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Abstract

One goal of computer vision is to automatically rec-
ognize objects in real-world scenes. Given the large
range of possible viewing conditions, it is often de-
sirable to look for geometric properties of the object
which remain invariant under changes in observation
parameters. The main contribution of this paper lies
in outlining the formation of 3D projective invariants
using image points and lines and the trifocal tensor.
The experimental analysis indicates that the invari-
ants computed using the trifocal tensor perform better
than those formed from bilinearities.

1 Computer Vision using Geometric
Algebra

This section aims to outline the basic geometric
algebra tools required for the treatment of problems
in computer vision. This includes the formulation of
projective geometry, the algebra of incidence and the
geometry of an image sequence in terms of a mathe-
matical language called geometric algebra (GA). The
algebra is based on the manipulation of geometric ob-
jects — for more detail the reader is referred to [4, 5].
Throughout the paper the summation convention will
be used (i.e. repeated indices are summed over) unless
explicitly stated otherwise.

1.1 The geometric algebras of the camera
and 3D visual space

Gn, the GA of n-D, is a graded linear space in which
we have, in addition to vector addition and scalar mul-
tiplication, a non- commutative product which is asso-
ciative and distributive over addition — the geometric
of Clifford product. The symmetric part of the ge-
ometric product of two vectors @ and b, written as
ab, is the inner (or scalar) product, a-b, producing a
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scalar. The antisymmetric part is the outer (or wedge)
product, a Ab, producing a bivector (oriented area).
Similarly, a AbAc will produce a trivector or oriented
volume. The highest grade element in an n-D space
wil be an n-vector and this will be unique up to scale
and is called the pseudoscalar for the space.

In 3-D Euclidean space we have three basis vectors
{o:} i = 1,2,3 which can be extended to produce a
basis for the whole GA having 2% = 8 elements given
by:

A ,,i01,02,03l,i0102,0203,0301}J,i010203} =1.

scalar vect‘rors o e
(1)

Each basis vector squares to +1 . It can then easily be
verified that the pseudoscalar, 10203, squares to —1
and commutes with all elements of the 3-D space. The
unit pseudoscalar, I, has a crucial role when discussing
duality.

In order to make concrete computations, we require
a basis and metric for the 4D projective space (R* or
P?) and a means of moving between projective and
3D Euclidean space, £3. This is achieved using the
basis {v;}, ¢ =1, 2,3, 4, which extends to give a basis
for the whole GA;

bivectors trivector

1 ) Vi s Y2735 V3V V17Y2, V1V4, Y2 Y4, Y3V4,
el ~ ~ ~ -
scalar 4 yectors 6 bivectors

Iw L, (2

4 trivectors pseudoscalar

where 7§ = +1,~7; = —1 for k = 1,2,3. The pseu-
doscalar is I = y1y2y3y4 with I2 = —1. The fourth
basis vector 4 can be seen as a selected direction and
is used to project vectors from projective to Euclidean
space via an operation called the projective split. The



role and use of the projective split for a variety of prob-
lems involving the algebra of incidence can be found
in [6].
1.2 Algebra in projective space

Consider three non-collinear points, P, P, Ps,
represented by vectors ¢, T2, 3 in £3 and by vec-
tors X1, Xo, X3 in R*. The line Lo joining points
P, and P, can be expressed in R* by the following
bivector,

Lis = X1 AXo. (3)

Any point P, represented in R* by X, on the line
through P, and P, will satisfy

XALps = XAX{AX,y = 0. (4)

Similarly, the plane ®;93 passing through points
Py, Py, P; is expressed by the following trivector in
R4

(1)123 = X1 /\X2 /\X3. (5)

1.2.1 Intersection of a line and a plane

Consider a line A = X3 AX5 intersecting a plane & =
Y1AY3AYs — all vectors are in R*. The intersection
point is expressible using the meet operation

AVE=(X;AX2)V (Y1AY2AY3). (6)

In GA the meet can be written using the inner prod-
uct. If U and V are two multivectors then their meet
is given by ,[2],

UVV =@UI™YV. (")

After some algebraic manipulations [2] the expression
in equation (6) reduces to

AVD = [X1XQY2Y3]Y1 —I—[X1XQY3Y1]Y2 —I—[X1XQY1Y2]Y3
(8)
giving the intersection point (vector in R*).

1.2.2 Intersection of two planes

We now consider the intersection of two planes &; =
X1 /\Xg/\X3 and (1)2 = Y1 /\Yg/\Y3. The meet Of (1)1
and ®, is given by

P VI = (XiAXoAX3) V (Y1AY2AY3) (9)

which after similar algebraic manipulations reads

DV Py = [X1XQX3Y1](Y2/\Y3) +
+[X1XQX3Y2](Y3/\Y1) + [X1XQX3Y3](Y1 /\Yz), (10)

producing a line of intersection (bivector in R%).

1.2.3 Intersection of two lines

Two lines will intersect at a point only if they are
coplanar, this will mean that their representations in
R4, A =X1AXq, and B = Y{AY, will satisfy

AAB =0. (11)

i.e. Any one vector is expressible as a linear combina-
tion of the other three vectors. We therefore need to
work only in a 2D Euclidean space, £2, which has an
associated 3D projective counterpart, R3. It can be
shown [2] that the intersection point is given by

A v B= [X1X2Y1]Y2 - [XIXZYQ]YI (12)

where the bracket [A;A3Aj3] in R? is understood to
mean (AjAA, /\A3)I3_1 with I® the pseudoscalar for
R3,
1.3 Geometry of 1, 2 and 3 Views
Consider the monocular case shown in figure 1.
Here the image plane is defined by three points
A;, A, Aj, with the optical centre given by Ay (all
vectors in R*). We are then able to define a bivector
basis, {L{}, i = 1,2, 3, spanning all lines in the image
plane ® 4 = A; AA3AA3. The optical planes, ¢; are
then given by ¢; = AgAL#A. Any plane through A,
and the image plane can then be expanded in terms
of the ¢z

Figure 1: Monocular geometry

In later sections we will compute invariants in 4D
and then ‘project down’ onto 3D — it is therefore nec-
essary to provide an outline of two and three-view
geometry in GA. Figure 2 shows that a world point
X projects onto points A’ and B’ in the two image
planes. The so called epipoles EF 4 and Ep4 corre-
spond to the intersections of the line joining the op-
tical centres with the image planes. Since the points
Ay, By, A’, B’ are coplanar, we can formulate the bi-
linear constraint as the outer product of these four
vectors which must therefore vanish: AgABoAA'AB’
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Figure 3: Trinocular geometry

= 0. Now, if we let A’ = a;A; and B’ = 3,B;, then
this equation can be written as

ai[)’j{Ao/\Bo/\Ai/\Bj} =0. (13)
Defining ﬁ’ij = {AgABoAA;AB;}I 7! gives us
Fijaiﬂj =0 (14)

which corresponds to the well-known relationship be-
tween the components of the fundamental matrix, F,
and the image coordinates. This suggests that F' can
be seen as a linear function mapping two vectors onto
a scalar F(A,B) = {AgABoAAAB} ™' so that

In the case of trinocular geometry the so-called
trilinear constraint captures the geometric relation-
ships of points and lines between three cameras. Fig-
ure 3 shows three image planes ® 4,%5 and ®¢ with
bases A;, B; and C; where 1=1,2,3 and optical cen-
tres Ag, Bo, Co, and the intersections of two world
points X; at points B;,C;, ¢ = 1,2. The line join-
ing the world points is Lo = X; AXy and the pro-
jected lines are denoted by L;,L)s and Li,. We
firstly define three planes: @), = AgAA]AA;
® = BoAB{AB, , and &, = CoAC]AC;. It is

clear that L1 is formed by intersecting ®; and &,
i.e. L12 = (I)IB \% P, = (Bo/\LIB) \% (Co/\LIC) If
Ly = AgAA] and Ly = AgA A, then we can eas-
ily see that L; and L. intersect with L5 at X; and
X, respectively. We therefore have L1 ALjo = 0 and
LoALis =0 which can then be written as

(AoAADNA{(BoALy) V (CoALL)} =0  (15)

for ¢ = 1,2. This suggests that we should define a
linear function T" which maps a point and two lines
onto a scalar:

T(A,Lp,Lc) = (AMAN(BALB)V(CALc)}. (16)

Now, using the vector basis of the planes &g and ¢
it is also possible to define their line basis as follows:
LIB = B2/\B3, L2B = B3/\B1, L3B = B1/\B2 etc. So
that we can write

A=A, Lp=17L7, L =IJLY.  (17)
If we define the components of a tensor as j:'ijk =
T(A;, LP,LY), then if A, L'y, L, are all derived from
projections of the same two world points, equation
(15) tells us that we can write

Tijkailflkc =0. (18)

This is the trilinear constraint arrived at in [7] using
camera matrices. In contrast, here this constraint was
produced from purely geometric considerations. Using

T3, we can also relate three projected lines. Consider
a projected line in the image plane ® 4

"= AIAAL = (AgAL1s) V 4. (19)

Considering L9 as the meet of the planes &5 V&, and
using the expansions of L'y, L'z, L, given in equation
(17), we can rewrite this equation as

L = (ANFIZ{(BALI)V (CoALE)}) V.. (20)

Using some standard results, [2], we are able to expand
this equation as follows

ALY = [(AoAA)NIPIT{(BoALY) V (CoAL)HLE

(21)
where there is no summation over ¢ on the LHS. When
we equate coefficients this gives

1 =Tl Iy (22)

which is the familiar expression relating projected lines
in the three views.



2 Projective Invariants from Two Un-
calibrated Cameras
Given 6 general 3D points whose R* and &% repre-
sentations are {X;,z;} ¢ = 1,..,6, a number of pro-
jective invariants can be formed, an example of which
is

X XXXy [X g X5 X X 6]
Inv = . (23)
[X1 XX X5][X3 X1 X X6]
where [X1X2X3X4] = (X1X2X3X4)I_1 and is

equivalent to the definition of the bracket in the
Grassmann-Cayley algebra [1]. Let X; project down
to A} and B in the two image planes 4 and B, and
iimn = (AJAAL)V (AJ,AAL), and similarly for
It is shown in [2] that the bracket of 4 world

B;jmn‘
points (in R*) can be written as

S1234 = [X1XoX5Xy] = [AoBoAlg3Bloss]-  (24)

If we expand this bracket using A} = a;;A; and B} =
B:;B;) and use our matrix F given in the previous
section

F;; = [AoBoA;B;] (25)
we can write

Tnv — (aT1234F:81234)(aT4526F:64526) (26)

(aT1245 F,@1245) (aT3426 F:B3426)

where o934 = ((11234,1,(11234,2,(11234,3) and ,31234 =

(B1234,1, Br234,2, B1234,3) etc.
We now look at what happens when we attempt

to express Inv in terms of what we actually observe —
the 3D image coordinates and the fundamental matrix
calculated from these image coordinates. Let us define
a matrix F by

Fy = (Ag-va)(Br-va) Fia. (27)

If @} = d;;a; and b = €;;b; (a} and b} are the &3
representations of A} and B}), then it can be shown
[2] that the following relationships hold

(]

B;74
€. 28
By Y (28)

61']' and ,31']' =

Thus we are able to write
i FruBu = (A} -72) (Bl v1) ik Friear. (29)

Now let us look again at Inv. According to the above
we can write Inv as

(5T1234 F€1234) (5T4526 F€4526)¢1234 ¢4526

(5T1245 F€1245)(5T3426F€3426)¢1245 ¢342(E )
30

Inv =

where @pgrs = (Apns"74) (Bpgrs~va). We see therefore
that the ratio of the terms 6" Fe which resembles the
expression for the invariant in R*, but uses only the
observed coordinates and the estimated fundamental
matrix, will not be an invariant. Instead, we need
to include the factors ¢1234 etc., which do not can-
cel. Since a}, ay and aj,s, are collinear we can write
i34 = p1234ay + (1 — p1aza)af. Then, by expressing
Al,s, as the intersection of the line joining A] and
A with the plane through Ag, Aj, A} it is relatively
easy to show [2] that we can write

(Algz1-74) (Aliz0674) _ M5 (3426 — 1) (31)
(AI3426'74)(A11245'74) Pas26 (1234 — 1)

The values of y are readily obtainable from the images.
The factors By,,,-v4 are found in a similar way so
that if b 554 = A1234b) + (1 — A1234) by etc., the overall
expression for the invariant becomes

Inw — (67 1234 F€1234) (8" a506 F€as26) -
(6" 1245 F€1245) (8" 3426 Fezane)

= K124 (3426 — 1) )= A1245 (Aza26 — 1)‘

tas26 (1234 — 1) Ags26(A1234 — 1)

(32)

To conclude: given the coordinates of a set of 6
corresponding points in the two image planes (where
these 6 points are projections from arbitrary non-
coplanar world points) we can form 3D projective in-
variants provided we have some estimate of F'. See [2]
for a more detailed discussion of this issue.

3 Projective Invariants from Three
Uncalibrated Cameras

The technique used to form the 3D projective in-
variants for two views can be straightforwardly ex-
tended to give expressions for invariants from three
views. Consider the scenario shown in figure 3. Sup-
pose we have four world points, {X;,X3,X3,X4} (or
two lines X3AX 3 and X3AX,) projected into three cam-
era planes, where we use the same notation as in Sec-
tion 2. As before, we can write X;AXs = (AgALA12)V
(BO/\LBlg) and X3AXy = (Ao/\LA34) \% (Co/\LC34)
(where L, = AJAA} etc.). Once again, we can com-
bine the above expressions to give an equation for the
4-vector X1 AXsAX3AXy :

X1AX2AX3A Xy =
= [(AoALA12) V (BoALP 12)]A[(AoALA34) V (CoAL34)]
= (Ao/\A’1234)/\[(B0/\L312) \Y (Co/\LC34)]. (33)

The third line of equation (33) follows from a standard
rearrangement result (see [2]). Now, in terms of line



and point coordinates we have Lf, = I} ;L?, LS, =
l34’ij and A1234 = on234,;A;. It has been shown in
Section 2 that the components of the trilinear tensor
(which plays the role of the fundamental matrix for 3

views), can be written in geometric algebra as
Tijk = (AoAANA[BoALP) V (CoALS)]  (34)
so that equation (33) now reduces to
X1 AXoAX3 AKXy = Tijpanasa,il®12,1%4,.  (35)
The invariant Inv can then be expressed as
i

(Tijec1234,:0% 12,1934 1) (Trmnp 0a526,m 1P 26,01 15,p)

Inv = = .
(Tyrs01245,g1812,+1C 15,5 ) (Teuv 03426,: 1826, u1C 34,5
(36)

We therefore have an expression for invariants in three

views which is a direct extension of that found in the
two-view case. Now, as before, when forming the in-
variants from observed quantities, some correction fac-
tors will be necessary since equation (36) is given in
terms of R* quantities.

It is straightforward to show [2] that it is only the
point coordinates which require scaling. If we now
take lg:.’ & to represent the observed line coordinates of
the line joining Aj and A in image plane A (and
similarly for I} , etc.), and use @jyg, = O1234,i@; the
invariant is given by

oo — (LiakO1oaalih178a][Tij 0450651 26] (Al 9ga-74) (Alksze 74)

[Tijk‘siqz45l1%lo45] [Tijk‘s?ﬁzelalo%] (A'1245 "74)(A£’,426 “Ya) .

(37)

Here we have defined Tjjr = (A;-4) (B, 74) (B
7v4)(Clyy 7a) (Clgva) Ty for 51,52 = 1,2 if j = 3 etc.,
and similarly for k1, k2. The terms containing the A’s
represent the correction factor and are given (following
the result in the previous section) by

1245 (psa26 — 1)

. 38
tas26 (1234 — 1) (38)

In equation (37) the quantities are all observed quanti-
ties or entities we form from observed quantities. Tests
in MAPLE show that the above expression is indeed
invariant.

4 Experiments

In this section we present computations on both
synthetic and real data. In each case the estimates of
the fundamental matrix and the trifocal tensor were
made using simple linear methods (no constraints were
enforced) — this is adequate for the purposes of this
paper.

Four different sets
of six points S; = {Xi1, X2, X3, Xia, Xis, Xig
i=1,..,4, were considered in the simulation and these
were viewed from several different camera positions.
The three possible invariants, {1 ;,12,;,03,;} (here the
invariants are the three linearly independent versions
of Inv which arise from permuting the order of the
points), were computed for each set. These invari-
ants of each set were represented as 3D vectors,
vi = [I14,15,,1I5:]". The comparison of the invari-
ants was done using Euclidean distances of the vectors

d('Ui, 'Uj) = [
distance d(v;, v;) lies between 0 and 1 and it does not
vary when v; or v; is multiplied by a nonzero constant
— this follows Hartley’s analysis given in [3].

Figure 4 shows two sets of tables. The (i, j)th en-
try in the top left-hand box shows d(v;, v;) for invari-
ants formed from two views when gaussian noise of
o = 0.005 was added to the image points. The boxes
below this show the same thing for increasing . The
right-hand column shows the equivalent for invariants
formed from three views using the expression given in
Section 3. Clearly, we would like the diagonal elements
to be as close as possible to zero since the invariants
should be the same in all views in the zero noise case.
The off-diagonal elements give some indication of the
usefulness of the invarinats in distinguishing between
sets of points (we would like these to be as close to 1
as possible).

We can see that the performance of the invariants
based on trilinearities is rather better than those based
on bilinearities.

In the case of real images we use a sequence of im-
ages taken by a moving robot equipped with a binoc-
ular head. Figure 5 shows an example of images taken
with the left and right eyes. Image pairs, one from
the left sequence and one from the right sequence were
taken to form invariants using F. For the formation
of invariants using T', two from the left and one from
the right sequence were used. 38 points were semi-
automatically taken and 6 sets of 6 general points
were selected. The vector of invariants for each set
was formed using both F and T and the set of dis-
tances found are shown in figure 6. We again see that
computing the invariants from 3 views is more robust
and useful than computing them from 2 views — one
would expect this from a theoretical viewpoint.

|||'u ||||'U |||] For any v; and v; the

5 Conclusions

Here we have reviewed the computation of general
3D projective point invariants from two views and
given a novel expression for computing these invari-



Invariants using F Invariants using T

0.000 0.590 0.670 0.460 0.000 0.590 0.310 0.630
0 0.515 0.68 0 0.63 0.338

0.59 0 0.134 0.67

0.69 0.29

0.063 0.650 0.750 0.643 0.044 0.590 0.326 0.640
0.67 0.78 0.687 0 0.63 0.376

0.86 0.145 0.192 0.67

0.531 0.389

0.148 0.600 0.920 0.724 0.031 0.100 0.352 0.660
0.60 0.96 0.755 0.031 0.337 0.67

0.71 0.97 0.31 0.67

0.596 0.518

0.900 0.838 0.690 0.960 0.000 0.640 0.452 0.700
0.276 0.693 0.527 0.063 0.77 0.545

0.98 0.59 0.321 0.63

0.663 0.643

Figure 4: The distance matrices show the performance
of the invariants with increasing Gaussian noise o
(from top to bottom): 0.005, 0.015, 0.025 and 0.04.

ants from three views. Using geometric algebra, the
formation of these invariant expressions is straightfor-
ward. Experimental evidence confirms that the in-
variants formed from the trifocal tensor exhibit better
performance than those formed from the fundamental
matrix.
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