
Fusion Algorithm for Locally Arranged Linear Models

Florian Hoppe and Gerald Sommer
Cognitive Systems Group, Christian-Albrechts-University of Kiel, Germany.

Abstract

As an extension to a recently proposed local linear ap-
proximation method we present an algorithm that gener-
ates more compact solutions for supervised-learning prob-
lems. Given a network of linear models each trained to ap-
proximate the target function in a local region of the in-
put space, the algorithm reduces the number of the mod-
els significantly without diminishing the accuracy of the ap-
proximation. It fuses linear models by combining their lo-
cal regions of validity to more complex, non-symmetrically
shaped ones. A neighborhood graph introducing edges in
a purely data-driven manner between adjacent linear mod-
els is used to determine which models should be fused. The
also extended model for a region of validity allows to detect
automatically data which is novel to a trained network and
should be regarded as an outlier. The effectiveness of the
proposed methods is shown with a benchmark test achiev-
ing a five times smaller RMSE than the best competitors.

1 Introduction

Local linear approximation (LLA) methods were pro-
posed as especially well suited machine learning techniques
for system modelling and control problems [4, 5, 6, 8]. The
common idea behind these learning techniques is to approx-
imate a non-linear function by employing a number of linear
models which are only valid for local regions of the input
space. The major strategy is to achieve good global approx-
imation by the combination of good local approximators.
For control tasks this idea is very fruitful since using linear
models as local approximators makes sophisticated knowl-
edge from control theory (important for stability proofs) and
statistics (important for parameter estimation) applicable.

In [4] we proposed a new approach to LLA. The key
feature of our network model is that a region of validity
of a linear model – called the domain of a model – has a
sharp boundary to other domains. Since there is no over-
lap between domains there is no ambiguity which linear
model should compute the output for a given input. Our ap-
proach stresses the general idea of LLA that input data can

be grouped to clusters and then assigned to a linear model.
As an extension to that we now present a new fusion al-
gorithm which reduces significantly the number of linear
models in a trained network by combining single domains
to more complex ones. Its core idea is based on the neigh-
borhood graph of the Dynamical Cell Structure network [1]
which introduces edges in a purely data-driven manner be-
tween adjacent clusters.

2 State of the Art Techniques
Network models: Local linear approximators can be for-
malized as:

ŷ(x) =
N∑

k=1

gk(x)
(
Ckx + sk

)
, (1)

where ŷ denotes the m-dimensional output of the network
for the given n-dimensional input x. The N coefficient ma-
trices Ck and the constant shifting vectors sk are the pa-
rameters of the linear models. The scalar valued weighting
factors gk(x) define the domains of the models 1 ≤ k ≤ N .
These are functions of input x: Depending on the distance
of x to the position of the domain the weighting factors are
larger or smaller and hence, will weight the output of the
different linear models differently. Given a set of training
samples T = {(xj ,yj)} and a set of defined domains, the
linear models are trained with linear regression methods.
Goal is to minimize the approximation errors of the training
samples which are located in the domain of a model.

The common way (e.g. [6, 5]) to define a model’s do-
main is to calculate the weighting factors according to the
Gaussian function with a center vector ck ∈ Rn:

gk(x) = exp
(
− 1

2
(x− ck)T Dk(x− ck)

)
. (2)

The idea is that each linear model has as its domain a
symmetrical receptive field centered in ck. Furthermore the
weighting factors are typically normalized, so that a parti-
tion of unity of the input space is realized.

It is part of the described strategies that such domains
will overlap and hence that the output of linear models will
be mixed. That this strategy really improves the approxima-
tion result depends essentially on the right choice of overlap



Figure 1. 2D input sample for three linear
models (dots, crosses and circles). Hyper-
ellipsoids connected with a line belong to a
fused domain. Dashed lines visualize the
neighborhood graph between the three do-
mains. Thicker lines express that more sam-
ples are laying between adjacent domains.

between the domains. The problem is that with weighting
factors of the form of Eq. (2) (e.g. [6]), the overlap can only
be controlled with the center ck and the spread matrix Dk.
But due to the normalization, the shape of the domains will
be distorted. As discussed in [7], the form of a radial basis
function is no longer uniform, its maximum can be shifted
from the center vector and the function value may not de-
crease monotonically with increasing distance to the center.

Learning Algorithms: Given these networks, the essen-
tial problem of local linear techniques remains to find the
right set of domains. Good approximation of the global
function can be achieved only with a good partition of the
input space into a set of regions where a linear model can ef-
ficiently approximate the target function. Therefore, the pa-
rameters of the weighting factors gk must be optimized. The
parameters of the linear models are typically determined by
means of a weighted least square scheme, where the train-
ing samples are weighted by the factors gk.

To decide how many linear models the network should
contain, the approaches commonly follow a strategy to in-
crementally insert and remove linear models. Inserting and
removing is performed according to some criterions based
on some user-specified thresholds. Noticeable about [6]
and [5] is that with removing a linear model, information
about already determined domains is lost since their domain
model does not allow multiple center vectors for one single
domain. In contrast, our fusion algorithm (c.f. Sec. 3) keeps

the already gained information by combining domains to
more complex ones. In common approaches the parameters
of the weighting factors are trained with a gradient decent
method to minimize some special error function.

3 Locally Arranged Linear Models
Network model: In our approach, the output ŷ of the
whole network will be the output of exactly one linear
model. The model whose domain contains the input data x
is selected to compute ŷ . Therefore, a model’s domain
is given as a set of hyperellipsoids with sharp boundaries
between the inside and the outside of the domain. One hy-
perellipsoid defines a part of a domain and is parameterized
with a Gaussian-like distance function. The whole domain
is the combination of such parts which are located adjacent
to each other in the input space. Thereby, inspired by the
neighborhood edges of a Dynamical Cell Structure (DCS)
network [1], adjacency is measured as how many data sam-
ples are located between the centers of the hyperellipsoids.

So, in contrast to known techniques, this scheme does
not mix the output of linear models. Linear models are
trained and used separately. With the sharp boundaries be-
tween domains the input space is divided into disjunctive
regions associated to exactly one linear model. This re-
alises a partition of unity which is easier to control than with
the normalization used in the state of the art approaches.
Since more than one hyperellipsoids can be used to define
a model’s domain more complex shaped domains can be
modeled. Even gaps inside a domain can be expressed as
the adjacency measurement does not depend on some mu-
tual overlap between the hyperellipsoids. The neighbor-
hood definition is purely data driven and impels no edge
to exist between local parts as by Self-Organizing Maps.

As the base for our domain model, a hyperellipsoid is
defined as the distance function d(·):

d(x;a,b,W) = exp

[
−

n∑
i=1

(
1
ai

(x− b)T wi

)2
]

. (3)

This parameterization of a Gaussian function has a clear
interpretation: The n-dimensional hyperellipsoid is cen-
tered in the input space at position b ∈ Rn. The axes
of such an hyperellipsoid are aligned along the coordinate
axes wi ∈ Rn (W = [w1 . . .wn]) and stretched with scalar
valued factors a = (a1, · · · , an)T with ai ≥ 0. One special
case has to be treated: if it exists an i, so that ai = 0 and
xi 6= bi, then d(x) = 0. For purpose of convenience, the
values of d are normalized by means of the exp-function to
the interval d(x) ∈ [0, 1]. The function has it’s maximum at
b and decreases along the hyperellipsoid’s axes to zero.

The activation αk(x) of the k-th model is calculated as:

αk(x) =
{

maxl d(x;al,bl,Wl) : d(x;al,bl,Wl) ≥ γl

0 : else
,

(4)



where {(al,bl,Wl, γl)} is the set of parameters of the
hyperellipsoids composing the whole domain. The scalar
threshold parameter γl determines if x is enclosed by the
l-th hyperellipsoid or not. The activation is defined so that
α(x) equals the value of the distance function d(·) of the
best matching hyperellipsoid. If x does not belong to any
hyperellipsoid of the k-th model its activation will be zero.

Finally, the weighting factors gk can be defined as

gk(x) =
{

1 : k = arg maxi αi(x)
0 : else

, (5)

which are all set to zero except the one with the maximal
activation. One special case arises when all αi(x) equal
zero, which means that no hyperellipsoid contains x. In our
model such data x is treated as an outlier and automatically
rejected as a valid input. Essentially, the threshold param-
eters γl establishes this automatic outlier detection. This
is not possible with the approaches [6, 5] since weighting
factors of form of Eq. (2) define unlimited domains.

On the other hand, if an outlier detection is not appropri-
ate for the application at hand, one still can assign an expert
to x according to some rule. In our experiments, we are
making a nearest neighbor decision which chooses the lin-
ear model with the smallest Euclidian distance between x
and the center of the hyperellipsoid bk . This matches well
the idea of LLA associating linear models to local regions.

Learning Algorithm: The learning algorithm is a recur-
sive scheme in which the training set is split into subsets
belonging to local regions. To each subset an single linear
model is assigned to approximate the target function in the
corresponding region. Then the linear model and its domain
are trained with the samples from the subsets. These pro-
cesses of splitting and training are repeated as long as the
approximation error of each linear model is not sufficient
small and the subsets contain enough training samples. If
a set of samples is split up, the model assigned to it will
be removed from the network. It will be replaced by other
models whose domains will occupy the domain of the for-
mer one. After the recursive splitting and training process
stopped, the domains of all established linear models will be
composed out of one hyperellipsoid. Then the new domain
fusion algorithm will be started. It computes a neighbor-
hood graph expressing which domains are adjacent to each
other. Then it evaluates if the training samples from adja-
cent domains can be well enough approximated with only
one linear model. If that is the case, the two former do-
mains will be joined and the two linear models will be re-
placed with a new one trained on the joined domain. This
process of computing a neighborhood graph and evaluating
adjacent domains will be repeated as long as models can be
fused.

In detail: The learning algorithm starts with one lin-
ear model having the whole input space as its domain.

Function GetNeighborhoodGraph
Input : T = {(xj ,yj , )}, {bl},L2K
Output: G ∈ NN × NN

begin
G← 0
forall j do

k1 ← L2K(arg minl ‖xj − bl‖)
k2 ← L2K(arg min{l|L2K(l) 6=k1} ‖xj − bl‖)
Gk1,k2 ← Gk1,k2 + 1
Gk2,k1 ← Gk2,k1 + 1

end
end

Algorithm 1. Pseudo code for computing the
neighborhood graph given a training set, a
set of hyperellipsoid centers and a function
L2K which maps the index of a center to index
of its domain.

The model’s parameter Ck and sk are trained with a least
squares method using all training samples within its do-
main. The squared approximation error for each training
sample are computed. If their mean is larger than a user
specified threshold maxError and if the number of sam-
ples exceeds another user chosen threshold then new added
models will replace the currently optimized one. Therefore
the training set is split up with a k-means-like clustering
method (s. [4] for details) and new models are assigned to
the generated subsets. For each new model the same train-
ing and evaluating process will be repeated until optimiza-
tion is complete. Then the domains of the models will be
trained. The basic idea therefore is to use principle com-
ponent analysis on a model’s training set to determine its
parameters al,bl,Wl and γl. The eigenvectors of the co-
variance matrix of the training set’s input samples are used
as the axes Wl of the hyperellipsoid. As the factors ai

should express the variance along the i-th axis of the hy-
perellipsoid, they are set to the maximal projection of the
input samples onto the i-th eigenvector. The position bl is
chosen to be the mean of the input samples. The bound-
ary between the inside and the outside of a hyperellipsoid is
drawn by setting the threshold γl to the minimal value of d
for all the training samples.

After the linear models and their domains are estab-
lished, the new domain fusion algorithm will be started.
The algorithm repeatedly computes the neighborhood graph
between domains and fuses two appropriate linear models.
The graph G is a symmetric NN × NN matrix, in which
Gk,l and Gl,k equal the number of input samples xj lo-
cated directly between the k-th and the l-th domain. Ther-
fore it is counted how many samples have a hyperellipsoid
center from two different domains as their next and second
next neighbor w.r.t. the Euclidean distance (see Fig. 1 for
an example and Alg. 1 for pseudo code).



Table 1. Results of the benchmark test with
the chaotic Mackey-Glass equation.

Method #hidden units RMSE
LALM with fusion 77 0.0017

LALM without fusion 96 0.0018
GMN [5] 7 0.0091

RBF-AFS [3] 21 0.0128
OLS [2] 132 0.0163

This graph matrix captures well which domains are ad-
jacent to each other and where the most samples are lo-
cated between two domains. Latter is used to decide which
two linear models should be tested to be fused. So, with
(k, l) = arg maxi,j Gi,j the training set from domain l
and k are united and a new linear model is trained with by
means of a least squares method. The training was suc-
cessful if the mean approximation error is smaller than the
threshold maxError. If so, the former two models will be
replaced by the new one and its new domain will be com-
posed out of all hyperellipsoids of the two former domains.
Otherwise the algorithm will end.

4 Mackey-Glass Benchmark Experiment

For performance comparison an experiment described
in [5] with the chaotic Mackey-Glass equation was re-
peated. The task to predict a value of the time series

x(t− 1) = (1− a)x(t) +
bx(t− τ)

1 + x10(t− τ)
, (6)

with the parameters a = 0.1, b = 0.2, τ = 17 and
x(0) = 1.2. The function to be approximated is defined as
x(t + 6) = f

(
x(t), x(t− 6), x(t− 12), x(t− 18)

)
.

The network was trained on 1000 samples of f with
124 ≤ t ≤ 1123 and tested with 1124 ≤ t ≤ 2213. Tab. 1
shows the achieved results of four other methods: the Grow-
ing Multi Expert [5], the Orthogonal Least Squares [2], the
Radial Basis Functions based on the Adaptive Fuzzy Sys-
tem [3] and two results with our network. One after the
first learning phase is completed and one after the new fu-
sion algorithm was applied. We implemented our algorithm
in MatLab (R14) running on a Linux PC with a 3000 MHz
CPU (1 GB RAM). The training of a network for this bench-
mark test took always less than 90 sec.

Our methods showed superiority w.r.t. the achieved
RMSE. Note that the new domain fusion algorithm reduces
the number of linear models by approx. 20% and the fused
network even achieves a slightly better performance. Ob-
servable is that our solutions still need more linear models
than the local linear method of [5].

5 Conclusion
We proposed a new domain fusion algorithm for our lo-

cal linear approximation approach [4]. It is based on a
purely data-driven adjacency measurement employing the
neighborhood graph of a DCS network. The adjacency def-
inition stresses the idea of locality which is crucial for any
LLA approach. Such a graph determines which domains
are tested to be combined and assigned to one linear model.
The domain model can therefore be a combination of more
than one hyperellipsoid to one domain. In contrast to other
approaches, this allows to assign a linear model to a data
cluster with a complex, non-symmetrical shape. In prac-
tice, the fusion algorithm reduced the number of linear mod-
els significantly without diminishing the accurateness of the
approximation. Another unique feature of the proposed do-
main model is that it provides an automatic outlier detection
which helps to decide if data can be approximated with a
trained network.

Acknowledgments: The work presented here was sup-
ported by the the European Union, grant COSPAL (IST-
2003-004176). However, this paper does not necessarily
represent the opinion of the European Community, and the
European Community is not responsible for any use which
may be made of its contents.

References

[1] J. Bruske and G. Sommer. Dynamic cell structure learns
perfectly topology preserving map. Neural Computation,
7(4):845–865, 1995.

[2] S. Chen, C. F. N. Cowan, and P. M. Grant. Orthogonal least
squares learning algorithm for radial basis function networks.
IEEE Transactions on Neural Networks, 2:302–309, 1991.

[3] K. B. Cho and B. H. Wang. RBF based adaptive fuzzy systems
and their applications to system identification and prediction.
Fuzzy Sets and Systems, 83:325–339, 1996.

[4] F. Hoppe and G. Sommer. Local linear models for system
control. In Proceedings of Int. Conf. on Neural Information
Processing (ICONIP), pages 171–176, 2005.

[5] L. C. Kiong, M. Rajeswari, and M. V. C. Rao. Extrapola-
tion detection and novelty-based node insertion for sequen-
tial growing multi-experts network. Neural Network World,
2:151–176, 2003.

[6] S. Schaal and C. G. Atkeson. Constructive incremental
learning from only local information. Neural Computation,
10(8):2047–2084, 1998.

[7] R. Shorten and R. Murray-Smith. Side-effects of normalising
basis functions in local model networks. In R. Murray-Smith
and T. A. Johansen, editors, Multiple Model Approaches to
Modelling and Control, chapter 8, pages 211–228. London:
Taylor & Francis, 1997.

[8] M. Tagscherer, L. Kindermann, A. Lewandowski, and
P. Protzel. Overcome neural limitations for real world applica-
tions by providing confidence values for network prediction.
In Proceedings of Int. Conf. on Neural Information Process-
ing (ICONIP), pages 520–525, 1999.


