indexing system
in correspondence to the domains.

One unsolved problem with this buffer is that in theory
it may grow unboundedly. Samples will only be removed
from the buffer if enough are available in the vicinity of
two domains. Hence samples may never be used to establish
a new local model, hence their information will be lost.
The chances that the unused samples are in this sense
badly distributed between domains grow with the number
of local models. In the worst case the buffer would contain
1
2M(M−1)(minSample−1) samples since 1

2M(M−1) is
the number of possible pairwise combinations of M domains.

In [7] we proposed a method to fuse domains of a HLAM
in order to reduce its number of linear models. Although
it was not designed for an online learning scenario, it is
ready to be applied in it. The fusion algorithm can be started
in regular intervals after an appropriate number of samples
were received. Essentially, it tests if one linear model can
be trained to approximate the unified training data of two
adjacent domains. If this is the case, the domains will be
fused and the new linear model will replace the two former
ones. The modifications of the algorithm to the new SVD
model are so straightforward that they can be omitted here.

IV. BENCHMARK EXPERIMENTS

In order to compare the new developments with other
techniques three benchmark tests were performed.

TABLE III
RESULTS OF THE AUTO-MPG BENCHMARK TEST. FOR THE 50 TRIALS

THE MEAN AND STANDARD DEVIATION OF THE RESULTS ARE GIVEN.

Mean Number Mean RMSEMethod
of Hidden Units Train Set Test Set

HLAM offline 2.00± .00 .0741± .002 .0793± .008
HLAM online 8.88± .72 .0793± .006 .0872± .014
MRAN [17] 4.46± .74 .1086± .010 .1376± .023
RANEKF [9] 5.14± .90 .1088± .012 .1387± .029
GAP-RBF[8] 3.12± .75 .1144± .013 .1404± .027

MRAN-OLS [11] 2.10± .30 .1523± .010 .1471± .011
RAN [12] 4.44± .84 .2923± .081 .3080± .092

Mackey-Glass Data Set: In [10] a benchmark test
with the chaotic Mackey-Glass differential equation was
described. The experiment stems originally from [13] and
defines the task to predict a value of the time series

x(t− 1) = (1− a)x(t) +
bx(t− τ)

1 + x10(t− τ)
, (7)

with the parameters chosen to be: a = 0.1, b = 0.2, τ = 17
and the initial condition as x(0) = 1.2. The function f :
R4 → R that has to be approximated is defined as

x(t + 6) = f
(
x(t), x(t− 6), x(t− 12), x(t− 18)

)
. (8)

For a comparison of different machine learning techniques
two separate sets of samples of f were generated. One
set with t = 124, . . . , 1123 serves as a training set for
the machine learning technique, while the other one with
t = 1124, . . . , 2213 is used to calculate the RMSE as the
final test error.

Abalone Data Set: The goal of this benchmark test is
to estimate the age of an abalone given seven continuous and
one discrete attributes. Instead of cutting the shell, staining
it and counting the number of rings through a microscope
the age should be predicted with attributes that are easier to
obtain. Therefore, the sex, length, diameter, height and the
weight of four different parts of an abalone are available as
input values in the database [3] of 4177 samples. The target
output value is discrete and ranges between 1 and 29 years.

As described in [11] the input and output values were
normalized to the range [0.1, 0.7]. For the training 3000
samples were randomly selected from the whole data set.
The RMSE was calculated for the remaining 1177 sample.

Auto-Mpg Data Set: In [15] the so called Auto-Mpg
problem was stated to predict the city-cycle fuel consumption
in miles per gallon in terms of three multivalued discrete
and four continuous attributes. The data set that is available
at [3] contains 398 samples of this continuous target function.
As multivalued discrete input values the number of cylinder,
the model year and the origin are given. The continuous
attributes are the displacement, horsepower, weight and ac-
celeration of the cars.

The benchmark test was repeated as described in [11].
Therefore the input and output values were normalized to the
range [0, 1]. Since the number of samples is quite limited, a
number of 50 trials were performed with different training
and test sets. For each trial, 320 samples were randomly
chosen for training, while the remaining 78 samples were

TABLE IV
VALUES OF META-PARAMETERS OF THE HLAMS USED FOR THE

BENCHMARK TESTS.

Meta-Parameters Mackey-Glass Abalone Auto-Mpg
minSamples 2 100 150
maxError 0.001 0.0001 0.0005

σ 0.01 0.01 0.5

O
ffl

in
e

ν .0001 0.01 0.1
minSamples 5 100 25

maxBufferSize 20 150 50
maxError 0.0001 0.0001 0.001

σ 0.01 0.01 0.5

O
nl

in
e

ν 0.0001 0.01 0.1

used to compute the RMSE. The mean value of the trials’
RMSE are listed as the final result of this benchmark test.

Results: Our approach with the off- and online learning
algorithm was compared with the above described bench-
mark tests to the results reported in [10] and [11]. All results
are listed in Table I, II and III. As kernel functions for the
SVD model we used radial basis functions. The values of the
meta-parameters for the learning algorithms are given in Ta-
ble IV. They were selected by a process of repeated training
and testing. Therefore, different values for minSamples, the
error threshold maxError and maxBufferSize (only for the
online algorithm) were chosen from an appropriate interval
to train a HLAM1. The achieved RMSEs on the test set were
compared and the best one is cited as the final result.

The tables show the superiority of the HLAM approach
over the other methods w.r.t. the achieved RMSE in all
benchmark tests. Both, the off- and the online learning
algorithm performed very well. Especially in the Mackey-
Glass benchmark test, the offline HLAM realizes a clearly
better result than the alternatives. In every case our offline
learning algorithm outperforms the proposed online version.
So, the general expectation that an offline learning scenario
is easier to handle with a machine learning technique is met.
It can be pointed out that the new HLAM online learning
algorithm exceeds the approximation quality of such offline
algorithms like e.g. RANEKF or MRAN.

To illustrate the point that the flexibility of the SVD
model helps to reduce the number of needed linear models,
one HLAM was specially trained for the Mackey-Glass
benchmark test (marked with a star in Table I). With the
meta-parameter minSamples set to 20, the achieved RMSE
degraded slightly (although still better than the competitors)
but the number of models could be reduced by more than
50 %.

V. CONCLUSION

Along with new benchmark tests, we presented two new
developments for our Hierarchical Network of Locally Ar-
ranged Models. A domain model that is based on a one-class
support vector machine was proposed as an alternative to the
former hyper-elliptical one. It features a more flexible domain
boundary that helps to improve the approximation quality

1Although in the Auto-Mpg benchmark test 50 HLAMs have to be
trained for 50 different training and test sets the meta-parameters were only
optimized once.

of a HLAM and to reduce the number of needed linear
models. On the other hand, an online learning algorithm for
the HLAM approach was delineated. It is designed to be used
in an application where training data is only available as a
continuous stream of samples. It allows to adapted a HLAM
to a function that may change over time. Consistent with the
basic HLAM idea, the online learning algorithm promotes
specialization of the linear models to local regions of the
domain space. The success of these two developments could
be proven with three benchmark tests.

ACKNOWLEDGMENTS:

The work presented here was supported by the the Eu-
ropean Union, grant COSPAL (IST-2003-004176). However,
this paper does not necessarily represent the opinion of the
European Community, and the European Community is not
responsible for any use which may be made of its contents.

REFERENCES

[1] S. Chen, C. F. N. Cowan, and P. M. Grant. Orthogonal least
squares learning algorithm for radial basis function networks. IEEE
Transactions on Neural Networks, 2:302–309, 1991.

[2] K. B. Cho and B. H. Wang. RBF based adaptive fuzzy systems and
their applications to system identification and prediction. Fuzzy Sets
and Systems, 83:325–339, 1996.

[3] C.L. Blake D.J. Newman, S. Hettich and C.J. Merz. UCI repository
of machine learning databases, 1998.

[4] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. Springer Series in Statistics. Springer, 2001.

[5] F. Hoppe and G. Sommer. Local linear models for system control. In
Proceedings of Int. Conf. on Neural Information Processing (ICONIP),
pages 171–176, 2005.

[6] F. Hoppe and G. Sommer. Ensemble learning for hierarchies of
locally arranged models. In Proceedings of IEEE World Concress
on Computational Intelligence, pages 10612–10619, 2006.

[7] F. Hoppe and G. Sommer. Fusion algorithm for locally arranged linear
models. In 18th International Conference on Pattern Recognition
(ICPR’06), pages III: 1208–1211, 2006.

[8] Guang-Bin Huang, Paramasivan Saratchandran, and Narasimhan Sun-
dararajan. An efficient sequential learning algorithm for growing and
pruning RBF (GAP-RBF) networks. IEEE Transactions on Systems,
Man, and Cybernetics, Part B, 34(6):2284–2292, 2004.

[9] V. Kadirkamanathan and M. Niranjan. A function estimation approach
to sequential learningwith neural networks. Neural Computation,
5(6):954–975, 1993.

[10] Loo Chu Kiong, Mandava Rajeswari, and M. V. C. Rao. Extrapolation
detection and novelty-based node insertion for sequential growing
multi-experts network. Neural Network World, 2:151–176, 2003.

[11] Xiaoping Lai and Bin Li. An efficient learning algorithm generating
small rbf neural networks. Neural Network World, 15:525–533, 2005.

[12] J. Platt. A resource-allocating network for function interpolation.
Neural Computation, 3(2):213–225, 1991.

[13] J. Platt. A resource-allocating network for function interpolation.
Neural Computation, 3(2):213–225, 1991.

[14] John C. Platt, Bernhard Schölkopf, John Shawe-Taylor, Alex J. Smola,
and Robert C. Williamson. Estimating the support of a high-
dimensional distribution. Technical Report MSR-TR-99-87, Microsoft
Research (MSR), November 1999. An abridge version of this docu-
ment will appear in Neural Computation.

[15] J. Ross Quinlan. Combining instance-based and model-based learning.
In ICML, pages 236–243, 1993.

[16] Stefan Schaal and Christopher G. Atkeson. Constructive incre-
mental learning from only local information. Neural Computation,
10(8):2047–2084, 1998.

[17] Lu Yingwei, N. Sundararajan, and P. Saratchandran. A sequential
learning scheme for function approximation using minimal radial basis
function neural networks. Neural Computation, 9(2):461–478, 1997.

	Main Menu
	Table of Contents
	Conference Program
	Author Index
	Search This CD-ROM
	Print This Paper
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	IJCNN CD-ROM Help

