
Hand-Eye Calibrationin terms of motion of linesusing Geometric AlgebraE. Bayro-Corrochano, K. Daniilidis, G. SommerComputer Science Institute, Christian Albrechts University,Preusserstrasse 1-9, 24105, Kiel, Germany.email: edb,kd,gs@informatik.uni-kiel.d400.deAbstractIn this paper we will show that the Cli�ord or geometric algebra is very well suited forthe representation and manipulation of geometric objects useful in computer vision andkinematics and also that the computer implementations are straightforward. The power ofthis approach will be shown by the analysis of the geometry and algebra and optimal solutionof the hand-eye calibration problem. The robustness of the algorithm is experimentallycompared with classical approaches.Categories: Computer vision; robotics; Cli�ord algebra; geometric algebra; rotors; motors;screws; hand-eye calibration.1 IntroductionGeometric algebra is a coordinate-free approach to geometry based on the algebras of Grassmannand Cli�ord. The algebra is de�ned on a space whose elements are called multivectors; a mul-tivector is a linear combination of objects of di�erent type, e.g. scalars and vectors. It has anassociative and non-commutative product called the geometric or Cli�ord product. The exis-tence of such a product and the calculus associated with the geometric algebra give the systemtremendous power. For a more complete treatment see [5] and for other brief summary see [1].Some preliminary applications of geometric algebra in the �eld of computer vision and neuralcomputing have already been given [1, 2], and here we would like to extend these applicationsto the robotics �eld. Firstly rotors and motors and their properties are explained. The nextsection models the 3-D motion of points, lines and planes useful for computer vision and robotics.It follows the analysis of the hand-eye calibration in geometric algebra terms. Analysis of theuniqueness of the solution and the estimation procedure of the motion is then discussed. Finallythe conclusions are given.2 Geometric Algebra: an outlineThe algebras of Cli�ord and Grassmann are well known to pure mathematicians, but were longago abandoned by physicists in favour of the vector algebra of Gibbs, which is indeed what ismost commonly used today in most areas of physics. The approach to Cli�ord algebra we adopthere was pioneered in the 1960's by David Hestenes [4] who has, since then, worked on developinghis version of Cli�ord algebra { which will be referred to as geometric algebra { into a unifyinglanguage for mathematics and physics.2.1 Basic De�nitionsA particular geometric algebra Gp;q;r can be de�ned according the amount of its basis elementswhich square to 1 for p, -1 for q and zero for r, where p+q+r=n. In short Gn will denote the1



geometric algebra of n-dimensions - this is a graded linear space. In this paper when r is zeroits notation will ignored. As well as vector addition and scalar multiplication we have a non-commutative product which is associative and distributive over addition { this is the geometricor Cli�ord product. A further distinguishing feature of the algebra is that any vector squares togive a scalar. The geometric product of two vectors a and b is written ab and can be expressedas a sum of its symmetric and antisymmetric partsab = a�b+ a^b; (1)where the inner product a�b and the outer product a^b are de�ned bya�b = < ab > = 12(ab+ ba) (2)a^b = 12(ab� ba): (3)The inner product of two vectors is the standard scalar or dot product and produces a scalar.The outer or wedge product of two vectors is a new quantity we call a bivector. We think of abivector as a directed area in the plane containing a and b, formed by sweeping a along b { seeFigure 1.a.Thus, b^a will have the opposite orientation making the wedge product anticommutative as givenin equation 3. The outer product is immediately generalizable to higher dimensions { for example,(a^b)^c, a trivector, is interpreted as the oriented volume formed by sweeping the area a^balong vector c. The outer product of k vectors is a k-vector or k-blade, and such a quantity issaid to have grade k, see Figure 1.b. A multivector (linear combination of objects of di�erenttype) is homogeneous if it contains terms of only a single grade. The geometric algebra providesa means of manipulating multivectors which allows us to keep track of di�erent grade objectssimultaneously { much as one does with complex number operations.In a space of 3 dimensions we can construct a trivector a^b^c, but no 4-vectors exist since thereis no possibility of sweeping the volume element a^b^c over a 4th dimension. The highest gradeelement in a space is called the pseudoscalar. The unit pseudoscalar is denoted by i and iscrucial when discussing duality.In a space of dimension n there are multivectors of grade 0 (scalars), grade 1 (vectors), grade 2(bivectors), grade 3 (trivectors), etc... up to grade n. Any two such multivectors can be multipliedusing the geometric product. Consider two multivectorsAr and Bs of grades r and s respectively.The geometric product of Ar and Bs can be written asArBs = hABir+s + hABir+s�2 + : : :+ hABijr�sj (4)where hMit is used to denote the t-grade part of multivector M, e.g. habi = habi0 + habi2 =a�b+a^b. In the following sections expressions of grade 0 will be written ignoring their subindex,i.e. habi0 = habi = a � b.2.2 The Geometric Algebra of 3-D SpaceIn an n-dimensional space we can introduce an orthonormal basis of vectors f�ig i = 1; :::; n, suchthat �i��j = �ij. This leads to a basis for the entire algebra:1; f�ig; f�i^�jg; f�i^�j^�kg; : : : ; �1^�2^: : :^�n: (5)Note that we shall not use bold symbols for these basis vectors. Any multivector can be expressedin terms of this basis. 2



Figure 1: a) A bivector b) A trivector c) 3-D Basis .The geometric algebra G3;0 for the 3-D space has 23 = 8 elements given by:1|{z}scalar; f�1; �2; �3g| {z }vectors ; f�1�2; �2�3; �3�1g| {z }bivectors ; f�1�2�3g � i| {z }trivector : (6)It can easily be veri�ed that the trivector or pseudoscalar �1�2�3 squares to �1 and commuteswith all multivectors in the 3-D space. We therefore give it the symbol i; noting that this is notthe uninterpreted commutative scalar imaginary j used in quantum mechanics and engineering.2.2.1 RotorsMultiplication of the three basis vectors �1, �2 and �3 by i results in the three basis bivectors�1�2 = i�3 �2�3 = i�1 �3�1 = i�2. These simple bivectors rotate vectors in their own plane by90�, e.g. (�1�2)�2 = �1, (�2�3)�2 = ��3 etc. Identifying the i, j, k of the quaternion algebra withi�1,�i�2, i�3, we see that the famous Hamilton relations are recovered i2 = j2 = k2 = ijk = �1.Since the i; j;k are really bivectors it comes as no surprise that they represent 90� rotations inorthogonal directions and provide a system well-suited for the representation of 3-D rotations, seeFigure 1.c. 3



In geometric algebra a rotor (short name for rotator), R, is an even-grade element of the algebrawhich satis�es R ~R = 1. If A = fa0; a1; a2; a3g represents a quaternion, then the rotor whichperforms the same rotation is simply given byR = a0|{z}scalar+ a1(i�1)� a2(i�2) + a3(i�3)| {z }bivectors : (7)The quaternion algebra is therefore seen to be a subset of the geometric algebra of 3-space.Any rotation can be formed by a pair of reections. It can easily be shown that the result ofreecting a vector a in the plane perpendicular to a unit vector n is a? � ak = �nan, wherea? and ak respectively denote parts of a perpendicular and parallel to n. Thus, a reection ofa in the plane perpendicular to n, followed by a reection in the plane perpendicular to a unitvector m results in a new vector �m(�nan)m = (mn)a(nm) = Ra ~R. We show now usingthe geometric product that the rotor R of equation 7 is a multivector consisting of a scalar anda bivector parts, i.e. R =mn =m�n+m^n. These parts correspond to the scalar and vectorparts of an equivalent quaternion. Rotors combine in a straightforward manner, i.e. a rotationR1 followed by a rotation R2 is equivalent to an overall rotation R where R = R2R1. Thetransformation a 7! Ra ~R is a very general way of handling rotations; it works for multivectorsof any grade and in spaces of any dimension in contrast to quaternion calculus.2.3 The complex and the dual numbers in geometric algebraThe complex, double and dual numbers and represented them as a composed number a = b+!cusing the algebraic operator ! which in case of the complex numbers !2 = �1, the double numbers!2 = 1 and the dual numbers !2 = 0. In case of the dual numbers the term b is called the realpart and c the dual part. In the famous paper Preliminary sketch of biquaternions [3] Cli�ordintroduced the motors or biquaternions for representing screw motion. Later on Study [9] usedthe dual numbers to represent the relative position of two skew lines in space, i.e. �̂ = � + !d.The real part indicates the di�erence of the line orientation angles and the dual part the distancebetween both lines.This paper uses dual numbers and only for comparison purposes the complex numbers are treatedin the next section in some detail.2.3.1 OctonionsOctonions is an example of complex numbers we �nd in the geometric algebra G1;3;0 for the 4-spacewith the basis 1|{z}scalar ; k|{z}4 vectors ; 4l; i4l| {z }6 bivectors ; ik|{z}4 pseudovectors; i|{z}1 pseudoscalar (8)where 24 = +1; 2l = �1 and 4l for l=1,2,3. The pseudoscalar is i = 1234 with i2 = �1.We can represent an octonion combining two rotors or quaternions the last expressed in terms ofbivectors, i.e.O = R+ iR0 = (a0 + a141 � a242 + a343) + i(b0 + b141 � b242 + b343): (9)Note that the pseudoscalar i which squares to -1 is used as operator now instead of !. It is noneed to resort to an algebraic operator like the ! which has not a geometric interpretation. The4



octonion algebra is the even subalgebra G01;3;0 of the geometric algebra G1;3;0 of the 4-space, withthe basis 1|{z}scalar ; 4l; i4l| {z }6 bivectors ; i|{z}1 pseudoscalar (10)where i2 = �1. Other way to see an octonions is as the result of the doubling procedure [6], whichtells that doubling a complex number you get a quaternion and doubling a quaternion you get anoctonion. An octonion as the geometric operator rotates geometric objects in 4-D.2.3.2 MotorsNow we will discuss the motors expressed in terms of the dual sum of two rotors [3]. As we sadthe necessary condition for dual numbers is that i2 = 0, thus we require a geometric algebra forthe 4-D space where one of its basis vectors squares to zero. This is the G0;3;1 with 24 = 0; 2k =�1; k = 1; 2; 3 and pseudoscalar i = 1234 which thus squares to zero i2 = 0. The 16 basiselements di�er with the basis of G1;3;0 only in that 4 and i square to zero. The expression forthe dual rotor or motor is similar to the equation 9 only now with the condition i2=0. The dualrotors require the even subalgebra G00;3;1 of the geometric algebra G0;3;1, i.e.1|{z}scalar ; 4l; i4l| {z }6 bivectors ; i|{z}1 pseudoscalar (11)where i2 = 0. Cli�ord introduced the biquaternions with the name motors which is the abbrevia-tion of \moment and vector"[3]. The basic geometric interpretation of a motor M can be givenusing two non-coplanar lines, which can be expressed in terms of bivector basis as followsM = R+ iR0 =X1X2 +X3X4 = (X1�X2 +X1^X2) + (X3 �X4 +X3^X4)= (a0 + a141 � a242 + a343) + i(b0 + b141 � b242 + b343) (12)Note that lines expressed in terms of bivectors can be added. So we can see a motor also asbivector. If the lines are not coplanar gives again a bivector or motor, whereas if the lines arecoplanar the resultant line can be seen as a degenerated motor.A motor is di�erent than an octonion, it represents a general displacement or rigid motion and itis exact equivalent to an screw [3]. It will be more convenient if the translation is expressed as asort of a rotor or translator T , i.e.M = R+ iR0 = R+ i t2R = (1 + i t2)R = TR: (13)The translator can be seen simply as the representation of a rotation plane displaced from thereference origin by t and with the same orientation of the vector t. The vector t can be expressedin terms of the rotors using R0 ~R = t2R ~R (14)therefore t = 2R0 ~R (15)where the multiplication is a geometric product.The absolute value of a motor M is computed as followsM ~M = TR ~R ~T = (1 + i t2)R ~R(1� i t2) = I+ i t2 � i t2 = I; (16)where I is the identity. The combination of two rigid motions can be expressed using two motors.The resultant motor describes the overall displacement, namelyMc = MaMb = (Ra + iR0a)(Rb + iR0b) = RaRb + i(RaR0b +R0aRb) = Rc + iR0c (17)Note that rotations combines multiplicatively and in the dual part the translations additively.5



2.4 Representation of the point, line and plane using dual numbersThis section introduces the representation of points, lines and planes in the framework of the subalgebra G00;3;1 of motors. A point in the G0;3;1 or 4-D space isX = X11 +X22 +X33 +X44 (18)if we want to express as a dual number using only bivectors basis we apply the geometric productwith the projective split [7] 4 and divide by the four coordinate coe�cient4X4X = 1 + X1X441 + X2X4 42 + X3X443= 1 + i(x123 + x231 + x312)xd = 1 + ix: (19)The x vector expressed in terms of bivectors corresponds to the 3-D point expression. A line canbe seen as a degenerated motor, setting a0 and b0 to zero in the equation 12 we get straightforwardthe dual line equation in terms of bivector basis, namelyld = (L4141 + L4242 + L4343) + (L2323 + L3131 + L1212)= (L4141 + L4242 + L4343) + i(L2341 + L3142 + L2143) (20)Note that this is equivalent to the line expression using Pl�ucker coordinates. The real part canbe seen as the line direction and the dual part as the moment which is nothing else as the outerproduct between n and any vector p touching the line, i.e.ld = n+ in^p = n+ im: (21)This line representation using dual numbers is easier to understand and to manipulate algebraicallythan the one in terms of Pl�ucker coordinates.In 4-D, the dual geometric object of a point is a plane which can be represented in terms of thedual of the vector basis, i.e. the trivector basis as follows� = X 01412 +X 02423 +X 03431 +X 04123; (22)now if we apply the geometric product with 4 to the left and divide by X44X4� = X 01X44412 + X 02X44423 + X 03X4 4431 + X 04X44321= X 01X412 + X 02X423 + X 03X431 + X 04X44321= x0112 + x0223 + x0331 + idpd = x0 + id (23)Note the dual part is a constant and the real part a vector, the opposite as in the case of theexpression for the point.Note that the use of the projective split 4 helps to map geometric objects of 4-D space to the3-D subspace [7]. Vectors, bivectors and trivectors in 4-D will represent points, lines and planesin 3-D. As we choose 4 as a selected direction in 4-D, we de�ne a mapping which associates thebivectors 4i, i = 1; 2; 3, in 4-D with the vectors �i, i = 1; 2; 3, in 3-D;6



�1 � 41 �2 � 42 �3 � 42: (24)That is why we can say that a 3-D point isx = x1�1 + x2�2 + x3�3 � X1X441 + X2X442 + X3X4 43 (25)and a 3-D line l = l1�1 + l2�2 + l3�3 � (L4141 + L4242 + L4343) (26)Note that after the mapping the only information that remains of the 4-D line for the line in 3-Dis its orientation.The dual expressions for the point, line and plane are now ready for the modelling of their motionusing motors. We will show that this kind of modelling is very useful when we deal with realproblems like the hand-eye calibration problem.3 Modelling the 3-D Motion of Points, Lines and Planesusing dual numbersThe reason why we are interested to model 3-D motion using motors as opposite to the rotor basedmodelling is that with the former approach we can compute in case of the hand-eye problem therotation and translation of the unknown rigid motion simultaneously. In case of the rotor ap-proach we are unfortunately compelled to compute the translation decouple of rotation increasingtherefore the inaccuracy. This will be shown in detail in the next sections. In this section wewill present the 3-D motion modelling using dual numbers but also using vectors and rotors forcomparison purposes.The 3-D motion of a point x in G3;0 has the equationx0 = Rx ~R0 + t: (27)In case of G00;3;1 we use the point representation of equation (19)M(1 + ix) ~M = M (1) ~M + iMx ~M= 1 + i(Rx ~R0 + t) (28)where ~M = ~R� i ~R0. In G3;0 a line can be described in terms of any couple of points lying on theline, i.e. x = �p1+p2. The motion equation of the line is then the same as for the point equationequation (28). In G00;3;1 we expressed the line as equation equation (21) and proceed as beforeM(lb + imb) ~M = (1 + i t2)R(lb + imb) ~R(1� i t2)= (1 + i t2)(Rlb ~R + iRmb ~R� iRlb ~Rt2)la + ima = Rlb ~R + i(Rlb ~R0 +R0lb ~R+Rmb ~R) (29)where ~M = ~R + i ~R0. For the plane in G3;0 we use a multivector representation of the formula ofHesse, i.e. H = d + n. Note that this multivector consists of a scalar and a vector. Any pointlying on this plane ful�lls x�n� d=0. Using this we can now write the motion of the planeH 0 = (Rx ~R + t)�(Rn ~R) + (Rn ~R): (30)7



Since (Rx ~R)�(Rn ~R) = x�n, this becomes H 0 = x�n+Rn ~R + t�(Rn ~R) which can be �nallywritten as H 0 = RH ~R+ < RH ~Rt > : (31)The motion of a plane in G00;3;1 can be seen as the motion of the dual of the point, thus using theexpression equation (23) the motion equation of the plane isM (n+ id) ~M = Rn ~R + i(�Rn ~Rt2 + t2Rn ~R) + id = Rn ~R + i(d�Rn ~Rt)= Rn ~R + i(d� < RnRt >): (32)4 The Hand-Eye ProblemThe well known hand-eye equation �rstly formulated by Shiu and Ahmad [8] and Tsai and Lenz[10] reads AX = XB (33)where A = A1A�12 and B = B1B�12 express the elimination of the transformation hand-base toworld. From the expression equation (33) the following matrix and a vector equations can bederivedRARX = RXRB and (RA�I)~tX = RX~tB�~tA. Most of the approaches estimate �rst therotation matrix decoupled from the translation [10, 13]. The problem requires at least two motionswith rotations having not parallel axes [10]. Horaud and Dornaika [11] showed the instability ofthe computation of the Ai matrices given the projective matricesMi = CAi = (CRAiC~tAi). Letus assume that the matrix of the intrinsic parameters C remains constant during the motionsand that one extrinsic calibration A2 is known. Introducing Ni = CRAi and ~ni = C~tAi andreplacing X=A2Y, we get now as the hand-eye unknown Y. Thus the equation equation (33)can be reformulated as A�12 A1Y = YB. Now if A�12 A1 is written as a function of the projectionparameters it is possible to get an expression fully independent of the intrinsic parameters C, i.e.A�12 A1 =  N�12 N1 N�12 (~n1 � ~n2)0T 1 ! =  R t0T 1 ! : (34)Taking into consideration the selected matrices and relations, this result allows anyway to considerthe formulation of the hand-eye problem again with the standard equation equation (33) whichcan be solved with all the known methods and the one presented in this paper.4.1 Solving AX=XB using motorsThe equation system equation (33) can be expressed in terms of motors asMAMX =MXMB (35)where MA = A+ iA0, MB = B + iB0 and MX = R + iR0. According the congruence theoremof Chen [12] in this kind of problem the rotation and pitch of MA and MB are always equalthrough out all the hand movements. Thus it is redundant the consideration of this information.It su�ces to regard the rotation axis of the involved motors, i.e. the previous equation is reducedas the motion of the axis line of the hand towards the axis line of the camera. For that we canuse the equation equation (29) for the computation of the real and dual components of lA, i.e.lA = a+ ia0 = Rb ~R + i(Rb ~R0 +Rb0 ~R +R0b ~R): (36)8



After some simple manipulations according the relation ~RR0+ ~R0R =0 we get the following matrixvector equation 0@ ~a�~b [~a+~b]� 03�1 03�3~a0 �~b0 [~a0 +~b0]� ~a�~b [~a+~b]� 1A RR0 ! = 0 (37)where the matrix - we will call S - is a 6 � 8 matrix and the vector of unknowns (RT ;R0T ) is8-dimensional. Recall that we have two constraints on the unknowns so that the result is a unitdual rotor < RR0 >= 1 and < RR0 >= 0: (38)We could think that six equations plus two constraints would su�ce, however, the vectors ~a and ~bare unit vectors and the vectors ~a0 and ~b0 are perpendicular to ~a and ~b so that two equations areredundant. This is nothing new, since it is well known that at least two lines are necessary so that3D motion can be estimated from their correspondences. Thus, we need at least two motions ofthe hand-eye system in order to get two lines from the corresponding screws. Chen [12] recognizedalso this fact and analyzed the uniqueness of the problem. He geometrically proved that even inthe case of two parallel rotation axis we can compute all parameters up to the pitch. Supposenow that n � 2 motions are given. We construct the 6n � 8 matrixT = � ST1 ST2 : : : STn �T (39)which in the noise-free case has rank 6. Since in the noise-free case the equations arise fromnatural constraints the null-space contains at least the solution (R;R0). It is trivial to see thatan additional orthogonal solution is (04�1;R). Hence, the matrix is maximally of rank 6. If allaxes ~b are mutually parallel then the rank of the matrix is 5.We compute the Singular Value Decomposition (SVD) T = U�V T where � is a diagonal matrixwith the singular values, the columns of U are the left singular vectors, and the columns of Vare the right singular vectors. If the rank is 6 than the last two right singular vectors ~v7 and ~v8 -corresponding to the two vanishing singular values - span the nullspace of T . We write them ascomposed of two 4� 1 vectors ~v7T = (~uT1 ;~vT1 ) and ~v8T = (~uT2 ;~vT2 ). A vector (RT ;R0T ) satisfyingT (RT ;R0T )T = 0 must be a linear combination of ~v7 and ~v8, hence RR0 ! = �1  ~u1~v1 !+ �2  ~u2~v2 ! :The two degrees of freedom are �xed by the constraints (38) which imply two quadratic equationsin �1 and �2: �21~uT1 ~u1 + 2�1�2~uT1 ~u2 + �22~uT2 ~u2 = 1 (40)�21~uT1~v1 + �1�2(~uT1~v2 + ~uT2~v1) + �22~uT2~v2 = 0 (41)Since �1 and �2 never both vanish, assume w.l.o.g. that ~uT1~v1 6= 0 so that �2 6= 0. Settings = �1=�2 we �rst solve (41) obtaining two solutions for s. Inserting �1 = s�2 in (40) yields�2(s2~uT1~v1 + s(~uT1~v2 + ~uT2~v1) + ~uT2~v2) = 1 (42)which has two solutions of opposite sign. The sign variation is due to the sign invariance of thesolution: Both (RT ;R0T ) and (�RT ;�R0T ) satisfy both the motion equations and the constraints.From the other two solutions it turns out that the second solution for s causes always the vanishingof the factor in the left hand side of (42). It corresponds to the solution (04�1;R) which does notsatisfy the �rst constraint. The computation algorithm consists of the following steps:9



1. Given n motor motions (bi; b0i) and corresponding camera motions (ai;a0i) check if the scalarparts are equal. Then extract the line directions and moments of the screw axes and constructthe matrix T in (39).2. Compute the SVD of T and check if only two singular values are almost equal to zero (due tonoise we apply a threshold). Take the corresponding right singular vectors ~v7 and ~v8.3. Compute the coe�cients of (41) and solve it �nding two solutions for s.4. For these two values of s compute (s2~uT1~v1 + s(~uT1~v2 + ~uT2~v1) + ~uT2~v2) and choose the largestof them to compute �2 and then �1.5.The result is �1~v7 + �2~v8.5 ExperimentsWe present here results on simulations performed with our algorithm as well as with an existingtwo-step algorithm similar to [13]. The latter one estimates the quaternion rotation q from theequation aq = qb, then computes the rotation matrix RX and solves for the translation ~tX fromthe corresponding vector equation (see section 6). The simulation procedure runs as follows: weestablish n hand motions (Rb;~tb), we add Gaussian noise of relative standard deviation of 1%corresponding to the angle readings. We assume a hand-eye set up and compute the cameramotions (Ra;~ta) to which we add also Gaussian noise of varying standard deviation. The noiseis added as absolute value to the rotation axis direction and as relative value to the angle andthe translation. For every noise setting the algorithm runs 1000 times and outputs the estimatedrotation quaternion q̂ and the estimated translation ~̂t between gripper and camera. To qualifythe results we take the RMS of the absolute errors in the rotation unit rotor kR � R̂k and theRMS of the relative errors in the translation k~t � ~̂tk=k~tk. In the �rst experiment we tested astandard con�guration of 20 hand motions with totally di�erent rotation axes and large anglesand a translation of 10-20mm. In Fig. 2 we compare our algorithm - marked as DUAL - withthe two step algorithm - marked as SEPARATE. The superiority is shown especially in rotationwhere in our algorithm also the information from the hand and camera translations is used. In0.0000.0020.0040.0060.0080.0100.0120.0140.00 0.02 0.04 0.06 0.08 0.10Rel. noise std. dev. in measurementsError in rotationDUAL 33 3 3 3 3 3 3 3 3 3SEPARATE ++ + + + + + + + + + 0.0000.0050.0100.0150.0200.0250.0300.0350.0400.0450.0500.00 0.02 0.04 0.06 0.08 0.10Rel. noise std. dev. in measurementsRel. error in translationDUAL 33 3 3 3 3 3 3 3 3 3SEPARATE ++ + + + + + + + + +Figure 2: Behavior of the here proposed algorithm (DUAL) and of a two-step algorithm (SEPA-RATE) in variation of noise. On the left is shown the RMS rotation error and on the right theRMS relative translation error.the second experiment we assumed no translation in the hand motions. The behavior of bothalgorithms is about the same (Fig. 3). This was expected because in absence of translations thedual parts of the measurements (a0; b0) become zero. Then the left lower block of the matrixin (37) vanishes causing the separate computation of R and R0. In a third experiment we keptthe noise level at 5% and we varied the number of motions from 2 to 20. We observed that thebehavior is about the same for two motions about our algorithms is superior in multiple motions.10



0.0000.0010.0020.0030.0040.0050.0060.00 0.02 0.04Rel. noise std. dev. in measurementsError in rotationDUAL 33 3 3 3 3 3 3 3 3SEPARATE ++ + + + + + + + + 0.0000.0010.0010.0020.0020.0030.0030.0040.0040.0050.0050.00 0.02 0.04Rel. noise std. dev. in measurementsRel. error in translationDUAL 33 3 3 3 3 3 3 3 3SEPARATE ++ + + + + + + + +Figure 3: Both algorithms have the same performance in absence of translation.6 ConclusionThis paper has presented the geometric algebra system for computations in computer vision androbotics. The rigid motions of the point, line and plane in 3-D and 4-D are elegantly expressedusing rotors, motors and concepts of duality. It is shown that the system can operate simultane-ously in di�erent algebras transferring parameters for dealing with di�erent needs like duality ingeometric or in operational sense .The invariance of the angle and the pitch helps to reduce the complexity of the hand-eye prob-lem to a problem solvable using algebra of lines. The resultant parameterization enabled us toestablish a linear homogeneous systems for resolving the dual rotor parameters. The computationof the nullspace with SVD and the consideration of the constraints for the dual rotors to be unityields a simple algorithm avoiding non-linear steps. The algebraic structure of the linear systemhelps to understand much better the performance of the algorithm.References[1] Bayro-Corrochano E., Lasenby J., Sommer G. Geometric Algebra: A framework for comput-ing point and line correspondences and projective structure using n-uncalibrated cameras Toappear in IEEE ICPR'96 Viena, Austria, August, 1996.[2] Bayro-Corrochano E., Buchholz S., Sommer G. Selforganizing Cli�ord Neural Network Toappear in IEEE ICNN'96 Washington, DC, June, 1996.[3] W.K. Cli�ord. Preliminary sketch of bi-quaternions. Proc. London Math. Soc., 4:381{395,1873.[4] Hestenes, D. 1966. Space-Time Algebra. Gordon and Breach.[5] Hestenes, D. and Ziegler, R. 1991. Projective Geometry with Cli�ord Algebra. Acta Appli-candae Mathematicae, 23: 25{63.[6] Kantor, I.L. and Solodovnikov, A.S. . Hypercomplex Numbers: An Elementary Introductionto Algebras. Springer Verlag, New York Inc., 1989[7] Lasenby, J. , Bayro-Corrochano E.J., Lasenby, A. and Sommer G. 1996. A new methodologyfor computing invariants in computer vision. Proceedings of ICPR'96, Viena.[8] Shiu Y.C. and Ahmad S. Calibration of wrist-mounted robotic sensors by solving homoge-neous transform equations of the form AX = XB. IEEE Trans. Robotics and Automation,5:16{27, 1989. 11
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