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Abstract
In this paper we will show that the Clifford or geometric algebra is very well suited for
the representation and manipulation of geometric objects useful in computer vision and
kinematics and also that the computer implementations are straightforward. The power of
this approach will be shown by the analysis of the geometry and algebra and optimal solution
of the hand-eye calibration problem. The robustness of the algorithm is experimentally
compared with classical approaches.

Categories: Computer vision; robotics; Clifford algebra; geometric algebra; rotors; motors;
screws; hand-eye calibration.

1 Introduction

Geometric algebra is a coordinate-free approach to geometry based on the algebras of Grassmann
and Clifford. The algebra is defined on a space whose elements are called multivectors; a mul-
tivector is a linear combination of objects of different type, e.g. scalars and vectors. It has an
associative and non-commutative product called the geometric or Clifford product. The exis-
tence of such a product and the calculus associated with the geometric algebra give the system
tremendous power. For a more complete treatment see [5] and for other brief summary see [1].
Some preliminary applications of geometric algebra in the field of computer vision and neural
computing have already been given [1, 2], and here we would like to extend these applications
to the robotics field. Firstly rotors and motors and their properties are explained. The next
section models the 3-D motion of points, lines and planes useful for computer vision and robotics.
It follows the analysis of the hand-eye calibration in geometric algebra terms. Analysis of the
uniqueness of the solution and the estimation procedure of the motion is then discussed. Finally
the conclusions are given.

2 Geometric Algebra: an outline

The algebras of Clifford and Grassmann are well known to pure mathematicians, but were long
ago abandoned by physicists in favour of the vector algebra of Gibbs, which is indeed what is
most commonly used today in most areas of physics. The approach to Clifford algebra we adopt
here was pioneered in the 1960’s by David Hestenes [4] who has, since then, worked on developing
his version of Clifford algebra — which will be referred to as geometric algebra — into a unifying
language for mathematics and physics.

2.1 Basic Definitions

A particular geometric algebra G, ,, can be defined according the amount of its basis elements
which square to 1 for p, -1 for q and zero for r, where p+q+r=n. In short G, will denote the



geometric algebra of n-dimensions - this is a graded linear space. In this paper when r is zero
its notation will ignored. As well as vector addition and scalar multiplication we have a non-
commutative product which is associative and distributive over addition — this is the geometric
or Clifford product. A further distinguishing feature of the algebra is that any vector squares to
give a scalar. The geometric product of two vectors @ and b is written ab and can be expressed
as a sum of its symmetric and antisymmetric parts

ab=a-b+and, (1)
where the inner product a-b and the outer product aAb are defined by
1
ab= <ab> = §(ab—|—ba) (2)
anb = %(ab—ba). (3)

The inner product of two vectors is the standard scalar or dot product and produces a scalar.
The outer or wedge product of two vectors is a new quantity we call a bivector. We think of a
bivector as a directed area in the plane containing a@ and b, formed by sweeping a along b — see
Figure 1.a.

Thus, bAa will have the opposite orientation making the wedge product anticommutative as given
in equation 3. The outer product is immediately generalizable to higher dimensions — for example,
(aNb)Ac, a trivector, is interpreted as the oriented volume formed by sweeping the area aAb
along vector ¢. The outer product of k vectors is a k-vector or k-blade, and such a quantity is
said to have grade k, see Figure 1.b. A multivector (linear combination of objects of different
type) is homogeneous if it contains terms of only a single grade. The geometric algebra provides
a means of manipulating multivectors which allows us to keep track of different grade objects
simultaneously — much as one does with complex number operations.

In a space of 3 dimensions we can construct a trivector aAbAc, but no 4-vectors exist since there
is no possibility of sweeping the volume element aAbAc over a 4th dimension. The highest grade
element in a space is called the pseudoscalar. The unit pseudoscalar is denoted by 7 and is
crucial when discussing duality.

In a space of dimension n there are multivectors of grade 0 (scalars), grade 1 (vectors), grade 2
(bivectors), grade 3 (trivectors), etc... up to grade n. Any two such multivectors can be multiplied
using the geometric product. Consider two multivectors A, and By of grades r and s respectively.
The geometric product of A, and By can be written as

AB, = (AB), +(AB), ,+...+ (AB),_ (4)

where (M), is used to denote the t-grade part of multivector M, e.g. (ab) = (ab)o + (ab), =
a-b+aAb. In the following sections expressions of grade 0 will be written ignoring their subindex,

i.e. (ab)og = (ab) = a-b.

2.2 The Geometric Algebra of 3-D Space

In an n-dimensional space we can introduce an orthonormal basis of vectors {o;} ¢ = 1,...,n, such
that o;-0; = 6;;. This leads to a basis for the entire algebra:

L, Ao}, Aoinoi}y, {oiNojhor}, ..., o1AoIA. Aoy (5)

Note that we shall not use bold symbols for these basis vectors. Any multivector can be expressed
in terms of this basis.
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Figure 1: a) A bivector b) A trivector c¢) 3-D Basis .

The geometric algebra Gs o for the 3-D space has 2° = 8 elements given by:

\1/_/, {0'1,0'2,0'3}, {0'10'2,0'20'3,0'30'1}, {0'10'20'3} =1. (6)

scalar

vectors bivectors trivector

It can easily be verified that the trivector or pseudoscalar oj0,03 squares to —1 and commutes
with all multivectors in the 3-D space. We therefore give it the symbol ¢; noting that this is not
the uninterpreted commutative scalar imaginary j used in quantum mechanics and engineering.

2.2.1 Rotors

Multiplication of the three basis vectors o1, 03 and o3 by ¢ results in the three basis bivectors
0109 =103 0903 =107 0301 = 10,. These simple bivectors rotate vectors in their own plane by
90°, e.g. (0109)03 = 01, (0203)09 = —03 etc. Identifying the 2, g, k of the quaternion algebra with
101, —104, 103, we see that the famous Hamilton relations are recovered 2° = 3% = k* = ik = —1.
Since the 2,3,k are really bivectors it comes as no surprise that they represent 90° rotations in
orthogonal directions and provide a system well-suited for the representation of 3-D rotations, see
Figure 1.c.



In geometric algebra a rotor (short name for rotator), R, is an even-grade element of the algebra
which satisfies RR = 1. If A = {ag,a1,a9,a3} represents a quaternion, then the rotor which
performs the same rotation is simply given by

R = \Clﬁ)-/ + Gl(igl) — GQ(iUz) + Gg(igg) . (7)
scalar bivectors

The quaternion algebra is therefore seen to be a subset of the geometric algebra of 3-space.

Any rotation can be formed by a pair of reflections. It can easily be shown that the result of
reflecting a vector a in the plane perpendicular to a unit vector m is a_ — a) = —nan, where
a_ and a) respectively denote parts of a perpendicular and parallel to n. Thus, a reflection of
a in the plane perpendicular to n, followed by a reflection in the plane perpendicular to a unit
vector m results in a new vector —m(—nan)m = (mn)a(nm) = RaR. We show now using
the geometric product that the rotor R of equation 7 is a multivector consisting of a scalar and
a bivector parts, i.e. R =mn = m-n + mAn. These parts correspond to the scalar and vector
parts of an equivalent quaternion. Rotors combine in a straightforward manner, i.e. a rotation
R, followed by a rotation R, is equivalent to an overall rotation R where R = RyR;. The
transformation @ — RaR is a very general way of handling rotations; it works for multivectors
of any grade and in spaces of any dimension in contrast to quaternion calculus.

2.3 The complex and the dual numbers in geometric algebra

The complex, double and dual numbers and represented them as a composed number a = b + wc
using the algebraic operator w which in case of the complex numbers w? = —1, the double numbers
w? = 1 and the dual numbers w? = 0. In case of the dual numbers the term b is called the real
part and ¢ the dual part. In the famous paper Preliminary sketch of biquaternions [3] Clifford
introduced the motors or biquaternions for representing screw motion. Later on Study [9] used
the dual numbers to represent the relative position of two skew lines in space, i.e. 0 =0+ wd.
The real part indicates the difference of the line orientation angles and the dual part the distance
between both lines.

This paper uses dual numbers and only for comparison purposes the complex numbers are treated

in the next section in some detail.

2.3.1 Octonions

Octonions is an example of complex numbers we find in the geometric algebra G; 3o for the 4-space
with the basis

< w 34 1y Dk L (8)
> > > > >
~—— ——— ~—
scalar 4 yectors 6 bivectors 4 pseudovectors | pseudoscalar

where 47 = +1, 97 = —1 and ~47 for 1=1,2,3. The pseudoscalar is i = v;7,7374 with i = —1.
We can represent an octonion combining two rotors or quaternions the last expressed in terms of
bivectors, i.e.

O = R+ iR = (ao+ a17av1 — a2vay2 + a3vays) + i (bo + b1yvayr — bayayz + b37a7y3)- (9)

Note that the pseudoscalar ¢ which squares to -1 is used as operator now instead of w. It is no
need to resort to an algebraic operator like the w which has not a geometric interpretation. The



octonion algebra is the even subalgebra G 5, of the geometric algebra Gy 50 of the 4-space, with
the basis

Lo i, (10)
scalar 6 bivectors 1 pseudoscalar
where 1* = —1. Other way to see an octonions is as the result of the doubling procedure [6], which

tells that doubling a complex number you get a quaternion and doubling a quaternion you get an
octonion. An octonion as the geometric operator rotates geometric objects in 4-D.

2.3.2 Motors

Now we will discuss the motors expressed in terms of the dual sum of two rotors [3]. As we sad
the necessary condition for dual numbers is that 2 = 0, thus we require a geometric algebra for
the 4-D space where one of its basis vectors squares to zero. This is the Gp31 with 47 = 0, 47 =
—1, k = 1,2,3 and pseudoscalar ¢ = ~;727y37y4 which thus squares to zero 1 = 0. The 16 basis
elements differ with the basis of Gy 30 only in that 74 and ¢ square to zero. The expression for
the dual rotor or motor is similar to the equation 9 only now with the condition 72=0. The dual
rotors require the even subalgebra g87371 of the geometric algebra Gg 31, 1.€.

Loyt (11)
scalar 6 bhivectors 1 pseudoscalar

where i? = 0. Clifford introduced the biquaternions with the name motors which is the abbrevia-
tion of “moment and vector”[3]. The basic geometric interpretation of a motor M can be given
using two non-coplanar lines, which can be expressed in terms of bivector basis as follows

M — R—|—ZR/:X1X2—|—X3X4:(X1X2—|—X1/\X2)—|—(X3X4—|—X3/\X4)
= (ao + a1yay1 — azyay2 + asvay3) + (bo + b1yayr — bavay2 + b3yays) (12)

Note that lines expressed in terms of bivectors can be added. So we can see a motor also as
bivector. If the lines are not coplanar gives again a bivector or motor, whereas if the lines are
coplanar the resultant line can be seen as a degenerated motor.

A motor is different than an octonion, it represents a general displacement or rigid motion and it
is exact equivalent to an screw [3]. It will be more convenient if the translation is expressed as a
sort of a rotor or translator T, i.e.

t t
M =R+ R =R+i;R=(1+i5)R=TR. (13)

The translator can be seen simply as the representation of a rotation plane displaced from the
reference origin by ¢ and with the same orientation of the vector . The vector ¢ can be expressed
in terms of the rotors using

t .
R'R = SRR (14)

therefore

t=2R'R (15)
where the multiplication is a geometric product.
The absolute value of a motor M is computed as follows
. . AN t t t
MM:TRRT:(1—|—i§)RR(1—i§):I+i§—i§:I, (16)

where I is the identity. The combination of two rigid motions can be expressed using two motors.
The resultant motor describes the overall displacement, namely

M.=M,M,=(R,+:R))R,+:R,))= R.R,+i{(R,R, + RR,)=R.+ iR, (17)

Note that rotations combines multiplicatively and in the dual part the translations additively.



2.4 Representation of the point, line and plane using dual numbers

This section introduces the representation of points, lines and planes in the framework of the sub
algebra g87371 of motors. A point in the Gz, or 4-D space is

X = Xiy1 + Xoyo + Xays + Xyya (18)

if we want to express as a dual number using only bivectors basis we apply the geometric product
with the projective split [7] 74 and divide by the four coordinate coeflicient

T4 Xy Xe Xs
Ax - a2t = —
X, + X, Va1 + X, YaY2 + X, Y43
= 14i(@1727s + 22737 + T37172)
x, = |+ (19)

The @ vector expressed in terms of bivectors corresponds to the 3-D point expression. A line can
be seen as a degenerated motor, setting ag and by to zero in the equation 12 we get straightforward
the dual line equation in terms of bivector basis, namely

L= (LM + L%y 4 LP%53) + (L%%9 + L s + L)
= (LM 4 L%y + LP%73) + (L% + Lz + L %) (20)

Note that this is equivalent to the line expression using Pliicker coordinates. The real part can
be seen as the line direction and the dual part as the moment which is nothing else as the outer
product between n and any vector p touching the line, i.e.

li=n+mAp =n+im. (21)

This line representation using dual numbers is easier to understand and to manipulate algebraically
than the one in terms of Plucker coordinates.

In 4-D, the dual geometric object of a point is a plane which can be represented in terms of the
dual of the vector basis, i.e. the trivector basis as follows

® = X{vamyz + Xovaveys + Xovaysm + Ximzrs, (22)

now if we apply the geometric product with 4 to the left and divide by X4

! ! ! !

T = S + e+ i + e
X4 X44412 X44423 X44431 X44321
X/ X! X! X/

_ 2 3 i 3
= X4’71’72 + X4’72’Y3—|- X4’7371 + X4’74’7372’71

= T+ ayreys + 2ysm +id
p, = x' +id (23)

Note the dual part is a constant and the real part a vector, the opposite as in the case of the
expression for the point.

Note that the use of the projective split v4 helps to map geometric objects of 4-D space to the
3-D subspace [7]. Vectors, bivectors and trivectors in 4-D will represent points, lines and planes
in 3-D. As we choose 74 as a selected direction in 4-D, we define a mapping which associates the
bivectors v47;, ¢ = 1,2, 3, in 4-D with the vectors o;, : = 1,2,3, in 3-D;
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01 = Y41 O3 = Y472 03 = Y472 (24)

That is why we can say that a 3-D point is

X X
T = 1101 + 2202 + 2303 = Yi%’h + Yi%ﬂz + Yi%ﬂ:& (25)
and a 3-D line
l=lioy+ Loy + ls05 = (L% vm + L%v472 + L%473) (26)

Note that after the mapping the only information that remains of the 4-D line for the line in 3-D
is its orientation.

The dual expressions for the point, line and plane are now ready for the modelling of their motion
using motors. We will show that this kind of modelling is very useful when we deal with real
problems like the hand-eye calibration problem.

3 Modelling the 3-D Motion of Points, Lines and Planes
using dual numbers

The reason why we are interested to model 3-D motion using motors as opposite to the rotor based
modelling is that with the former approach we can compute in case of the hand-eye problem the
rotation and translation of the unknown rigid motion simultaneously. In case of the rotor ap-
proach we are unfortunately compelled to compute the translation decouple of rotation increasing
therefore the inaccuracy. This will be shown in detail in the next sections. In this section we
will present the 3-D motion modelling using dual numbers but also using vectors and rotors for
comparison purposes.

The 3-D motion of a point  in G3 o has the equation

x' = ReR +1t. (27)

In case of g87371 we use the point representation of equation (19)

M(1+iz)M = M(1)M +iMzM
= 1+4i(RaR +1t) (28)

where M = R—iR'. In Gs0 a line can be described in terms of any couple of points lying on the
line, i.e. @ = 0p, + p,. The motion equation of the line is then the same as for the point equation
equation (28). In G4, we expressed the line as equation equation (21) and proceed as before

. ~ .t . ~ €
M(lb + zmb)M = (1 + ZE)R(lb + zmb)R(l — 15)

t . . .t
= (L+ig)(RLR+iRmR —iRI,R7)
l,+im, = RLR+i(RLR +R1L,R+ RmyR) (29)

where M = R+ iR'. Tor the plane in Gz o we use a multivector representation of the formula of
Hesse, i.e. H = d + n. Note that this multivector consists of a scalar and a vector. Any point
lying on this plane fulfills &-n — d=0. Using this we can now write the motion of the plane

H' = (RzR +t)-(RnR) + (RnR). (30)

7



Since (RzR)-(RnR) = x-n, this becomes H' = -n + RnR + t-(RnR) which can be finally
written as

H' = RHR+ < RHRt > . (31)

The motion of a plane in G§ 5, can be seen as the motion of the dual of the point, thus using the
expression equation (23) the motion equation of the plane is

N -t t N N .
M(n+idM = RnR-+ i(—RnR§ + §RnR) +id = RnR +i(d — Rnht)
— RnR+i(d— < RnRt >). (32)

4 The Hand-Eye Problem

The well known hand-eye equation firstly formulated by Shiu and Ahmad [8] and Tsai and Lenz
[10] reads

AX = XB (33)

where A = AjA;' and B = B B;"' express the elimination of the transformation hand-base to
world. From the expression equation (33) the following matrix and a vector equations can be
derived RARx = RxRp and (R4 —I)EX = RXEB —1_::4. Most of the approaches estimate first the
rotation matrix decoupled from the translation [10, 13]. The problem requires at least two motions
with rotations having not parallel axes [10]. Horaud and Dornaika [11] showed the instability of
the computation of the A; matrices given the projective matrices M; = CA; = (CRAiCEAi). Let
us assume that the matrix of the intrinsic parameters C remains constant during the motions
and that one extrinsic calibration As is known. Introducing N; = CRy, and n; = CEAi and
replacing X=A,Y, we get now as the hand-eye unknown Y. Thus the equation equation (33)
can be reformulated as A;'A;Y = YB. Now if A;'A; is written as a function of the projection
parameters it is possible to get an expression fully independent of the intrinsic parameters C, i.e.

_ N;'N; Ny'(a; —n R t
A21A1:(0T2 1 N 2>):(0T 1). (34)

Taking into consideration the selected matrices and relations, this result allows anyway to consider
the formulation of the hand-eye problem again with the standard equation equation (33) which
can be solved with all the known methods and the one presented in this paper.

4.1 Solving AX=XB using motors

The equation system equation (33) can be expressed in terms of motors as
MiMx=MxMp (35)

where M4 = A+iA'", Mg = B+iB and Mx = R+ iR'. According the congruence theorem
of Chen [12] in this kind of problem the rotation and pitch of M 4 and M g are always equal
through out all the hand movements. Thus it is redundant the consideration of this information.
It suffices to regard the rotation axis of the involved motors, i.e. the previous equation is reduced
as the motion of the axis line of the hand towards the axis line of the camera. For that we can
use the equation equation (29) for the computation of the real and dual components of 14, i.e.

l,=a+iad = RbR+i(RbR + RbVR + RbR). (36)

8



After some simple manipulations according the relation RR'+R R =0 we get the following matrix

a—b (@ + l_;]x 031 0343 ( R ) — 0 (37)
=/ —/ — —. =
a—-b [@+b]x @a—b [d+Db], R

vector equation

where the matrix - we will call § - is a 6 X 8 matrix and the vector of unknowns (RT,R’T) is
&-dimensional. Recall that we have two constraints on the unknowns so that the result is a unit
dual rotor

<RR >=1 and < RR' >=0. (38)

We could think that six equations plus two constraints would suffice, however, the vectors @ and b
are unit vectors and the vectors @ and b are perpendicular to @ and b so that two equations are
redundant. This is nothing new, since it is well known that at least two lines are necessary so that
3D motion can be estimated from their correspondences. Thus, we need at least two motions of
the hand-eye system in order to get two lines from the corresponding screws. Chen [12] recognized
also this fact and analyzed the uniqueness of the problem. He geometrically proved that even in
the case of two parallel rotation axis we can compute all parameters up to the pitch. Suppose
now that n > 2 motions are given. We construct the 6n x 8 matrix

T— (s’ st ... s') (39)

which in the noise-free case has rank 6. Since in the noise-free case the equations arise from
natural constraints the null-space contains at least the solution (R, R'). It is trivial to see that
an additional orthogonal solution is (041, R). Hence, the matrix is maximally of rank 6. If all
axes b are mutually parallel then the rank of the matrix is 5.

We compute the Singular Value Decomposition (SVD) T'= UXV T where X is a diagonal matrix
with the singular values, the columns of U are the left singular vectors, and the columns of V
are the right singular vectors. If the rank is 6 than the last two right singular vectors ¥ and g -
corresponding to the two vanishing singular values - span the nullspace of T'. We write them as
composed of two 4 x 1 vectors o7’ = (ﬁf, 17{) and ¥’ = (ﬁg, 175) A vector (RT, R™) satisfying
T(RY, RT)T = 0 must be a linear combination of ¥; and ¥s, hence

R\ | (i i
(7)o (5 ) (%)

The two degrees of freedom are fixed by the constraints (38) which imply two quadratic equations

in Ay and Ag:

Since Ay and A; never both vanish, assume w.l.o.g. that ﬁip{fl # 0 so that Ay # 0. Setting
s = A/ Ag we first solve (41) obtaining two solutions for s. Inserting A; = sAy in (40) yields

N($2TTT, + (@70, + @LT) + a@L ) = 1 (42)

which has two solutions of opposite sign. The sign variation is due to the sign invariance of the
solution: Both (RY, R") and (—R", — R™") satisfy both the motion equations and the constraints.
From the other two solutions it turns out that the second solution for s causes always the vanishing
of the factor in the left hand side of (42). It corresponds to the solution (0441, R) which does not
satisfy the first constraint. The computation algorithm consists of the following steps:



1. Given n motor motions (b;,b.) and corresponding camera motions (a;,a’) check if the scalar

parts are equal. Then extract the line directions and moments of the screw axes and construct
the matrix T in (39).

2. Compute the SVD of T and check if only two singular values are almost equal to zero (due to
noise we apply a threshold). Take the corresponding right singular vectors ¥ and ¥s.

3. Compute the coefficients of (41) and solve it finding two solutions for s.

4. For these two values of s compute (s2@; 0y + s(i; U5 + @. 1) + @, U,) and choose the largest
of them to compute Ay and then A;.

5.The result is A\ U7 + A\, Us.

5 Experiments

We present here results on simulations performed with our algorithm as well as with an existing
two-step algorithm similar to [13]. The latter one estimates the quaternion rotation ¢ from the
equation aq = ¢b, then computes the rotation matrix Ry and solves for the translation tx from
the corresponding vector equation (see section 6). The simulation procedure runs as follows: we
establish n hand motions (Rb,a,), we add Gaussian noise of relative standard deviation of 1%
corresponding to the angle readings. We assume a hand-eye set up and compute the camera
motions (R, f;) to which we add also Gaussian noise of varying standard deviation. The noise
is added as absolute value to the rotation axis direction and as relative value to the angle and
the translation. For every noise setting the algorithm runs 1000 times and outputs the estimated

rotation quaternion ¢ and the estimated translation & between gripper and camera. To qualify
the results we take the RMS of the absolute errors in the rotation unit rotor ||R — R|| and the

RMS of the relative errors in the translation || — £]|/||£]]. In the first experiment we tested a
standard configuration of 20 hand motions with totally different rotation axes and large angles
and a translation of 10-20mm. In Fig. 2 we compare our algorithm - marked as DUAL - with
the two step algorithm - marked as SEPARATE. The superiority is shown especially in rotation
where in our algorithm also the information from the hand and camera translations is used. In

Error in rotation Rel. error in translation

0.014 T T T T 0.050 T T T T
0.012 F DUAL &= ] 0.045 DU .
SEPARA +— | 0.040 F SEPA, E 4+
0.010 | 4 0.035} 4
0.008 - 4 0.030 4
0.025 | E
0.006 1 0.020}F ]
0.004 4 0.015| R
0.010 E
0.002 | 1 0.005 F ]

0.000 1 1 0.000 1 1 1

0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10

Rel. noise std. dev. in measurements Rel. noise std. dev. in measurements

Figure 2: Behavior of the here proposed algorithm (DUAL) and of a two-step algorithm (SEPA-
RATE) in variation of noise. On the left is shown the RMS rotation error and on the right the
RMS relative translation error.

the second experiment we assumed no translation in the hand motions. The behavior of both
algorithms is about the same (Fig. 3). This was expected because in absence of translations the
dual parts of the measurements (a’,b’) become zero. Then the left lower block of the matrix
in (37) vanishes causing the separate computation of R and R’. In a third experiment we kept
the noise level at 5% and we varied the number of motions from 2 to 20. We observed that the
behavior is about the same for two motions about our algorithms is superior in multiple motions.
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Error in rotation Rel. error in translation
0.006 : 0.005 :

0.005 L DUAIL &1 0.005 DUA
: SEPARA —0—% 0.004 SEPAR +—
0.004 r I 0.004
0.003 | B
0.003 |- - 0.003 u
0.002 | B
0.002 L T 0.002 F T
0.001 F | 0.001 | -
0.001 -
0.000 1 0.000 1
0.00 0.02 0.04 0.00 0.02 0.04
Rel. noise std. dev. in measurements Rel. noise std. dev. in measurements

Figure 3: Both algorithms have the same performance in absence of translation.

6 Conclusion

This paper has presented the geometric algebra system for computations in computer vision and
robotics. The rigid motions of the point, line and plane in 3-D and 4-D are elegantly expressed
using rotors, motors and concepts of duality. It is shown that the system can operate simultane-
ously in different algebras transferring parameters for dealing with different needs like duality in
geometric or in operational sense .

The invariance of the angle and the pitch helps to reduce the complexity of the hand-eye prob-
lem to a problem solvable using algebra of lines. The resultant parameterization enabled us to
establish a linear homogeneous systems for resolving the dual rotor parameters. The computation
of the nullspace with SVD and the consideration of the constraints for the dual rotors to be unit
yields a simple algorithm avoiding non-linear steps. The algebraic structure of the linear system
helps to understand much better the performance of the algorithm.
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