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Abstract— For function approximation in the context of
system control we present a new learning algorithm for a
network consisting of local linear models. The algorithm
finds a partition of the input space in disjunct regions
in which the target function can be “efficiently” approx-
imated by a single linear model: in regions where the
function has high curvature more models are positioned,
while in regions where the target function is almost linear
less models are trained. Due to the composition of linear
models the network has a clear interpretation which makes
it amenable for stability proofs when used as an adaptive
controller. With the proposed algorithm the network is
easy to train and tune. Their performance is demonstrated
on the well-known Mackey-Glass benchmark test as well
as with a robot control task.

I. INTRODUCTION

Correct system modelling is the key for successful
controlling. Modelling a robot system is a complex task
– especially if cameras are used for visual guidance –
since robotic manipulators are highly non-linear, electro-
mechanical systems. Machine learning techniques can
considerably help to realise a solution. Methods for
model-free function approximation, such as Multilayer
Perceptrons[1], Radial Basis Function networks[2] and
Self-organizing Maps[3], were successfully applied to
control tasks. However, these general learning methods
may cause problems during training (e.g. not converging
to the optimal solution) and they make global stability
proofs for the controller difficult.

As alternatives to such singular networks built to solve
the whole task at once approaches with ensembles [4],
[5], Mixture of Experts [6] and piecewise linear approxi-
mators [7], [8], [9] were suggested. Latter are especially
suitable for control tasks since sophisticated knowledge
from control theory (important for stability proofs) and
statistics (important for parameter estimation) about lin-
ear systems is applicable. The common idea behind
piecewise linear techniques is to approximate a possible
non-linear function by combining different linear models
which are only valid for different but maybe overlapping

regions of the input space. The mayor strategy is to
achieve good global by good local approximation. The
methods differ in aspects as: How is the region of validity
of a linear model – also called model’s domain – defined?
How is a region’s position and size in input space
determined? How are the outputs of the linear models
combined to the output of the whole network? Besides
summarizing state of the art techniques, the following
section will give and motivate new answers to these
questions.

II. THE NEW APPROACH

A. State of the Art Networks

Piecewise linear approximators can generally be for-
malized as:

ŷ(x) =
N∑

i=1

gi(x)
(
Cix + bi

)
, (1)

where ŷ denotes the estimated multi-dimensional output
of the network for the given multi-dimensional input x.
The N coefficient matrices Ci and the bias vectors bi

are the parameters of the linear models. The scalar
valued weighting factors gi(x) define the domains of the
models i ∈ {1, . . . , N}. Therefore, they are functions of
input x: Depending on the distance of x to the position
of the domain the weighting factors are larger or smaller
and hence, will weight the output of the different linear
models differently.

Given a set of n training samples T = {(xk,yk)} and
a set of defined domains the parameters of the linear
models can be trained. The goal is to minimize the
approximation errors for the training sample which are
located in the domain of one model. On the other hand,
training samples which belong to another domain could
have arbitrary bad approximation results. The parameters
are typically determined by means of linear regression
methods.

A common way (e.g. [7], [8] to define a model’s
domain is to place one center vector ci in the input space
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and to calculate the weighting factors according to some
basis function, e.g. Gaussian:

gi(x) = exp
(
− 1

2
(x− ci)TDi(x− ci)

)
. (2)

Furthermore the weighting factors are typically nor-
malized, so that a partition of unity of the input space is
realised, i.e. that:

∑
i gi(x) = 1 and ∀i : 0 ≤ gi(x) ≤ 1.

So, the idea is that each linear model has as its domain
a radial or elliptic receptive field centered in ci.

It is part of the proposed strategies that such domains
will overlap. In regions of the input space where this
happens, i.e. where different weighting factors gi are
more or less equal, the output of the network will be
an equally weighted, additive mixture of single linear
models. That this strategy really improves the approxi-
mation of the target function depends essentially on the
right choice of overlap between the domains. A good
choice would result in a smooth transition between the
different slopes of the linear models. The problem is that
with weighting factors of the form of Eq. (2) (e.g. [7]),
the overlap can only be controlled with the center ci

and the spread matrix Di parameters. But due to the
normalization, the domains will be distorted anyway. As
discussed in [10], the form of a radial basis function is
no longer uniform, its maximum can be shifted from the
center vector and the function value may not decrease
monotonically with increasing distance to the center.

B. New Network with Sharply Bounded Domains

To overcome such imponderabilities, we propose a
straightforward and effective way to define the domain
of a linear model as:

gi(x) =

{
1 : i = argj min d(x, cj)
0 : else

. (3)

So, the output ŷ of the network will be the output
of exactly one linear model. Which model is selected to
compute ŷ depends solely on the distance1 measure d of
the input x to the center vectors ci: The model with the
nearest center vector to x will estimate the real value of
the approximated function.

This scheme defines a sharp boundary between do-
mains. The outputs of linear models are not mixed. The
boundary of two models lays halfway between their two
center vectors. The input space is therefore divided into
disjunct regions of which each is associated to exactly
one linear model. This realises a partition of unity which
is easier to control than with normalization used in the
state of the art approaches.

1In the implemented models, we used the Euclidean distance.

Besides the parameters Ci and bi of the linear model
only the center vectors ci must be learned from a given
training set. In contrast to that, good spread matrices Di

must also be estimated from that data in [7] and [8].

C. State of the art Learning Algorithms

Given these networks, the essential problem of piece-
wise linear techniques remains to find the right set of
domains. Good approximation of the global function
can be achieved only with a good partition of the input
space in a set of regions where the target function can
effectively be approximated with a linear model. So, the
values for the parameters of the weighting factors gi must
be optimized. For the approaches of [7], [8], [9] these are
basically2 the center vectors ci and spread matrices Di.
As mentioned above, the parameters of the linear models
are determined by means of linear regression methods.
In [7] and [8] a weighted least square scheme was
applied (see [11] for a discussion of this method). This
is necessary since the domains of these methods define
no sharp boundary and hence, a definite assignment of
a training sample to one linear model is not possible.
So, when the regression equation is formed the training
samples are weighted by the factors gi. By this means
only training samples which belong most prominently to
the domain of a model are effecting its parameters.

Before the parameters of the weighting factors gi

can be trained the question must be answered: How
many linear models should the network contain? In this
aspect, all approaches follow the strategy to incremen-
tally increase the number of models if some criterion is
fulfilled. For example in [7], new models are included
to the network if for a given input xk no weighting
factor gi(xk) is larger than an user defined threshold3.
In this approach, linear models are also removed from
the network according to some similar criterion. The
methods differ in details where new models are inserted
(i.e. what initial value is used for the center vector of a
new model), but follow the same strategy to add models
where the approximation error is high.

While the linear model parameters can be trained in
a straightforward supervised manner there is no such
clear error criterion for the parameters of the weight-
ing factors. The methods differ considerably in their
approaches. A two-phase learning scheme is proposed
in [8]: the center vectors are changed in Hebbian adapta-
tion steps and by a gradient decent approach to minimize
the least squares error function J =

∑n
k=1(yk− ŷ(xk))2

2These methods have some additional parameters whose descrip-
tion would exceed the scope of this article.

3This comparison is made before the normalization of all gi.
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over the training set. In contrast to that, the authors
of [7] prefer to minimize a so-called locally weighted
error function which emphasizes that training samples
only effects the domain’s parameter they belong to.
As discussed in [6], [12] the latter suits the overall
strategy of mixture techniques better since it improves
local approximation by promoting competition between
different models. The danger of too strong competition
is that of overfitting: The locally best but globally worst
solution would have as many models as training samples
centered on the samples and having a very narrow spread
matrix.

D. Learning Algorithm for the new Network

As the new model with its sharp boundaries between
the model domains already introduces competition the
learning algorithm emphasized this as well. It is a
recursive scheme in which the training set is split into
subsets belonging to local regions. Such subsets are
assigned to new linear models. This splitting process is
repeated as long as the local approximation error is not
sufficient small and the regions contain enough training
samples. Thereby each model added to the network will
be trained, evaluated and – if necessary – optimized. A
model will be optimized by being replaced by a number
of new models which will occupy together the domain
of the former one.

In detail: The learning algorithm starts with one linear
model having the whole input space as its domain.
The model’s parameter Ci and bi are trained with a
least squares method using all training samples within
its domain. The squared approximation errors for each
training sample are computed. If their sum is larger than
a user specified threshold and the number of samples
used for training is sufficient for a splitting, new models
will be added to the network and replace the currently
optimized one. How the training set is split into subsets
is described below in more details. To each subset a
new model is assigned. For each of these new models
the same procedure of training, evaluating and possible
optimization will be performed.

A distinctive feature of the algorithm is how the
training set is split and where the center vectors are
placed. The training set of a model being optimized
is split with the k-means algorithm [13], [14, in Sec.
5.9.1] in which the single training samples are weighted
by the approximation error achieved by the model. The
output of the weighted k-means algorithm is used as the
center vectors for the new models replacing the former
one. This procedure ensures that new models are inserted
where approximation performance was bad. The normal

k-means algorithm would place the center vectors driven
only by the distribution of the samples in input space.
The weighted version instead positions the vectors in
clusters of training samples with high approximation
error.

Although it remains the choice of the user how many
models are generated in one splitting step we tested only
splits in two halves. Another parameter of the learning
algorithm is a positive scalar factor which is multiplied
with the approximation errors before the weighted k-
means algorithm is used. Tuning the factor means laying
emphasis on centering the new models on samples with
high errors or not. For noisy data the right choice of the
factor is crucial since outliers could gain to much effect.

The mechanism of splitting and centering models at
positions with high approximation error has the desired
effect that more linear models are trained where the
target function has high curvature. This is illustrated for
some one dimensional synthetical test data in Fig. 1.
Since the weighting factors define sharp boundaries be-
tween linear models also discontinuities can be handled.
As visible in the figure, it is not guaranteed that the
position of the discontinuity matches the boundary of
two linear models. But for different test data it was
always close by.

Fig. 1 also demonstrates that approximated functions
will have discontinuities at the domain boundaries. This
could be a problem for applications where the input
is continuously changed and resulting jumps of the
output can be dangerous. Other approaches are trying
to solve this problem with soft domain definitions of
the form of Eq. (2). Our algorithm will minimize this
effect by inserting more models. Note that our network
is computationally not less efficient just because it has
more linear models. In our case only one linear model
is evaluated while in the other approaches the outputs of
all models must be computed.

The parameter which specifies the minimal number
of training samples needed to perform a splitting is
important to inhibit overfitting. If the value is too small
the network will have too many linear models (and vice
versa). Both will result in a poor ability of the network
to generalize from the training set.

Overall, the algorithm has one discrete and two contin-
uous parameters (the method in [8] has mainly due to its
gradient decent scheme 13 parameters). These must be
optimized on the training set. An implementation showed
fast convergence (see III-A for numbers).

III. EXPERIMENTS

To show the effectiveness of the our network and its
learning algorithm two experiment are presented in this
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Fig. 1. Nonlinear function with discontinuity and its linear approxi-
mation. Dotted lines indicate boundaries between domains of models.
Note, more linear models are used where curvature of function is
high.

section. It describes one benchmark test and a real world
robot application performed in our laboratory.

A. Mackey-Glass Benchmark

To compare our approach with one of the state of the
art algorithm an experiment described in [8] with the
chaotic Mackey-Glass differential equation was repeated.
The experiment stems originally from [15] and defines
the task to predict a value of the time series

x(t− 1) = (1− a)x(t) +
bx(t− τ)

1 + x10(t− τ)
, (4)

with the parameters chosen to be: a = 0.1, b = 0.2,
τ = 17 and the initial condition as x(0) = 1.2. The
function to be approximated is defined as

x(t + 6) = f
(
x(t), x(t− 6), x(t− 12), x(t− 18)

)
. (5)

The network was trained on 1000 samples of f with
t ranging from t = 124 to t = 1123. It was tested on
an equal number of samples (between t = 1124 and t =
2213). Tab. I shows the achieved results of four different
approximation methods: the Growing Multi Expert [8],
the Orthogonal Least Squares [16], the Radial Basis
Functions based on the Adaptive Fuzzy System [17] and
our approach (beside the latter, all results are quoted
from [8]). We implemented our algorithm in MatLab
(R14) running on a Linux PC with a 3000 MHz CPU
(1 GB RAM). The generation of a network for this
benchmark test took always less than 30 sec..

Our methods showed superiority w.r.t. the achieved
RMSE. Observable is that our solution needs more linear
models than the other local linear method of [8]. One

TABLE I
RESULTS OF BENCHMARK ON THE CHAOTIC MACKEY-GLASS

DIFFERENTIAL EQUATION.

# of hidden nodes RMSE on test set
Our network 64 0.0029

GMN [8] 7 0.0091
RBF-AFS [17] 21 0.0128

OLS [16] 132 0.0163

can assume that this is due to the different domain
definitions. To approximate continuous functions our
approach will generally need more linear models than
methods with overlapping domains.

B. Robot application

The new network was used as a controller with the
task to position an arm robot w.r.t. image data. The visual
servoing setup was the following: A Sony DFW-X710
digital color camera with a lens of 4.2 mm focal length
was attached at the endeffector of a Stäubli RX90B arm
robot. The goal was to drive the robot in a plane w.r.t. an
object visible in the camera image laying ca. 45 cm
beneath. The current and the target position of the object
is known in image coordinates and must be transformed
into a robot command to reach a new position. The
servoing process is completed if the object is visible
at the target position in the image. In our approach we
specify robot commands in the world coordinate system
of the robot. So basically, a transformation between two
image coordinates and a robot command given in robot
coordinates must be computed. Formally, the function f
has to be found with:

∆R =

 ∆x(R)

∆y(R)

∆z(R)

 = f(x(I)
c , y(I)

c , x
(I)
t , y

(I)
t ), (6)

where x
(I)
c,t , y

(I)
c,t are the current and target image coordi-

nates and the three dimensional ∆R is the desired robot
command (∆x(R),∆y(R),∆z(R) are the robot coordi-
nates). In the implemented control scheme ∆R is added
to the current position of the robot in order to approach
the target position.

By using the new network to learn the function f
we omit the problem to model explicitely the relation
between the coordinate system of the camera and the
robot. It frees us from assumptions about the right
camera model (e.g. a pinhole camera) or effects of lens
distortion. It also reduces the effort to calibrate the built
model to the actual setup.

In order to learn the function f a set of training
samples were compiled by driving the robot stepwise
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to positions on a plane where the object was visible in
the camera image. At each step the position of the robot
and the position of the object in image coordinates were
measured. It was ensured that the object was presented
in all parts of the image. With this data a set of 330
training samples were generated. The informations of
two adjacent positions from the sample run were taken
to define x

(I)
c,t , y

(I)
c,t and ∆R: The image data of one was

taken as the current, the other as target position and
the difference between their robot positions was taken
as the desired output ∆R. Given this data, a network
was trained and optimized w.r.t. the parameters of the
learning algorithm according to the following equation:

f̂(x(I)
c , y(I)

c , x
(I)
t , y

(I)
t ) =

N∑
i=1

gi(x(I)
c , y(I)

c )
(
Ci∆I + bi

)
,

(7)
with ∆I =

(
x

(I)
c −x

(I)
t , y

(I)
c −y

(I)
t

)T
. This special usage

of Eq. (1) means that the weighting factors are using only
absolute image information while the linear models are
relating a distance in image space to a distance in robot
space. It is motivated by the fact that one can assume a
linear relation between moving in a plane and observing
the resulting displacement of an object in the image
plane. Due to the contortion between the two planes and
effects of lens distortions this assumption will only be
valid in local regions and depend on the absolute position
of the object in the image.

The performance of the generated network was eval-
uated by using it to drive the robot to a similar set
of positions as in the training run. The control scheme
achieved qualitatively good results. Covering distances
of about 50 pixel in one step the controller achieved
normally a misplacement of less than 2 pixels. With the
object recognition methods we used this is absolutely
sufficient since measured positions of an object in a static
test scenario vary to the same degree. Furthermore a
quantitative evaluation of the test run showed that the
root mean squared error between target position and
actually achieved position in robot space was RMSE =
1.06 mm (with standard deviation σ = 1.1 mm).

An advantage of the approach to learn and not to
model explicitely the transformation function f is that it
can be extended more easily to more complex servoing
tasks. We already started to drive the robot – not just
in a plane – but freely in 3D by using two cameras.
Therefore, only the input vector of f was extend by the
current and the target position of the second camera and
training positions in 3D were sampled differently.

IV. DISCUSSION

We proposed a new network and learning algorithm
for piecewise linear function approximation in the con-
text of system control. The development was driven
by two goals: Good global approximation should be
achieved by competition between local linear models
and the insertion of new local models into regions of
the input space where the error is high. On the other
hand, simplicity of the network and algorithm should
be achieved. This is important for interpretability of
the network (necessary for stability proofs needed for
controllers) and the costs to optimize the parameters of
the training algorithm.

Competition between models is reflected in the fact
that these are only trained with samples from their
sharply defined domains. Since a training set is – before
it will be clustered – weighted with the approximation
errors more linear models are placed where the target
function has high curvature. Good interpretability of the
network is achieved by defining the domains without
any overlap. As the algorithm has a comparably small
number of parameters the costs for training an effective
network are quite manageable.

In our future work we will tackle different topics: We
plan to optimize the definition of the domain and aspect
of the learning algorithm. Since the boundary between
two domains is the middle between their two center vec-
tors shifting one vector affects the other’s domain. This
is against the idea of distinctive local learning. We are
starting to test domain definitions which places vectors
at the boundary (similar to support vectors in SVMs).
The algorithm should also be extended to remove or
combine linear models when they do not improve global
approximation. This is desirable since a network with
too many models will tend to data overfitting.

Furthermore the plan is to transfer our batch learning
scheme to one with an online training of the network.
And, last but not least, we want to apply knowledge from
control theory to obtain a stability proof for the network
used as an adaptive controller.
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