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Abstract— We propose an ensemble technique to train mul-
tiple individual models for supervised learning tasks. The new
method divides the input space into local regions which are
modelled as a set of hyper-ellipsoids. For each local region
an individual model is trained to approximate or classify data
efficiently. The idea is to use locality in the input space as an
useful constraint to realize diversity in an ensemble. The method
automatically determines the size of the ensemble, realises
an outlier detection mechanism and shows superiority over
comparable methods in a benchmark test. Also, the method was
extended to a hierarchical framework allowing a user to solve
complex learning tasks by combining different sub-solutions
and information sources.

I. INTRODUCTION

Ensemble machine learning techniques solve a modelling
task by using a specific training and combination scheme for
an ensemble of individual models. Given a data set of input-
output pairs, each individual model is trained to approximate
a target function or to realise a classification. By combining
these individual models, the approximation or classification
performance of the full ensemble is hopefully better than
the one of all singular models. Ensemble techniques can be
regarded as meta machine learning methods as they typi-
cally employ common learning techniques (e.g. multi-layer
perceptrons, decision trees, etc.) in their specific training
and combination schemes. The crucial point of an ensemble
training scheme is to realise diversity between the individual
models since obviously a set of equal models could not be
better than a single member of it. On the other hand, given
a certain input, a good combination scheme has always to
select the right subset of the trained models to combine their
output as the ensemble’s output.

The probably best known examples for ensemble tech-
niques are Bagging Predictors [1], AdaBoost [2] and Hier-
archical Mixture of Experts (HME) [3]. Especially Boosting
techniques have in recent years gained lots of interest as they
are grounded in the Probably Approximately Correct learning
theory (cf. [4]) and were successfully applied to real world
problems (for a detailed discussion cf. [5]).

Not that well known in the field of ensemble techniques are
local (or also called piecewise) linear approximation (LLA)
methods [6], [7], [8], [9]. Although they are typically not
described as ensemble techniques, LLA methods rely on the
same idea of combining multiple individual models to one
more powerful approximator. In LLA methods, a set of linear
models is used to approximate a non-linear function. Ensured
by the training scheme, each of these linear models is only
valid in a local region of the input space. The strategy of

LLA is to achieve good global approximation by the right
combination of good local approximators.

In this paper we want to propose the extension of our
LLA method [9] to a full meta machine learning method
for classification and approximation tasks. That is a method,
which can employ any known machine learning techniques
for the training of an individual model. Therefore, we com-
pare in Sec. II the above mentioned ensemble techniques with
common LLA methods. This will reveal similarities between
these two research directions with three benifical effects:
First, it grounds the straightforward extension of our learning
scheme described in III. Second, it suggests that the locality
constraint in LLA methods introduces fruitful diversity to an
ensemble of models. Last but not least, the comparison with
HME approach motivates our proposal in Sec. IV to build
a hierarchically structured ensemble of our local models.
In Sec. V, a benchmark test on the chaotic Mackey-Glass
equation demonstrates the superiority of our learning scheme
over other LLA methods, before a discussion of the presented
ideas concludes this paper.

II. STATE OF THE ART ENSEMBLE

AND LLA TECHNIQUES

All the bagging, boosting, HME and LLA approaches can
be formalized as:

ŷ(x) =
N∑

k=1

gk(x)ŷk(x), (1)

where ŷ denotes the m-dimensional output of the ensemble
for the n-dimensional input x. The ensemble output ŷ is
the sum of the outputs of the N individual models ŷk, each
weighted with the scalar valued functions gk(x).

Ensemble techniques do not define how the individual
models ŷk are formalized. As meta machine learning tech-
niques, they leave it to a system designer to choose a known
learning method to train the models. Instead they can be
differentiated by their specific function definitions for the
weighting functions gk(x), by their method to determine the
number N of used models and by their training schemes to
produce diverse individual models. Latter has to go without a
direct modification of the models’ internal parameters since
ensemble techniques should work with any kind of model.
Instead diversity is introduced into the ensemble by indirect
means. In the case of bagging and boosting, this is achieved
with different methods of resampling a given set of training
samples. In the HME approach, a special definition of the



weighting functions introduces a locality constraint which
results in more competitive i.e. diverse models.

To lay the ground for a comparison between ensemble and
LLA methods, in the next sections typical examples of these
techniques are described.

A. Ensemble Techniques

A quite easy to implement ensemble technique is the
Bagging Predictor [1] approach. Besides an appropriate ma-
chine learning technique (MLT) the system designer chooses
first the number N of individual models constituting the
ensemble. Then N subsets of training samples are compiled
by uniform sampling with replacement from the originally
given training set. For each subset a model is trained by
means of the MLT. The outputs of the individual models are
combined by setting gk(x) = 1/N , i.e. they are averaged.
Note, that gk(x) is constant and not depending on the input x.

In [1] it is argued that the benefit of bagging is variance
reduction (cf. [10] for a discussion of the bias-variance trade
off). As machine learning techniques are sensitive to differ-
ent samples drawn from the same distribution, the trained
individual models will generalize differently. Averaging will
compensate such variance.

Boosting techniques can be exemplified with its first
and famous AdaBoost [2] implementation (for a detailed
overview about boosting see [5]). As in the bagging approach
AdaBoost trains a number of different models using different
samplings with replacement of the originally given training
set. In contrast to bagging, the samples from the training
set are not drawn with an uniform distribution and their
output is not averaged but weighted with different gk factors.
Additionally, the number N of models is determined auto-
matically. Therefore, AdaBoost runs in a loop in which each
cycle adds a new model until a certain performance measure-
ment is fulfilled. Each model is trained on a subset sampled
with a non-uniform distribution. The sampling distribution
depends on the performance of the model added in the last
cycle. The distribution is changed so that the probability of
a sample to be taken into the new training set rises with its
approximation or classification error. The weighting factor gk

of the k-th model depends on its own performance on the
training set: Those models with high error rates have small
gk values. As in the case of bagging the weighting functions
are constant, not depending on the input x and normalized
so that

∑
k gk(x) = 1 and ∀k : 0 ≤ gk(x) ≤ 1.

The essential strategy of all boosting algorithms is two-
folded: During the iterative training more and more emphasis
is laid on training samples which are hard to learn. On
the other hand, models which show good performance will
most prominently define the output of the whole ensemble.
This matches well the successful strategy of Support Vector
Machines (SVM). There, samples close to decision bound-
ary which are typically hard to be correctly classified are
constituting the learned model. In [5] this relation between
Boosting and SVM techniques is also theoretically grounded.

The basic idea behind the Hierarchical Mixture of Ex-
perts (HME) approach [3] is that besides a set of expert

networks (i.e. the ensemble of individual models) a so called
gating network (i.e. the weighting functions gk(x)) is trained
that selects depending on the input x the most appropriate
experts to compute the output ŷ. So, in contrast to the
Bagging and Boosting techniques the weighting functions
are not constants but they are functions of the input pattern.
In [3] linear models are used in combination with the softmax
normalization [11] as weighting functions. Each of these
weighting functions gk(x) divides the input space along a
linear margin into two halves. All together, they realise a
“soft” partitioning of the input space in regions where differ-
ent expert networks are assigned to compute the ensemble’s
output ŷ. The partitioning is called “soft” since the output ŷ
is a weighted mixture of the experts’ outputs ŷk which are
also linear models. For a user specified number of N expert
networks, an EM-Algorithm [12] approach was implemented
in [3] to train the parameters of the expert networks and of
the linear models for the weighting functions.

The authors of [3] also proposed to use HME networks
them self as expert networks. Then a hierarchy of gating
networks would compose a tree-like structure of expert
networks. This has the effect that the “soft” partitioning
induced by a higher-level gating network is subdivided into
smaller parts by a gating network at a lower level.

The HME approach works as an ensemble technique as
the implemented training scheme ensures that the individual
models ŷk(x) are specialized according to the partitioning
induced by the gating networks. One single model is not
compelled to represent the target function in the whole input
space but only in a part of it. This relaxation is only possible
with non-constant weighting functions gk(x). Only if the
weighting factor of an expert network changes for different
input patterns, specialization on such input patterns can
take place. Specialization means diversity between individual
models, means typically more success of an ensemble of
individual models.

B. Local Linear Approximation Methods

In contrast to the mentioned ensemble techniques, the LLA
methods of [6], [8], [7], [9] were not proposed as meta
machine learning but as specialized function approximation
techniques. They were envisioned as methods for approxi-
mating a possible non-linear target function by the combi-
nation of linear models which are only valid in different but
maybe overlapping regions of the input space. Such local
regions are commonly called the domain of a linear model.
Most often LLA methods were proposed for adaptive control
tasks since sophisticated knowledge about linear systems
from both control theory (important for stability proofs) and
statistics (important for parameter estimation) is applicable.
They fit nicely into the formalization of Eq. (1): The indi-
vidual linear models1 are defined as ŷk(x) = Ckx + sk with
the coefficient matrices Ck ∈ R

m × R
n and the constant

shifting vectors sk ∈ R
m. The weighting functions gk(x)

1For reason of simplicity, in this paper only linear models are discussed.
The extension to polynoms of higher degrees is straightforward.



are modelling the domains of each linear model as functions
of input x: Depending on the distance of x to the position
of the domain the weighting factors are larger or smaller and
hence, will weight the output of the different linear models
differently. Given a set of training samples T = {(xj ,yj)},
the different LLA training schemes try to minimize the ap-
proximation errors of the training samples which are located
in the domain of a model. On the other hand, training samples
which belong to another domain could have arbitrarily bad
approximation results.

The common way (e.g. [6], [7]) to define a model’s
domain is to calculate the weighting factors according to
the Gaussian function with a center vector ck ∈ R

n and a
spread matrix Dk ∈ R

n × R
n:

gk(x) = exp
(
− 1

2
(x− ck)T Dk(x− ck)

)
. (2)

The idea is that each linear model has as its domain a
symmetrical receptive field centered at ck. Furthermore the
weighting factors are typically normalized, so that a partition
of unity of the input space is realized, i.e. that:

∑
k gk(x) = 1

and ∀k : 0 ≤ gk(x) ≤ 1.
It is part of the described strategies that such domains will

overlap and hence, that the output of linear models will be
mixed. That this strategy really improves the approximation
result depends essentially on the right choice of overlap
between the domains. The problem is that with weighting
factors of the form of Eq. (2) (e.g. [6]), the overlap can only
be controlled with the center ck and the spread matrix Dk.
But due to the normalization, the shape of the domains will
be distorted. As discussed in [13], the form of a radial
basis function is no longer uniform, its maximum can be
shifted from the center vector and the function value may
not decrease monotonically with increasing distance to the
center.

Given these architectures, the essential problem of LLA
methods remains to find the right set of domains. Good
approximation of the global function can be achieved only
with a good partitioning of the input space into a set of
regions where a linear model can efficiently approximate the
target function. Therefore, the parameters of the weighting
factors gk must be optimized. The parameters of the linear
models are typically determined by means of a weighted least
square scheme, where the training samples are weighted by
the factors gk.

To decide how many linear models the ensemble should
contain, the approaches commonly follow a strategy to
incrementally insert and remove linear models. For example
in [6], new models are included to the ensemble if for a
given input xj no weighting factor gk(xj) is larger than an
user defined threshold. In this approach, linear models are
also removed from the ensemble according to some similar
threshold-based criterion. The methods differ in details where
new models are inserted (i.e. what initial value is used for the
center vector of a new model), but follow the same strategy
to add models where the approximation error is high.

On the other hand, the approaches differ considerably in
their way to determine the parameters of the weighting func-
tions. A two-phase learning scheme is proposed in [7]: the
center vectors are changed with Hebbian adaptation steps and
by a gradient decent approach to minimize the least squares
error function J =

∑t
j=1(ŷ(xj)−yj)2 over the training set.

In contrast to that, the authors of [6] prefer to minimize a so-
called locally weighted error function which emphasizes that
training samples only effect the domain’s parameter that they
belong to. As discussed in [3], [14] the latter suits better the
overall strategy of mixture techniques since it improves local
approximation by promoting competition between different
models. The danger of too strong competition is that of
overfitting: The locally best but globally worst solution would
have as many models as training samples centered on the
samples and having a very narrow spread matrix.

III. ENSEMBLE OF LOCALLY ARRANGED MODELS

In [9], we presented a LLA method with a new domain
model and learning algorithm. Its extension to a full meta
machine learning technique with a more advanced domain
model and a redundant model removal mechanism is pro-
posed in the next section. The development is driven by
the idea that locality in the input space provides an useful
constraint to train diverse models and to combine them in
an ensemble. Thereby, locality essentially means that data
samples have small distances to each other according to some
distance measurement (in our case the Euclidean distance).

A. Locally Arranged Models

In our approach, the output ŷ of the whole ensemble
is the output of exactly one individual model. The model
whose domain contains the input data x is selected to
compute ŷ . Therefore, a model’s domain is given as a set
of hyperellipsoids with sharp boundaries between the inside
and the outside of the domain. One hyperellipsoid defines
one part of a domain and is parameterized with a Gaussian-
like distance function. The whole domain is the combination
of such parts which are located adjacent to each other in the
input space. Thereby, inspired by the neighborhood edges of
a Dynamical Cell Structure (DCS) network [15], adjacency
is measured as how many data samples are located between
the centers of the hyperellipsoids.

So, in contrast to known LLA techniques, this scheme
does not mix the output of individual models. The models
are trained and used separately. With the sharp boundaries
between domains the input space is divided into disjunctive
regions associated to exactly one individual model. This
realises a partition of unity which is easier to control than
with the normalization used in the state of the art LLA
approaches. Since more than one hyperellipsoids can be
used to define a model’s domain, more complex shaped
domains can be modeled. Even gaps inside a domain can
be expressed as the adjacency measurement does not depend
on some mutual overlap between the hyperellipsoids. The
neighborhood definition is purely data driven and impels
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Fig. 1. Example of parameters of a model’s 2D domain enclosing a set
of data points. Inliers and outliers of the domain are shown as points and
crosses, respectively.

no edge to exist between local parts as by Self-Organizing
Maps [16].

As the base for our domain model, a hyperellipsoid is
defined with the distance function d(·):

d(x;a,b,W) = exp

[
−

n∑
i=1

(
1
ai

(x− b)T wi

)2
]

. (3)

This parameterization of a Gaussian function has a clear
interpretation: The n-dimensional hyperellipsoid is centered
in the input space at position b ∈ R

n. The axes of such an
hyperellipsoid are aligned along the coordinate axes wi ∈ R

n

(W = (w1 . . .wn)) and stretched with scalar valued fac-
tors a = (a1, · · · , an)T with ai ≥ 0. One special case has to
be treated: if there exists an i, so that ai = 0 and xi �= bi,
then d(x) = 0. See Fig. 1 for a illustrative 2D example.
For purpose of convenience, the values of d are normalized
by means of the exp-function to the interval d(x) ∈ [0, 1].
The function has it’s maximum at b and decreases along the
hyperellipsoid’s axes wi to zero.

The activation αk(x) of the k-th model is calculated as:

αk(x) =
{

maxl d(x;al,bl,Wl) : d(x;al,bl,Wl) ≥ γl

0 : else
,

(4)
where {(al,bl,Wl, γl)} is the set of parameters of the

hyperellipsoids composing the whole domain. The scalar
threshold parameter γl determines if x is enclosed by the
l-th hyperellipsoid or not. The activation is defined so that
α(x) equals the value of the distance function d(·) of the
best matching hyperellipsoid. If x does not belong to any
hyperellipsoid of the k-th model its activation is zero.

Finally, the weighting functions gk(x) can be defined as

gk(x) =
{

1 : k = argi max αi(x)
0 : else

, (5)

which are all set to zero except the one with the maximal
activation. One special case arises when all αi(x) equal
zero, which means that no hyperellipsoid contains x. In
our architecture such data x is treated as an outlier and

automatically rejected as an invalid input. Essentially, the
threshold parameters γl establishes this automatic outlier
detection. This is not possible with the approaches [6],
[7] since weighting factors of the form of Eq. (2) define
unlimited domains.

On the other hand, if an outlier detection is not appropriate
for the application at hand, one still can assign a model to x
according to some rule. In our experiments, we are making
a nearest neighbor decision which chooses the model with
the smallest Euclidian distance between x and the center
of one of its hyperellipsoids. This matches well the idea of
associating models to local regions of the input space and
experiments showed its effectiveness.

B. Ensemble Learning Algorithm

As the new model with its sharply bounded domains
already emphasizes local validity of an individual model,
the learning algorithm stresses this as well. The learning
algorithm is a recursive scheme in which the training set
is split into subsets belonging to local regions. To each
subset an individual model is assigned to approximate the
target function (to classify samples, respectively) in the
corresponding region. Then the models are trained with the
samples from the subsets by means of the MLT the system
designer has chosen. The parameters of the model’s domain
are determined with a method described further below. This
process of splitting and training is repeated as long as the
performance of each individual model is not sufficient good
and the subsets contain enough training samples. If a set of
samples is split up, the model assigned to it will be removed
from the ensemble. It will be replaced by other models whose
domains will occupy the domain of the removed one.

After the recursive splitting and training process has
stopped, the domains of all established models will be
composed out of one hyperellipsoid. Then a domain fusion
algorithm which removes redundant models will be started.
It computes a neighborhood graph expressing which domains
are adjacent to each other. Then it evaluates if the training
samples from adjacent domains can well enough be learned
with only one model. If that is the case, the two former
domains will be joined and the two original models will be
replaced with a new one trained on the joined domain. This
process of computing a neighborhood graph and evaluating
adjacent models will be repeated as long as domains can be
fused. Noticeable about the other redundant model removal
mechanisms of [6] and [7] is that with removing a linear
model, information about already determined domains is lost
since their domain model does not allow multiple center vec-
tors for one single domain. In contrast, our fusion algorithm
keeps the already gained information by combining domains
to more complex ones.

In detail (see Algorithm 1 and 2): The learning algorithm
starts with one individual model having the whole input
space as its domain. Using all training samples within its
domain the model’s parameters Θ are trained with the chosen
machine learning technique. Then the performance of the
trained model has to be estimated in order to decide if the



Algorithm 1: Pseudo code for ensemble training with a
generic machine learning technique (MLT).
Function TrainEnsemble
Input : T = {(xj ,yj)}
Output: M = {(Θk, Tk,ak,bk,Wk, γk)}k∈[1,N ]

begin
m←TrainModel(T)
M ←OptimizeModel(m)
M ←RemoveRedundantModels(M)

end

Function TrainModel
Input : T in = {(xj ,yj)}
Output: m = (Θ, T,a,b,W, γ)
begin

Θ← MLT(T in)
T ← T in

b← 1
|T |

∑
j xj

wi ← i-th principle component of set {xj}
ai ← maxj ‖(xj − b)T wi‖
γ ← minj d(xj ;a,b,W)

end

Function OptimizeModel
Input : m = (Θ, T,a,b,W, γ)
Output: M = {(Θk, Tk,ak,bk,Wk, γk)}k∈[1,N ]

begin
PerformanceIsNotOK←test performace of Θ
if PerformanceIsNotOK ∧ |T | >minSamples then
{Tl} ←SplitTrainingSet(T,Θ)
forall l do

ml ←TrainModel(Tl)
Ml ←OptimizeModel(ml)

M ← ⋃
l Ml

else
M ← {m}

end

Function SplitTrainingSet
Input : T = {(xj ,yj)},Θ
Output: R = {Tl}l∈[1,L]

begin
forall j do

Errj ←approximation or classification
error of Θ for xj

{cl} ←k-means to minimize
L∑

l=1

∑
xj∈Sl

‖xj − µl‖
with µl =

∑
xi∈Sl

Erri∑
j Errj

xi

and Sl = {xj ∈ T |l = argi min ‖xj − µi‖}
forall l do

Tl ← {xj ∈ T |l = argi min ‖xj − ci‖}
end

model should be added to the ensemble or not. Depending on
the task at hand the mean squared approximation error (MSE)
or the classification rate on the training samples in a domain
could be computed and compared to a user specified thresh-
old. Since both criteria are based on the training data, they
do not really express the generalization performance of the
model but proved to be useful in our experiments. Depending
on the used MLT, a criterion based on e.g. cross-validation
might be more suitable. If the model’s performance is not
acceptable and if the number of samples exceeds a user
chosen threshold minSamples, then the trained model will
be rejected and replaced by other differently trained ones.
Therefore the training set is split up with a special clustering
method described below and new models are assigned to the
generated subsets. For each new model the same training
and evaluating process will be repeated until optimization is
completed as no more model can be added.

Then the domains of the models will be trained. The
basic idea therefore is to use principle component analysis
(PCA) on a model’s training set to determine its parame-
ters al,bl,Wl and γl. The eigenvectors of the covariance
matrix of the training set’s input samples are used as the
axes Wl of the hyperellipsoid. As the factors ai should
express the variance along the i-th axis of the hyperellipsoid,
they are set to the maximal projection of the input samples
onto the i-th eigenvector. The position bl is chosen to be the
mean of the input samples. The boundary between the inside
and the outside of a hyperellipsoid is drawn by setting the
threshold γl to the minimal value of d for all the training
samples.

A distinctive feature of the algorithm is how the training
set of an individual model Θ is split up in order to optimize
performance. A method was implemented which clusters the
input samples xj of a training set T = {(xj,yj)} w.r.t. a
model’s performance value Errj for each xj . In case of a
function approximation task Errj equals the approximation
error: Errj = ‖ŷ(xj ; Θ)−yj‖. For a classification task Errj

is set to a user specified constant goodClass ∈ [0, 0.5] or to
Errj = 1− goodClass if the predicted class label ŷ(xj ; Θ)
equals the true class label yj or not, respectively. The
clustering method minimizes the function

L∑
l=1

∑
x∈Sl

‖x− µl‖ with

Sl = {xj ∈ T |l = argi min ‖xj − µi‖} and

µl =
∑

xi∈Sl

Erri∑
j Errj

xi

where L is the number of new clusters to be generated2.
This is essentially the k-means algorithm [10, in Sec. 5.9.1]
where the center vectors µl are set to the mean of a subset Sl

weighted with Errj . The normal k-means algorithm would
generate clusters only driven by the distribution of the sam-
ples in input space. Whereas the weighted version ensures

2Although L is a free parameter of the algorithm, we only used L = 2.



Fig. 2. Nonlinear function with discontinuity and its linear approximation.
The domains of models are the bell shaped curves. The outside of a domain
is plotted as a dotted line. Note, more linear models are used where the
curvature of the target function is high.

that the generated subsets are centered in regions where
the performance of model Θ was bad. Like the AdaBoost
algorithm this mechanism emphasizes badly learned training
samples when a new model is trained with a different
sampling of the original training set. Fig. 2 illustrates this
with an ensemble of linear models for an one dimensional
synthetical function approximation task. The figure shows
that more linear models are trained where the target function
is highly non-linear since there linear models yield higher
approximation error. In case of a classification task, the user
can adjust how much weight should be put onto badly learned
training samples by the factor goodClass.

After the individual models and their domains are es-
tablished, the domain fusion algorithm will be started (see
Algorithm 2). The algorithm repeatedly computes the neigh-
borhood graph between two domains and fuses them if a new
model could successfully be trained on the data of both of
them. The graph G is a symmetric N

N×N
N matrix, in which

Gk,l and Gl,k equal the number of input samples xj located
directly between the k-th and the l-th domain. Therefore it is
counted how many samples have a hyperellipsoid center from
two different domains as their next and second next neighbor
w.r.t. the Euclidean distance (see Fig. 3 for an example).

This graph matrix captures well which domains are adja-
cent to each other and where the most samples are located
between two domains. Latter is used to decide which two
individual models should be tested to be fused. So, with
(id1, id2) = argi,j maxGi,j the training sets from domain
id1 and id2 are united and a new model is trained by
means of the machine learning technique. If the model’s
performance is acceptable, the former two models will be
replaced by the new one and its new domain will be com-
posed out of all hyperellipsoids of the two former domains.
Then the repetition of graph computing and fusion tests
will be started again. If the model’s performance was not
acceptable, the algorithm will be stopped and the ensemble
is then completely trained.

Fig. 3. 2D input sample for three linear models (dots, crosses and circles).
Hyperellipsoids connected with a line belong to a fused domain. Dashed
lines visualize the neighborhood graph between the three domains. Thicker
lines express that more samples are laying between adjacent domains.

IV. LOCALLY ARRANGED ENSEMBLES IN A

HIERARCHICAL FRAMEWORK

The Hierarchical Mixture of Expert approach lays the
ground for a powerful extention of our ensemble method:
Gating networks on different levels of a hierarchy of lo-
cally arranged models can easily be constructed with the
above proposed weighting factors. Suppose a number of our
ensembles are trained to solve different machine learning
tasks. The difference of the tasks is expressed by different
training sets with samples which occupy the same input and
output spaces. Such ensembles can be combined to a two
level hierarchy by defining domains for each ensemble with
the same means as for individual models. Using the training
set of each ensemble, the domain parameters ak,bk,Wk

and γk of the weighting factors gk(x) for the 2nd level
gating net can be determined as described in Sec. III-B.
Applying this scheme repeatedly, a system designer can
combine different ensembles by build up such hierarchies
with as many levels as needed. Of course even different
machine learning techniques can be mixed: E.g. in one
ensemble RBF networks and in the other SVMs could be
applied. At different gating networks, also different input
spaces can be used, so that various information sources can
be employed.

For example, a hierarchical classification scheme for object
categorization could be build up. On the lowest level spe-
cialized ensembles could be trained, one maybe to separate
oranges from apples the other to distinguish cars from
houses. Then on a second level, these ensembles could
be combined by a gating network which learns to tell the
difference between a natural and an artifical made object.
The hierarchy could be extended arbitrarily in this way. One
would get a powerful classification mechanism where, driven
by the subcategories of a given object, the gating networks
would select first the right subtrees of the ensemble and



Algorithm 2: Pseudo code for the domain fusion algo-
rithm with a function L2K which maps the index of a
center to the index of its domain.
Function RemoveRedundantModels
Input : M in = {mk = (Θk, Tk,ak,bk,Wk, γk)}
Output: Mout = {(Θk, Tk,ak,bk,Wk, γk)}
begin

G←GetNeighborhoodGraph (
⋃

k Tk,
⋃

k bk)
(id1, id2)← argi,j max Gi,j

Θ←TrainModel (Tid1 ∪ Tid2 )
PerformanceIsNotOK←test performace of Θ
if PerformanceIsNotOK then

fusedModel← Θ with T = Tid1 ∪ Tid2 and
combined domains from mid1 and mid2

M ← (M in \ {mid1 ,mid2}) ∪ {fusedModel}
Mout ←RemoveRedundantModels (M )

else
Mout ←M in

end
end

Function GetNeighborhoodGraph
Input : T = {(xj ,yj , )}, {bl}
Output: G ∈ N

N × N
N

begin
G← 0
forall j do

k1 ← L2K(arg minl ‖xj − bl‖)
k2 ← L2K(arg min{l|L2K(l) �=k1} ‖xj − bl‖)
Gk1,k2 ← Gk1,k2 + 1
Gk2,k1 ← Gk2,k1 + 1

end
end

eventually the right individual model to perform the classifi-
cation. The proposed hierarchical framework helps to design
such a complex classification scheme. The system designer
can decide which information source is most appropriate to
decide about specific subcategories. He can compile different
training sets for the different classifiers at the lowest level
in order to ensure correct classification. This would not be
possible with a monolithic machine learning technique such
as a Multi-Layer Perceptron trained to do the whole task at
once.

This gating on different levels with the proposed domain
model will work whenever at least one input dimension
contains a constant-mean signal. The signal indicates which
subtree of the hierarchy should compute the output of the
whole ensemble. Such input dimensions would code the
context information of data samples which is constant for
a single subtree. The mean value and the noise level of
this signal will automatically be captured in the domain
parameters b and a, respectively.

TABLE I

RESULTS OF THE BENCHMARK TEST WITH THE CHAOTIC

MACKEY-GLASS EQUATION.

Method #hidden units RMSE

LALM with fusion 77 0.0017
LALM without fusion 96 0.0018

GMN [7] 7 0.0091
RBF-AFS [19] 21 0.0128

OLS [18] 132 0.0163

V. MACKEY-GLASS BENCHMARK EXPERIMENT

To compare our approach with state of the art Local
Linear Approximation algorithms an experiment described
in [7] with the chaotic Mackey-Glass differential equation
was repeated. The experiment stems originally from [17] and
defines the task to predict a value of the time series

x(t− 1) = (1− a)x(t) +
bx(t− τ)

1 + x10(t− τ)
, (6)

with the parameters a = 0.1, b = 0.2, τ = 17 and
x(0) = 1.2. The function to be approximated is defined as

x(t + 6) = f
(
x(t), x(t− 6), x(t− 12), x(t− 18)

)
.

The training and test set contains 1000 samples of f with
124 ≤ t ≤ 1123 and 1124 ≤ t ≤ 2213, respectively. Tab. I
shows the achieved results of four other methods3: the Grow-
ing Multi Expert [7], the Orthogonal Least Squares [18], the
Radial Basis Functions based on the Adaptive Fuzzy Sys-
tem [19] and two results with our ensemble method (called
Locally Arranged Linear Models, LALM). Our ensembles
had as individual models linear models which were trained
with a least squared method. During the learning phase their
performance is estimated by the MSE criterion described
in Sec. III-B. One of our results was achieved with, the other
without the domain fusion algorithm. We implemented our
algorithm in MatLab (R14) running on a Linux PC with a
3000 MHz CPU (1 GB RAM). The training of a ensemble
for this benchmark test took always less than 90 sec.

Our methods showed superiority w.r.t. the achieved
RMSE. Note, that the domain fusion algorithm reduces the
number of linear models by approx. 20% and the fused en-
semble even achieves slightly better performance. Observable
is that our solutions still need more linear models than the
local linear method of [7].

VI. CONCLUSION

We proposed an ensemble machine learning technique
to train and combine multiple individual models to solve
a classification or function approximation task. The new
method defines how a given training set is divided into
subsets each used to train one individual model with a
generic machine learning technique. The division into subsets
represents a division of the input space into local regions.
Such regions are called domains and modelled as a set of
hyper-ellipsoids. The learning method guarantees that the
training data in each domain is efficiently approximated or

3Besides our own, all results are quoted from [7].



classified by one individual model. Given a certain input, the
model whose domain contains the input pattern is selected
to compute the output of the whole ensemble.

The new method with its specific domain model and
learning algorithm is an extension of a previously proposed
Local Linear Approximation method to general meta ma-
chine learning technique. The system designer has only to
chose a MLT for the actual training of individual models
and a performance criterion which decides if such an indi-
vidual model is trained well enough. The described learning
algorithm then automatically determines how many models
will constitute the ensemble and which input samples are
handled by which individual model. The underlying idea is
that locality in the input space provides an useful constraint
to train diverse models and to combine them in an ensemble.
Thereby, locality essentially means that data samples are
similar to each other according to some distance measure (in
our case the Euclidean distance). The effect of the locality
constraint is that the individual models are trained in a
competitive manner against each other. The result is that the
ensemble is constituted of diverse and specialized models
because these are only trained with samples from their
sharply bounded domains. Specialization of single models is
also the result of the proposed weighted clustering method
as it emphasizes training samples which are hard to learn.
In contrast to known techniques, our domain model also
provides an automatic outlier detection which helps to decide
if data can or can not be handled with a trained ensemble.

We also transfered the concept of a multi-level hierarchical
framework into our ensemble method for locally arranged
models. By using the same domain model of an individual
model for a whole subtree of networks, we defined a generic
way to combine trained ensembles to more complex ones.
A system designer can thereby extend the competence of
an already trained ensemble by adding new levels and more
specialized models. He can even integrate different types of
machine learning techniques into the hierarchy. This should
help him to solve a complicated information processing task
by distributing different signal sources over a hierarchy of
gating networks to specialized models.
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