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Abstract

A central task of computer vision is to automatically recognize objects in real-
world scenes. The parameters defining image and object spaces can vary due to
lighting conditions, camera calibration and viewing position. It is therefore desirable
to look for geometric properties of the object which remain invariant under such
changes. In this paper we present geometric algebra as a complete framework for
the theory and computation of projective invariants formed from points and lines
in computer vision. We will look at the formation of 3D projective invariants from
multiple images, show how they can be formed from image coordinates and estimated
tensors (F', fundamental matrix and T, trilinear tensor) and give results on simulated
and real data.

Categories: Computer vision; invariants; Clifford/Geometric algebra; Grassmann-Cayley
algebra; projective geometry; 3D projective invariants.

1 Introduction

The scope of geometric invariance was captured in the volume [16] and over the past decade
or so invariance has been widely used for object recognition, matching and reconstruction
[17]. Indeed, the currently fashionable topic of camera self-calibration can be cast in
terms of looking for entities which are invariant under the class of similitudes. Thus, the
study of invariants remains one of fundamental interest in computer vision. In this paper
we will outline the use of geometric algebra (GA) in establishing a framework in which
invariants can be derived and calculated. An important point to note here is that the
same framework and approach can be used for extensions such as differential invariants
and Lie algebra approaches.

Geometric algebra is a coordinate-free approach to geometry based on the algebras of
Grassmann [5] and Clifford [3]. The algebra is defined on a space whose elements are
called multivectors; a multivector is a linear combination of objects of different type, e.g.
scalars and vectors. It has an associative and fully invertible product called the geometric
or Clifford product. The existence of such a product and the calculus associated with
the geometric algebra give the system tremendous power. Some preliminary applications
of GA in the field of computer vision have already been given [13, 15], and here we will



extend the discussion of geometric invariance given in [1, 12]. GA provides a very natural
language for projective geometry as does the currently popular Grassmann-Cayley (GC)
algebra, [2] (a system for computations with subspaces of finite-dimensional vector spaces).
While the GC algebra expresses some ideas of projective geometry, such as the meet and
join, very elegantly, it lacks an inner (regressive) product — the consequences of this are
discussed more fully in [14]. The next section will give a brief introduction to GA. For
a more complete introduction see [10] and for other brief summaries see [6, 15]. In this
paper vectors will be bold quantities (except for basis vectors) and multivectors will not
be bold. Lower case is used to denote vectors in 3D Euclidean space and upper case to
denote vectors in 4D projective space.

2 Geometric Algebra: an outline

The algebras of Clifford and Grassmann are well known to pure mathematicians, but were
long ago abandoned by physicists in favour of the vector algebra of Gibbs — which is still
most commonly used today. The approach to Clifford algebra we adopt here was pioneered
in the 1960’s by David Hestenes who has, since then, worked on developing his version of
Clifford algebra — which will be referred to as geometric algebra (GA) — into a unifying
language for mathematics and physics [10].

2.1 The Geometric product and multivectors

Let G,, denote the geometric algebra of n-dimensions — this is a graded linear space. As well
as vector addition and scalar multiplication we have a non-commutative product which is
associative and distributive over addition — this is the geometric or Clifford product.
A further distinguishing feature of the algebra is that any vector squares to give a scalar.
The geometric product of two vectors a and b is written ab and can be expressed as a
sum of its symmetric and antisymmetric parts

ab=a-b+ aAlb, (1)

where the inner product a-b and the outer product aAb are defined by
1 1
a-b= 5(ab+ba) aNb= i(ab—ba). (2)

The inner product of two vectors is the standard scalar or dot product and produces a
scalar. The outer or wedge product of two vectors is a new quantity we call a bivector. We
think of a bivector as a directed area in the plane containing a and b, formed by sweeping
a along b — see figure 1. Thus, bAa will have the opposite orientation making the wedge
product anticommutative as given in equation (2). The outer product is immediately
generalizable to higher dimensions — for example, (aAb)Ae, a trivector, is interpreted as
the oriented volume formed by sweeping the area aAb along vector ¢ — see figure 1. The
outer product of & vectors is a k-vector or k-blade, and such a quantity is said to have
grade k. A multivector is made up of a linear combination of objects of different grade,
i.e. scalar plus bivector etc. GA provides a means of manipulating multivectors which
allows us to keep track of different grade objects simultaneously — much as one does with
complex number operations. For a general multivector X, the notation (X) will mean



Figure 1: Left: The directed area, or bivector, a Ab. Right: The oriented volume, or
trivector, aAbAec.

take the scalar part of X. In a space of 3 dimensions we can construct a trivector aAbAc,
but no 4-vectors exist since there is no possibility of sweeping the volume element a AbAc
over a 4th dimension. The highest grade element in a space is called the pseudoscalar.
The unit pseudoscalar is denoted by I and is crucial when discussing duality.

We now end this introductory section by giving a very brief review of the geometric algebra
approach to linear algebra. A more detailed review is found in [9].

Consider a linear function f which maps vectors to vectors in the same space. We can
extend f to act linearly on multivectors via the outermorphism, f, defining the action
of f on blades by

flarAagA.. . Aay) = fla)Af(a2)A...Af(a,). (3)

We use the term outermorphism because f preserves the grade of any r-vector it acts on.
We therefore know that the pseudoscalar of the space must be mapped onto some multiple
of itself. The scale factor in this mapping is the determinant of f;

f(I) = det(f)I. (4)

This is much simpler than many definitions of the determinant enabling one to establish
most properties of determinants with little effort.

3 Projective Geometry and the Projective Split

Since about the mid 1980’s most of the computer vision literature discussing geometry and
invariants has used the language of projective geometry (see appendix of [16]). As any
point on a ray from the optical centre of a camera will map to the same point in the camera,
image plane it is easy to see why a 2D view of a 3D world might well be best expressed in
projective space. In classical projective geometry one defines a 3D space, P2, whose points
are in 1 — 1 correspondence with lines through the origin in a 4D space, R*. Similarly,
k-dimensional subspaces of P? are identified with (k + 1)-dimensional subspaces of R*.
Such projective views can provide very elegant descriptions of the geometry of incidence
(intersections, unions etc.). The projective space, P, has no metric, the basis and metric
are introduced in the associated 4D space. In this 4D space a coordinate description of a
projective point is conventionally brought about by using homogeneous coordinates. Here
we will briefly outline how projective geometry looks in the GA framework.



The basic projective geometry operations of meet and join are easily expressible in terms
of standard operations within the geometric algebra. Firstly, to introduce the concepts
of duality which are so important in projective geometry, we define the dual A* of an
r-vector A as

A* = AT7L (5)
In an n-dimensional geometric algebra one can define the join J = A A B of an r-vector,
A, and an s-vector, B, by

J=AANB if A and B are linearly independent. (6)

If A and B are not linearly independent the join is not given simply by the wedge but by
the subspace that they span. J can be interpreted as a common dividend of lowest grade
and is defined up to a scale factor. It is easy to see that if (r + s) > n then J will be
the pseudoscalar for the space. In what follows we will use A for the join only when the
blades A and B are not linearly independent, otherwise we will use the ordinary exterior
product, A.

If A and B have a common factor (i.e. there exists a k-vector C such that A = A’C and
B = B'C for some A’, B') then we can define the ‘intersection’ or meet of A and B as
AV B where [11]

(AV B)* = A*AB*. (7)

That is, the dual of the meet is given by the join of the duals (a familiar result from
classical projective geometry). The dual of (AV B) is understood to be taken with respect
to the join of A and B. In most cases of practical interest this join will be the whole space
and the meet is therefore easily computed. A more useful expression for the meet (see
[14]) is as follows

AV B = (A*-B). (8)

We therefore have the very simple and readily computed relation of AV B = (A*-B). The
above concepts are discussed further in [11].

Points in real 3D space will be represented by vectors in £3, a 3D space with a Euclidean
metric. As mentioned earlier, we find it useful to associate a point in £3 with a line in a 4D
space, R*. In these two distinct but related spaces we define basis vectors: (71,72,73,7v4)
in R* and (01, 09,03) in £3. We identify R* and £ with the GAs of 4 and 3 dimensions,
G(1,3,0) and Gz 0,0) (here G 4y is & p + ¢ + r-dimensional GA in which p, ¢ and r basis
vectors square to +1, —1 and O respectively). We require that vectors, bivectors and
trivectors in R* will represent points, lines and planes in £3. Suppose we choose 74 as
a selected direction in R*, we can then define a mapping which associates the bivectors
Y¥iva, i = 1,2,3, in R* with the vectors o3, i = 1,2,3, in £3;

oL =MV, O2=Y2v4, O3 = Y3Va- (9)

To preserve the Euclidean structure of the spatial vectors {o;} (i.e. o7 = +1) we are
forced to assume a non-Euclidean metric for the basis vectors in R*. We choose to use
2 = +1, v; = —1, i = 1,2, 3. This process of associating the higher and lower dimensional
spaces is an application of what Hestenes calls the projective split.



For a vector X = X171 + Xov2 + X373 + X474 in R* the projective split is obtained by
taking the geometric product of X and ~y;

XA
Xy =Xeys + XAy =Xy (1 + X’Y4) = X4(1 + :L') (10)
4
Note that & contains terms of the form ~y;7y4, Y24, 3774 or, via equation (9), terms in
01,09,03. We therefore associate the vector  in £3 with the bivector X Ay4/X4 in R%.

If we start with a vector & = 2101 + Z202 + £303 in £3, we can represent this in R* by the
vector X = X1y, + Xoy2 + X373 + X474 such that

. X/\")/4 . X1 X2 X X1 X2 X3

3
= = iy 4 oyeys + s = =01 4 0y o 11
TR, XM T X, M T XM T X, T X, 2T X, (11)

= x; = f—:, for ¢ = 1,2,3. This process can therefore be seen to be equivalent to using
homogeneous coordinates, X, for . Thus, in this GA formulation we postulate distinct
spaces in which we represent ordinary 3D quantities and their 4D projective counterparts,
together with a well-defined way of moving between these spaces.

3.1 Projective transformations

Two of the main advantages of working in homogeneous coordinates arise from the facts
that general displacements can be expressed in terms of a single matrix and some non-linear
transformations in £2 become linear transformations in R?. If a general point (z,y, z) in
3-D space is projected onto an image plane, the coordinates (z',y') in the image plane will
be related to (z,y, z) via a transformation of the form:

$1_0l1$+ﬁ1y+512+61 y,_a2$+ﬁ2y+522+62
Gz +Py+oz+é az+Py+oz+é

(12)

Although clearly non-linear, this is expressible as the ratio of two linear transformations.
To make this non-linear transformation in £ into a linear transformation in R* we define
a linear function [p mapping vectors onto vectors in R* such that the action of ip on the

basis vectors {v;} is given by

f,(7) = o1 + agva + o373 + am [, (72) = Bim + Bava + Bays + By

f,(13) = 171 + G272 + b33 + 374 f,(m) = e11 + eaya + €373 + €74 (13)

A general point P in £ given by & = zoy + yos + 203 becomes the point X = (X, +
Y72+ Zys +Wry,) in R*, where = X/W, y = Y/W, 2 = Z/W. We can then see that [p
maps X onto X’ where

3
X'=Y {(X +BY + 62+ W)y} + (6X + BY +0Z + EW)y4 (14)
i=1
The vector @’ = z'o| + o9 + 2’03 in £3 corresponds to X', where z' is given by

o = a X +5Y +80Z+aW _ oz + Py +diz+e
aX +BY +06Z +eW Gz +Py+dz+e

(15)
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Similarly we have

) o + Boy + daz + €2 z,_a3x+ﬁ3y+53z+63
Gz +Py+odz+e Gz +Py+doz+e

(16)

Note that in general we would take a3 = f&, B3 = ff3 etc. so that 2/ = f (focal length),
independent of the point chosen. Via this means the non-linear transformation in £3
becomes a linear transformation, ip, in R*. We will see later that use of the linear
function ip makes the invariant nature of various quantities very easy to establish.

4 1-D and 2-D Projective Invariants from a Single View

In this section we will use the framework established so far to look at standard projective
geometric invariants. We begin by looking at algebraic quantities which are invariant under
projective transformations, arriving at these invariants in a way which can be naturally
generalized from 1D to 2D to 3D.

The 1-D Cross-Ratio
The ‘fundamental projective invariant’ of points on a line is the so-called cross-ratio, p,

defined as
_ACBD  (t3—11)(ta —t2)

T BCAD  (t4—t1)(t3 — ta)’

0

where t; = |PA|, to = |PB|, t3 = |PC|, t4 = |PD| — see Figure 2.

D L

Figure 2: Formation of the 1D cross-ratio.

Tt is fairly easy to show that for the projection through O of the collinear points A, B, C, D
onto any line, p remains constant. For this 1D case, any point g on the line L can be written
as g = top relative to P, where o1 is a unit vector in the direction of L. We then move
up a dimension to a 2D space, with basis vectors (y,72) (we will call this R?) in which g
is represented by the vector Q;

Q=T7+57%
where, as before, we associate g with the bivector
QA T T

Q7 — g = 591



so that ¢t =7T/S. When a point on line L is projected onto another line L', the distances
t and ¢ are related by a projective transformation of the form
po s
ot + 3

(17)

This non-linear transformation in £' can be made into a linear transformation in R? by
defining the linear function f | mapping vectors onto vectors in R?;

fi(m) =aim +avy f(r) = Bim + Bra. (18)

Consider 2 vectors X1, X5 in R2. Form the bivector S; = X;AXy = A\ I, where I, = Y12

is the pseudoscalar for R2. We now look at how S; transforms under I

81 = X1AXy = f(X1AXp) = (detf )(X1AXy). (19)

This last step follows since a linear function must map a pseudoscalar onto a multiple of
itself, this multiple being the determinant of the function. Suppose that we now take 4
points on the line L whose corresponding vectors in R? are {X;}, i = 1, ..,4, and consider
the ratio Ry of the magnitudes of 2 wedge products;

X AXo) It

R, = ZAXo)ly (20)

(X3AXy)I,
where the inverse of the pseudoscalar, I, 1. has been used to produce a scalar. Then,
under f, R — R, where

Rl - (XIAXHI (detil)(Xl/\XQ)Igl.
(XEAXDL; T (detf ) (XsAXa) 5

(21)

Ry is therefore invariant under f . However, we want to express our invariants in terms

of distances on the 1D line; for this we must consider how the bivector S; in R? projects
down to &£L.

XiNXg = (T1’Y1+S1’Y2)/\(T2’Y1+S2’Y2) = (T1S2—T2S1)’Y1’Y2 = 5152(T1/S1—T2/S2)I2 =515, (t1—t2)I2-

(22)
This expansion uses the fact that v Ay = Ay = 0 and ;-9 = 0. In order to form
a projective invariant which is independent of the choice of the arbitrary scalars S;, we
must then take ratios of the bivectors X;AX; (so that detf, cancels) and multiples of such
ratios so that the S;’s cancel. More precisely, consider the following expression

I, — (XsAX )T, (XanXp) Iy
(X4AX )L H (XA X) I T

Then, in terms of distances along the lines, under the projective transformation f, Inv,
goes to Inv| where

_ S3S1(ts — 11)84Sa(ta —ta) (b3 —t1)(ta — 22)
U 8481 (ts — t1)S385(ts — ta) ~ (t4 — t1)(ts — t2)’
which is independent of the S;’s and is indeed the 1D classical projective invariant, the

cross-ratio. Deriving the cross-ratio in this way enables us to easily generalize it to form
invariants in higher dimensions.

Inv

(23)



4.1 The 2-D generalization of the Cross-Ratio

For points in a plane we again move up to a space with one higher dimension which we
shall call R3. Let a point P in the plane M be described by the vector & in £2 where
x = xo| + yog, and oy and oy are basis vectors in the plane M. In R® this point will be
represented by X = X, + Yo+ Zv3 where x = X/Z and y =Y /Z. As described earlier,
we can define a general projective transformation via a linear function f, mapping vectors
to vectors in R3 such that;

Ln)=om+oap+dy  f(r)=PRm+Bre+hrs  f,0vs) =6m+ 872 +bys

(24)

Consider 3 vectors (representing non-collinear points) X;, i = 1,2, 3, in R? and form the
trivector

So = X1 AXoAX 3 = Ao (25)

where I35 = ;79773 is the pseudoscalar for R3. As before, under the projective transforma-
tion given by f,, So transforms to S5 where Sj = detf, 552

Therefore, the ratio of the magnitudes of any trivectors is invariant under f,. To project
down into £2 we use the fact that X;v3 = Z;(1 + ;) under the projective split to write

Sl = (XiXoXs ! = (X1 XoXsysysls ™)
= Z1Z2Z3{(1 +21)(1 — @) (1 + x3) 337", (26)

Where the x; represent vectors in £2. We can only form a scalar part from the expression
within the brackets by taking products of a vector, 2 spatial vectors (i.e. vectors made up
of the os) and I3}, so that

8213_1 = Z1Z2Z3<(:L'1:L'3 — 1L — :L'Q:L'3)")/3I3_1> = Z1Z2Z3{(:L'2 - :L'l)/\(:L'3 - ml)}IQ_l.
(27)
It is then clear that we should take multiples of such ratios so that the arbitrary scalars
Z; cancel. For 4 points in a plane, there are only 4 possible combinations of Z;Z;Z; and
we cannot have a situation where we multiply two ratios of the form X;AX;AX}, together
and have all the Z’s cancelling. For 5 coplanar points {X;}, ¢ = 1,..,5, there are several
ways of achieving the desired cancellation, for example

(X AX4AX ) I H(XsAXAX ) I
(XsAX AX3) I H(XsAXAXY) T

Invy =

According to equation (27) we can interpret this ratio in £2 as

(x5 — za)A(@s — T3) I, ' (x5 — T) A (@5 — T1)I; " AsasAsan

—1

Invy = (28)

@5 — @) A(ms — ®3) 5 (w5 — o)A (5 — @) I;E AsizAsm

where %Aijk is the area of the triangle defined by the 3 vertices ;, ¢, ;. This invariant
is regarded as the 2D generalization of the 1D cross-ratio.



5 3-D Projective Invariants from Multiple Views

In this section we begin by looking at the generalization of the cross—ratio in 3D and then
consider how we actually compute projective invariants from image coordinates in two and
three cameras views.

5.1 The 3-D generalization of the Cross—Ratio

For general points in £3 we have seen that we move up one dimension to work in the 4D
space R*. The point & = zo| +yos + zo3 in £ is written as X = X1 + Y v+ Zy3 + W,
where x = X/W, y =Y /W, z = Z/W. As before, a non-linear projective transformation
in £3 becomes a linear transformation, described by a linear function fyin R*.

Consider 4 vectors in R, {X;}, i = 1,..,4. Form the 4-vector Sz = X AXoAX3AXy = A3]4
where Iy = 177977374 is the pseudoscalar for R*. As before, S5 transforms to S5 under f 5

Sy = X{AXHAXGAX) = det f,Ss. (29)

The ratio of the magnitudes of any two 4-vectors is therefore invariant under f 3 and we
must take multiples of such ratios to ensure the arbitrary scale factors W; cancel. With
5 general points there are 5 possible combinations of W;W;W;W; and it is then simple to
show that one cannot take multiples of ratios such that the W factors cancel. However,
for 6 points one can do this, and an example of such an invariant is

(X) AXoAXZAX NI (XgAX 5 AXoAX )T

Invg = . 30
ST (X AXoAXYAXS) I H(X3AX AX o AXG) I (30)

Using the arguments of the previous sections we can write
()(1/\)(2/\)(3/\)(4)14_1 = W1W2W3W4{(:L'2 — :L'l)/\(:L'3 — :L'l)/\(:L'4 — :L'l)}I?,_l. (31)

The invariant Invs is therefore the 3D equivalent of the 1D cross-ratio and consists of

ratios of volumes;
Triva — Vi234Vis26

nvs = ,
Vi245V3496

where Vi, is the volume of the solid formed by the 4 vertices z;, x;, Tk, x;.

(32)

Conventionally all of these invariants are well known but above we have outlined a general,
straightforward process for generating projective invariants in any dimension.

5.2 3D point projective invariants from image coordinates in two views

Suppose we have six general 3D points P;, i = 1,..,6, represented by vectors {x;, X;} in
E3 and R* respectively. We have seen above that 3D projective invariants can be formed
from these points, and an example of such an invariant is

X XXX [X4 X5 X0 Xs]

Invs = .
ST XXX X5 [X3 X4 X0 X )

(33)
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This is simply equation (30) rewritten in terms of brackets, where the bracket is defined by
[X1XoX3Xy] = (XiAXoAX3AX ) 1 If it is possible to express the bracket (XXX X
in terms of the image coordinates of points P;, P;, Py, P}, then this invariant will be
readily computable in practice. Some of the most recent work which has addressed this
problem has utilized the Grassmann-Cayley (GC) algebra [2, 4]. It has been shown that
it is not possible to compute general 3D invariants from a single image and in [2] Carlsson
discussed the computation of such invariants from a pair of images in terms of the image
coordinates and the fundamental matrix, F', using the GC algebra. Here we will show how
the approach of Carlsson looks in the geometric algebra framework and in the following
section, extend the technique to deal with three views.

Consider the scalar S1934 formed from the bracket of 4 points
S1o31 = [X1XoX3Xy] = (XiAXoAX3AX ) = (X AX)AXSAX )7L (34)

The quantities Lo = (X; A Xy) and L3y = (X3 A X4) are the R* representations of the
lines joining points P; and P>, and P53 and P;. Now, by expressing these lines in the world
as intersections of planes through the optical centres of the cameras, it can be shown [14]
that it is possible to write the above bracket as

(X) AXoAXZAX )T = (AgABoAA! o3, AB o3 ) I (35)

where A1934 is the R* representation of the intersection in the first image plane (denoted
A, having optical centre Ag) of the projections of lines Lis and Ls4, and Byagy is the
same intersection in the second image plane (denoted B, having optical centre By) — see
figure 3.

Figure 3: Two world lines projected into an image plane. Both R* and £3 representations
are shown.

From this expression it is not difficult to go one stage further and write the bracket in
terms of image coordinates and the fundamental matrix. It can be shown (see [14]) that,
in terms of the observed quantities, we can write the invariant as

(67T 1234 F€1234) (87 a506 Feasag ) 1245 (3426 — 1) A 1245 (A3a26 — 1)
(87 1245 F €1945) (87 3406 F€3496 ) 4526 (11234 — 1) Masos (Mioza — 1)

Invs = (36)
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where the s and the es are the observed intersection points in the two image planes and
F is the estimated fundamental matrix (using sets of matching image points for example).
The us and As are defined by expanding the image points as follows. Since a,, a; and
Qpqrs are collinear we can write

Qpgrs = Upgrs@s + (1 — pipgrs)ar  and  bpgrs = Apgrsbs + (1 — Apgrs) by (37)

To summarize; given the coordinates of a set of 6 corresponding points in the two image
planes (from non-coplanar world points) we can form 3D projective invariants provided
we have some estimate of F'.

5.3 3D point projective invariants from image coordinates in three views

The technique used to form the 3D projective invariants for two views can be straightfor-
wardly extended to give expressions for invariants of three views. Consider the scenario
shown in figure 4, which shows four world points, {X;, X9, X3, X4} (or two lines X; AXo
and X3AX,) projected into three camera planes, where we use the same notation as in
previous sections. As before, we can write these world lines as the intersection of planes.
Using GA it is also possible to write the components of the trilinear tensor, T, [8], in terms
of intersections of lines and planes [13], and hence write the bracket [X;XoX3X4] in terms
of Tj;; (components of T') and values in the image plane. If lg and l% are the vectors
representing the standard homogeneous coordinates of the lines joining the projections of
world points X; and X; in planes B and C respectively, the expression for Invs in terms
of observed or estimated quantities is (see [14])

n Xy

LB

34

Figure 4: Two world lines projected down into three camera planes. The points and lines
of interest are indicated in each frame. All quantities shown with their R? representations.

A B A
[ﬂjk61234,ill2,jl£’i,k][Ti]'k54526,ilﬁ),jl206,k]/11245(,U3426 -1)
[Tk 07545 il o 155 1) [Tigh 3o i3 ;156 ) asas (w1234 — 1)
where the ds and us are from image A and take the same meaning as previously. In

g y

equation (38) the quantities are all observed quantities or entities we form from observed
quantities.

Invs = (38)
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6 Experimental Results

In this section we present results for the formation of 3D invariants from two and three
views on both simulated and real data. Throughout this section feature points (corners)
were extracted automatically but matched by hand. The authors note that automatic
matching is, itself, often a hard problem, but the work presented here addresses only the
subsequent analysis, assuming such matching has been successfully performed.

The simulations (carried out in Maple) involve generating four different sets, S; i = 1, .., 4,
of 6 points; S

Si = {lea 9 ?’n 4 LZ")’ é}
within a spherical region whose dimensions were around a tenth of the distance of the
centre of the volume from the camera’s optical centre. These sets of points are then

observed from four different viewpoints, so that the four sets of image coordinates for set
S; are given by s;;, § = 1,..,4;

Sij = {mjlamj2amj3amj4amj5amj6}

For each set of 6 points the three linearly independent invariants 7', 72,73 are formed,
where these are the standard invariants given as follows

(X1 XXXy [XaXsXoXs] o [XiXoX3X5][X4X5X2Xe]

! —
X1 X X4 X5] [ X3 X2 X2Xs)] (X, XX 4 X5 [ X5 X5X2Xs)]

73 [X1XoX3X6][XeX5X0X ] (39)
(X1 XoX6X5)[X3XeX0Xy]

These I’s are formed using a) views 1 & 2, b) views 2 & 3, ¢) views 1,2 & 3 and d) views
2,3 & 4 - in a) and b) the fundamental matrix is calculated by standard linear means
and in ¢) and d) the trifocal tensor is derived also from a simple linear algorithm ([8]).
Although these simple linear methods do not enforce the necessary constraints on F and
T, the resulting estimates were adequate for the purposes of the experiments shown here.
In the experiments with real data below, F and T were also formed in this way.

These invariants of each set were represented as 3D vectors, v; = [Z},Z2,Z3]T. The
comparison of the invariants was done using ‘Euclidean distances’ of the vectors, d(v;, v;),
where

1

vi-v; |°

d(vi,v;) = l1—|#|] . (40)
v [vil[[|v;]]

For any v; and v; the distance d(v;,v;) lies between 0 and 1 and it does not vary when

v; or v; is multiplied by a nonzero constant — this follows Hartley’s analysis given in [7].

Figure 5 shows two sets of tables. The (i, )th entry in the top left-hand box shows the
distance, d(v;, v;), between invariants for set S; formed from views 1 & 2 and invariants for
set S; formed from views 2 & 3, when gaussian noise of 0 = 0.005 was added to the image
points. The boxes to the right of this show the same thing for increasing o. The bottom
row shows the equivalent for invariants formed from three views using the expression given
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in the previous section; here the (i,4)th entry in the left-hand box shows the distance,
d(v;,vj), between invariants for set S; formed from views 1,2 & 3, and invariants for set
S; formed from views 2, 3 & 4. Clearly, we would like the diagonal elements to be as close
as possible to zero since the invariants should be the same in all views in the zero noise
case. The off-diagonal elements give some indication of the usefulness of the invariants in
distinguishing between sets of points (we would like these to be as close to 1 as possible —
although there is, of course, no guarantee that this will be the case). We can see that, in
terms of the diagonal elements being close to zero, the performance of the invariants based
on trilinearities is better than those based on bilinearities. However, it appears that, for
greater noise values, T' has slightly poorer distinguishing ability (i.e. off-diagonal elements
are, on average, higher for F).

In the case of real images we use a sequence of images taken by a moving robot equipped
with a binocular head. Figure 6 shows an example of images taken with the left and right
eyes — the experimental setup roughly matched the simulations in terms of ratios of object
distance to object size. Image pairs, one from the left sequence and one from the right
sequence were taken to form invariants using F. For the formation of invariants using
T, two from the left and one from the right sequence were used. 38 points were semi-
automatically taken and 6 sets of 6 general points were selected. The vector of invariants
for each set was formed using both ¥ and T and the set of distances found are shown in
figure 7. Again, the diagonal elements are smaller for the invariants calculated using T,
and now, differing from the simulations, we also see that the off-diagonal components are,
on average, larger for T. We therefore see that computing the invariants from 3 views
appears to be more robust and useful than computing them from 2 views — one would
expect this from a theoretical viewpoint. Another reason for preferring the invariants
formed from three views is that degenerate or almost degenerate configurations of points
will be less likely.

Invariants using F

0059 | 0.67 | 0.460 0.148 | 0.600 | 0.920 | 0.724 0.90 | 0.838 | 0.69 | 0.96
0 0.515 | 0.68 0.60 | 0.96 | 0.755 0.276 | 0.693 | 0.527

0.59 0 0.71 | 0.97 0.98 | 0.59

0.69 0.596 0.663

Invariants using T

01]059]| 031 | 0.63 0.031 | 0.1 | 0.352 | 0.66 0.00 | 0.64 | 0.452 | 0.70

0 0.63 | 0.338 0.031 | 0.337 | 0.67 0.063 | 0.77 | 0.545
0.134 | 0.67 0.31 | 0.67 0.321 | 0.63
0.29 0.518 0.643

Figure 5: The distance matrices show the performance of the invariants with increasing
Gaussian noise o: 0.005, 0.025 and 0.04 (left to right).

7 Conclusions

We have presented a brief introduction to the techniques of geometric algebra and shown
how they can be used for projective geometry and in the formation and computation
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Figure 6: Image sequence taken during navigation by the binocular head of a mobile
robot. The upper and lower rows shows the left and right eye images respectively.

using F using T
0.04 | 0.79 | 0.646 | 0.130 | 0.679 | 0.89 0.021 | 0.779 | 0.346 | 0.930 | 0.759 | 0.81
0.023 | 0.2535 | 0.278 | 0.268 | 0.89 0.016 | 0.305 | 0.378 | 0.780 | 0.823
0.0167 | 0.723 | 0.606 | 0.862 0.003 | 0.83 | 0.678 | 0.97
0.039 | 0.808 | 0.91 0.02 | 0.908 | 0.811
0.039 | 0.808 0.008 | 0.791
0.039 0.01

Figure 7: Distance matrices showing the performance of the computed invariants using
bilinearities (left) and trilinearities (right) for the real image sequence.

of invariants. For intersections of planes, lines etc. and for the discussion of projective
transformations it is useful to work in a 4D space we have called R?. We find that we do
not need to invoke the standard concepts or machinery of classical projective geometry, all
that is needed is the idea of the projective split relating the quantities in R* to quantities in
our 3D world. For real computations in the space R* we have a 4D geometric algebra with
a Lorentzian metric. We can therefore use the extensive symbolic algebra packages (for
use with MAPLE) which have been developed for work in relativity, quantum mechanics
and cosmology using the spacetime algebra, also a 4D geometric algebra with a Lorentzian
metric. Analysing problems using geometric algebra provides the enormous advantage of
working in a system which can be used for most areas of computer vision and which has
very powerful associated linear algebra and calculus frameworks. In addition, we have
shown how the geometric insight provided by GA can be used to extend existing work on
3D projective invariants from two views to three views and have given explicit expressions
for forming such invariants in terms of measurable quantities. Initial results indicate that
such invariants are more robust than their 2-view counterparts.
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