
Geometric Algebra: a Framework for Computing Point and LineCorrespondences and Projective Structureusing n Uncalibrated CamerasE. Bayro-Corrochanoy J. Lasenby� G. Sommery�Cambridge University Engineering DepartmentyComputer Science Institute, Christian-Albrechts University, KielE-mail: edb,gs@informatik.uni-kiel.d400.de, jl@eng.cam.ac.ukAbstractIn this paper we present geometric algebra as a sys-tem for analysing the geometry of multiple-view im-ages. The power of this approach is illustrated by giv-ing purely geometric derivations of the constraints forpoint and line correspondences in n-views and via adiscussion of projective structure.1. IntroductionGeometric algebra is a coordinate-free approach togeometry based on the algebras of Grassmann [5] andCli�ord [3]. A basic introduction to the algebra is givenin the accompanying paper in these proceedings [10]and in [1, 9], while a more complete treatment can befound in [8]. [10] also outlines the formulation of pro-jective geometry using geometric algebra, the associ-ated linear algebra framework and the interpretation ofprojective transformations. Using these basic results,this paper will discuss the algebra of incidence and thenuse this to formulate multiple view constraints and ad-dress projective reconstruction.
1.1. Algebra in projective spaceThis section will use the notation established in [10].Consider three non-collinear points, P1; P2; P3, rep-resented by vectors x1; x2; x3 in E3 and by vectorsX1; X2; X3 in R4. The line L12 joining points P1 andP2 can be expressed in R4 by the following bivector,L12 = X1^X2: (1)Any point P , represented in R4 by X, on the linethrough P1 and P2, will satisfyX^L12 = X^X1^X2 = 0: (2)

This is therefore the constrained equation of the linein R4. In general such an equation is telling us that Xbelongs to the subspace spanned by X1 and X2. Simi-larly, the plane �123 passing through points P1; P2; P3is expressed by the following trivector in R4�123 = X1^X2^X3: (3)In E3 there are generally three types of intersectionswe wish to consider. We will look at two of these casesas an illustration and for these we will require the fol-lowing general result, which gives the inner product ofan r-blade, Ar = a1^a2^ :::::^ar , and an s-blade,Bs = b1^b2^:::::^bs (for s � r)Bs �(a1^a2^:::^ar) =Xj �(j1j2::::jr)Bs�(aj1^aj2 :̂:::̂ ajs)ajs+1 :̂::̂ ajr (4)where we sum over all combinations j = (j1; j2; ::::; jr)such that j1 < j2 < :::: < jr and �(j1j2:::jr) = +1or �1 according as j is an even or odd permutationof (1; 2; 3; :::; r). See [8] for further discussion of thisresult.1.1.1 Intersection of a line and a planeConsider a line A = X1^X2 intersecting a plane � =Y1^Y2^Y3 { all vectors are in R4. The intersectionpoint is expressible using the meet operationA _ � = (X1^X2) _ (Y1^Y2^Y3): (5)Using the de�nition of the meet given in [10] we haveA _� = �A� �� (6)since the pseudoscalar of R4 (which we call I or some-times I4) squares to �1. This leads toA� �� = (AI�1)�� = �(AI)��: (7)



Using equation 4 we can then expand the meet A _�as f(AI)�(Y2^Y3)gY1 + f(AI)�(Y3^Y1)gY2+ f(AI)�(Y1^Y2)gY3:(8)If [A1A2A3A4] is taken to be the magnitude of thepseudoscalar formed from the four vectors, then withsome manipulation the meet reduces to (neglecting anoverall minus sign)A _� = [X1X2Y2Y3]Y1 + [X1X2Y3Y1]Y2+[X1X2Y1Y2]Y3 (9)giving the intersection point (vector in R4). Note thatthis is precisely the expansion of the meet given bythe Grassmann-Cayley algebra [2]. We must identifythe r-extensors of the Grassmann-Cayley algebra withr-blades in our geometric algebra.The equivalent bracket in E3 is formed by evaluatingthe following volume(x2 � x1)^(x3 � x1)^(x4 � x1)I3�1; (10)where we use the idea of the projective split discussedin [10], xi = Xi^
4Xi �
4 . We can summarize the aboverelationships between the brackets of 4 points in R4and E3 as follows[X1X2X3X4] = (X1^X2^X3^X4)I4�1� f(x2 � x1)^(x3 � x1)^(x4 � x1)gI3�11.1.2 Intersection of two planesThe intersection of two planes �1 = X1^X2^X3 and�2 = Y1^Y2^Y3 is given by the meet of �1 and �2;�1 _�2 = (X1^X2^X3) _ (Y1^Y2^Y3): (11)As before, this can be expanded using the de�nition ofthe meet and the fact that (�1I)�Yi � �[X1X2X3Yi],to give�1_�2 = [X1X2X3Y1](Y2̂ Y3)+[X1X2X3Y2](Y3̂ Y1)+ [X1X2X3Y3](Y1^Y2); (12)producing a line of intersection (bivector in R4). Iden-tifying 2-extensors with bivectors , the above expansionis seen to be the same as the expressions given in [2].The intersection of two lines can be similarly dis-cussed. The 4D algebra described above has beenimplemented using the computer algebra packageMAPLE.2. Point and line correspondencesWe will now look at point and line correspondencesbetween two, three and n cameras. For the analysis,let (a1;a2;a3) (b1; b2; b3), (c1; c2; c3) .... (n1;n2;n3)de�ne the image planes in views 1, 2, 3,..,n and let a0,b0, c0, .... n0 be the corresponding optical centres. Westart with the well-understood case of two cameras.

2.1. Two cameras: the bilinear constraintThe projections of a world point Pi (representedby xi and Xi in E3 and R4) will be a0i and b0i in thetwo image planes and the R4 representations of thesequantities will be denoted by uppercase vectors, e.g.A0i and B0i. A0i can be expressed as the intersection ofa line and image plane 1 (see �gure 2, [10]):A0i = (A0 ^Xi) _ (A1 ^A2 ^A3) (13)= [A0XiA2A3]A1+[A0XiA3A1]A2+[A0XiA1A2]A3and similarly forB0i andC0i. We can de�ne three planesthrough the optical centre of each camera, for example,�1j; j = 1; 2; 3 are planes through A0 de�ned by�11 = A0^A2^A3; �12 = A0^A3^A1;�13 = A0^A1^A2: (14)Taking two views, say 1 and 2, the epipoles are de�nedas the intersections e1 and e2 of the line joining a0 andb0 with the image planes. In R4, E1 and E2 are foundeasily as pointed out by Carlsson [2], for example;E1 = (A0^B0) _ (A1^A2^A3) (15)= [A0B0A2A3]A1+[A0B0A3A1]A2+[A0B0A1A2]A3:Since E1 lies in the plane de�ned by A0^B0^Bi forany i, we have E1^(A0^B0^Bi) = 0: (16)Expanding this equation leads to FT" = 0, where " =("1; "2; "3) ifE1 = "1A1+"2A2+"3A3 andF is the wellknown fundamental matrix ( (F)ij = [A0B0AiBj]).The coordinate vector of the epipolar point of view 1therefore corresponds to the null-space of the trans-pose of the fundamental matrix F . Now, the epipolarconstraint is simply that a0, b0, a0i, b0i are coplanarif a0i and b0i are projections of the same world point.This can be concisely written as LA ^ LB = 0 whereLA = A0 ^A0i and LB = B0 ^B0i or [A0B0A0iB0i] = 0.Expressed in terms of the A0i; B0i this gives[A0B0(�i1A1+�i2A2+�i3A3)(�i1B1+�i2B2+�i3B3)]= �iTF�i = 0: (17)The epipolar or bilinear constraint has also been ex-pressed [4, 7] in terms of intersections of the planes �ij.For example, lines LA = A0 ^A0i and LB = B0 ^ B0iintersect if LA ^ LB = 0. Since LA = �i1(A0 ^A1) +�i2(A0^A2)+�i3(A0^A3) and A0^A1 = �12 _ �13etc., we can write LA ^ LB = 0 as(�i1�12 _�13 + �i2�13 _�11 + �i3�11 _�12)^ (18)(�i1�22 _�23 + �i2�23 _�21 + �i3�21 _�22) = 0:This is equivalent to equation 4 of [4]. If we had a3rd camera we would have two further constraints fromLA ^ LC = 0, ([A0C0A0iC0i] = 0) and LB ^ LC = 0,([B0C0B0iC0i] = 0).



Figure 1. The trilinear constraint in terms ofintersecting lines and planes.
2.2. Three cameras: the trilinear constraintsFor point correspondences in three views we alsohave constraints of the following form;LA^f�Bi _�Cjg = 0 ; LB^f�Ai _�Cjg = 0;LC^f�Ai _�Bjg = 0 (19)where �Ak, �Bk and �Ck are planes de�ned by �Ak =A0^Ak^A0i etc. The �rst constraint in equation 19 issimply saying that line LA and the line of intersectionof planes �Bi and �Cj must intersect at a point { thispoint being P (drop subscript i on P , A0 etc.), seeFigure 1. Let us express this �rst constraint in termsof R4 vectors LA^f�Bi _�Cjg = (20)(A0^A0i)^f(B0 ^Bi ^B0) _ (C0 ^Cj ^C0)g = 0:The points A0;B0;C0 can also be expanded in termsof R4 vectors; A0 = �iAi, B0 = �iBi and C0 = �iCi.We can therefore writeB0^Bi^B0 = �l(B0^Bi^Bl) � �l�BilC0^Cj^C0 = �m(C0^Cj^Cm) � �m�Cjm;(21)where we have now renamed the planes �11 etc. asgiven above. The constraint in equation 20 can now bewritten as�k(A0^Ak)^f�l�m(�Bil _�Cjm)g = 0 (22)which can be put into the form~T ijklm�k�l�m = 0 (23)where ~T ijklm = [A0Ak(�Bil _�Cjm)]: (24)This is a trilinear constraint [6]. There are obviously9 possible choices of the pair (ij). However, by ex-panding the bracket in ( 24) it can be shown that only4 of these are independent { say (1; 1), (2; 2), (1; 2)and (2; 1). Since we had three original constraints, thisleads to a total of 12 trilinearity constraints as noted

by [4]. We note here that our tensor ~T ijklm is related toHartley's tensor [7] via;~T ijklm �! Tpqr (25)where p = 1 if (i; l) = (2; 3), p = 2 if (i; l) = (1; 3)and p = 3 if (i; l) = (1; 2) ; (2; 1). Similarly, q = 1 if(j;m) = (2; 3) etc.. We also note that for given (i; j)only certain values of (l;m) give non-zero expressionsfor ~T .
2.3. Line correspondences between three camerasHere we outline the derivation of the trilinear con-straints for lines. We will not need Pl�ucker coordinatesor indeed any constructions that we have not alreadydiscussed in the point case.Given world points P1 and P2, whose R4 represen-tations are P1 and P2, the line L12 joining P1 and P2can be expressed as L12 = P1^P2. L12 projects downto lines in the three image planes, these areLA12 = A01^A02 LB12 = B01^B02 LC12 = C01^C02: (26)As before, we can expand A0i as �ijAj . LA12 can then beexpanded in terms of the `basis bivectors' LAk as followsLA12 = lkLAk (27)where LA1 = A2^A3, LA2 = A3^A1 and LA3 = A1^A2and l1 = �12�23 � �13�22 etc. Similarly we haveLB12 = l0lLBl ; LC12 = l00mLCm: (28)Note here that the coe�cients which describe the linesl0k and l00k have been denoted as such to coincide withHartley's notation. To arrive at a constraint betweenthe lines in the image planes we note that the line L12can be expressed as the meet of the planes (B0̂ B01̂ B02)and (C0^C01^C02). Also LA12 = A01^A02 can be writtenas the meet of planes (A0^P 1^P 2) and (A1^A2^A3).We therefore have the identityA01^A02 = fA0^f(B0^B01^B02) _(C0^C01^C02)gg _ (A1^A2^A3): (29)Using the expansions in terms of the line coe�cientsthis reduces tolkLAk = fA0^fl0l�Bl _ l00m�Cmgg _ (A1^A2^A3): (30)This can then be simpli�ed using the de�nition of themeet; lkLAk = l0ll00mf[A0f�Bl _�CmgAn]LAng: (31)From this it is clear that the relationship between thel's is



Figure 2. The quadrilinear constraint in termsof pairs of intersecting planes.lk = l0ll00mf[A0f�Bl _�CmgAk]= l0ll00mf[A0Akf�Bl _�Cmg]= l0ll00mTklm (32)from the de�nition of ~T in terms of Hartley's tensor.This is precisely the constraint obtained by Hartley,but here it is arrived at via purely geometric reasoning.
2.4. Point correspondences between n cameras: n-

linear constraintsIn E3 there are just three important intersections;the intersection of a line and a plane, a plane and aplane, and a line and a line and it is therefore unlikelythat taking more and more cameras will continue togive more constraint information. Using the conditionthat two lines intersect in space we can relate 4 views;we do this by joining two sets of intersecting planes,see Figure 2. If we have n views let us choose 4 ofthese views and denote them by A, B, C and N. �Aj _�Bk gives a line passing through world point P as does�Cl _�Nm. We therefore have the conditionf�Aj _�Bkg^f�Cl _�Nmg = 0: (33)If N 0 = �1N1 + �2N2+ �3N3 then this condition canbe written as�r�s�t�uf(�Ajr _�Bks)^(�Clt _�Nmu)g = 0: (34)The bracketed quantity above can be expanded interms of the bilinear and trilinear constraints in a sim-ilar manner to that given by [4]. Therefore for a set upof n cameras or a moving sensor the general equationfor computing bi- tri- and quadri-linear constraints isf�Kk _�Llg^f�Mm _�Nng = 0 (35)where K,L,M and N are any four of the n cameras orany four views from a moving observer. Note that thisequation subsumes the two and three camera cases, i.e.for two cameras use LK instead of f�Kk_�Llg and LLinstead of f�Mm_�Nng and for three cameras use LKinstead of f�Kk _ �Llg and f�Ll _ �Mmg instead off�Mm _�Nng.

Figure 3. Invariant projective depth using nuncalibrated cameras.3. Projective structure using n uncali-brated camerasHere we will use the geometric algebra formulationof projective geometry to compute the projective depthdiscovered by Shashua [11]. Projective depth is simplythe cross-ratio of projected points lying on an epipolarline of any of the n cameras.
3.1. Homomorphic transformationsConsider a world point P and 4 other distinct pointsPi; i = 1; 2; 3; 4 de�ning a tetrahedron. Let �R = P1^P3^P4 and �S = P1^P2^P3 and assume P does not lieon either of these two planes { see �gure 3. Let Ri andSi be the intersections of the line joining the opticalcentre of the ith camera with point P with the planes�R and �S, e.g. R1 = �R_ (A0^P). Let Rni and Sni bethe projections of the points Ri and Si onto the nthimage planes { e.g. R21 = (B0^R1) _ (B1^B2^B3)etc. Note that Rii and Sii are simply the projectionsof the world point P onto the ith image plane, e.g.R11 = S11 = (A0^P) _ (A1^A2^A3). Let us call theith image plane  i.In order to compute a cross-ratio which will be de-�ned later, we must be able to calculate the image co-ordinates of Rni ;Sni . We can do this by �nding the ho-momorphic transformations or homographies relatingprojected points in one image plane to the projectedpoints in another. Consider the homography betweenimage planes  i and  j due to the plane �S . If theprojections of P1;P2;P3 onto  i and  j are fPikg andfPjkg, for k = 1; 2; 3, then the linear function fSij rep-resenting this transformation must satisfyfSij(Pik) = Pjk for k = 1; 2; 3: (36)Here we are working in R3 so that the non-linear pro-jective transformations in E2 (plane to plane) becomelinear { the above linear-function representation is out-lined in [10]. Similarly, the corresponding homographydue to the plane �R is represented by the linear func-tion fRij given by



fRij(Pik) = Pjk for k = 1; 3; 4: (37)If four point correspondences from each plane areknown then these linear functions can be recovered upto a scale factor by simple linear techniques. Sincethe homographies must map the epipole in one im-age plane onto the epipole in the other, we can choosethe epipoles as the fourth point if these are known;fRij(Eji) = Eij etc.
3.2. Computing the projective depthThe fundamental projective invariant in 1D is thecross-ratio. We can form a cross-ratio from thecollinear points P;R1;S1;A0, namely� = (S1^A0)I�12(R1^A0)I�12 (R1^P)I�12(S1^P)I�12 : (38)See [10] for a discussion of the formation of invariantsin the geometric algebra framework. � will be invariantwhen projected onto any other image plane. Considerthis cross-ratio in the image plane of the second cam-era; � = (S21^E12)I�12(R21^E12)I�12 (R21^P2)I�12(S21^P2)I�12 : (39)If we know the linear functions fS12; fR12, then we canwrite this ratio as� = (fS12(P1)^E12)I�12(fR12(P1)^E12)I�12 (fS12(P1)^P2)I�12(fR12(P1)^P2)I�12 : (40)Recall that the homographies were determined only upto a scale factor, therefore we are free to choose thescale factors for fS and fR such that(fS12(P1)^E12)I�12(fR12(P1)^E12)I�12 = 1: (41)Assuming that each homography found between planesi; j, is scaled in this way, we have a general form forthe ratio, which we write as k, given byk = �(fSij(Pi)^Pj)I�12 �=�(fRij(Pi)^Pj)I�12 �: (42)This is the invariant termed projective depth in [11].If we have a number of views available then, in thisframework, a more robust estimate of k would be givenby k = 1n X(i6=j) (fSij(Pi)^Pj)I�12(fRij(Pi)^Pj)I�12 ; (43)where n is the number of estimates used. We can write(42) as

(fRij(Pi)^Pj) = k(fSij(Pi)^Pj); (44)which can then be rearranged to give(fRij(Pi) + kfSij(Pi))^Pj = 0: (45)This tells us that Pj is parallel to (fRij(Pi)+kf Sij(Pi)).Therefore, if the linear functions fSij; fRij and the invari-ant k are known, we can projectively reconstruct Pj.4. ConclusionsThis paper shows how the constraints relating pointand line correspondences in multiple views are formedin a geometrically intuitive manner using the geomet-ric algebra framework. For the case of three views, thederivations of the trilinear constraints are derived us-ing nothing more than the intersections of planes andlines { there is no introduction of matrices or Pl�uckercoordinates. Finally, we illustrate how to form a usefulprojective invariant [11] in this framework.References[1] Bayro-Corrochano, E. and Lasenby, J. 1995. Object modellingand motion analysis using Cli�ord algebra. Proceedings ofEurope-China Workshop on Geometric Modeling and Invari-ants for Computer Vision, Ed. Roger Mohr and Wu Chengke,Xi'an, China, 143:149, April 1995.[2] Carlsson, S. 1994. The Double Algebra: and e�ective toolfor computing invariants in computer vision. Applications ofInvariance in Computer Vision, Lecture Notes in ComputerScience 825. Eds. Mundy, Zisserman and Forsyth. Springer-Verlag.[3] Cli�ord, W.K. 1878. Applications of Grassmann's extensivealgebra. Am. J. Math. 1: 350{358.[4] Faugeras, O. and Mourrain, B. 1995. On the geometry and al-gebra of the point and line correspondences between N images.pp102:109 of Proceedings as in [1].[5] Grassmann, H. 1877. Der Ort der Hamilton'schen Quaternio-nen in der Ausdehnungslehre. Math. Ann., 12: 375.[6] Spetsakis M.E. and Aloimonos J. 1990. Structure from motionusing line correspondences. International Journal of ComputerVision, 4, 171:183.[7] Hartley, R. 1994. Lines and Points in three views { a uni�edapproach. In ARPA Image Understanding Workshop, Mon-terey, California.[8] Hestenes, D. and Sobczyk, G. 1984. Cli�ord Algebra to Ge-ometric Calculus: A uni�ed language for mathematics andphysics. D. Reidel, Dordrecht.[9] Lasenby, J. 1995. Engineering Applications of Geometric Alge-bra. to appear in Proceedings of Ban� Summer School on Geo-metric Algebras in Physics. August 1995. Birkhauser Boston.[10] Lasenby, J., Bayro-Corrochano, E., Lasenby, A., Sommer, G.1996. A new methodology for computing invariants in com-puter vision. Proceedings of ICPR'96, Vienna.[11] Shashua, A. 1994. Projective structure from uncalibrated im-ages: structure from motion and recognition PAMI, 16(8),778:790.


