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Abstract

In this paper we present geometric algebra as a sys-
tem for analysing the geometry of multiple-view im-
ages. The power of this approach is illustrated by giv-
g purely geometric derivations of the constraints for
point and line correspondences in n-views and via a
discussion of projective structure.

1. Introduction

Geometric algebra is a coordinate-free approach to
geometry based on the algebras of Grassmann [5] and
Clifford [3]. A basic introduction to the algebra is given
in the accompanying paper in these proceedings [10]
and in [1, 9], while a more complete treatment can be
found in [8]. [10] also outlines the formulation of pro-
jective geometry using geometric algebra, the associ-
ated linear algebra framework and the interpretation of
projective transformations. Using these basic results,
this paper will discuss the algebra of incidence and then
use this to formulate multiple view constraints and ad-
dress projective reconstruction.

1.1. Algebrain projective space

This section will use the notation established in [10].
Consider three non-collinear points, Py, P», P3, rep-
resented by vectors @i, xo, 3 in £ and by vectors
X, X5, X3 in R*. The line L1, joining points P; and
P, can be expressed in R* by the following bivector,

Lis = X3 AXo. (1)

Any point P, represented in R* by X, on the line
through P; and Ps, will satisfy

XALpy = XAX;AX, = 0. (2)
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This is therefore the constrained equation of the line
in R*. In general such an equation is telling us that X
belongs to the subspace spanned by X; and Xs. Simi-
larly, the plane @123 passing through points P, P2, Ps
is expressed by the following trivector in R*

<1)123 = Xl/\Xz/\Xg. (3)

In &3 there are generally three types of intersections
we wish to consider. We will look at two of these cases
as an illustration and for these we will require the fol-
lowing general result, which gives the inner product of
an r-blade, A, = ajAasA..... Aa,, and an s-blade,
By = by Aba AL ADs (for s <)

Bs-(aihasA...Aay) =

Ze(j1j2....jT)Bs~(a]'1/\a]'2/\..../\ajs)ajs+1/\.../\ajT (4)
J
where we sum over all combinations 5 = (j1, ja, ...+, jr)
such that j; < j2 < ... < jr and €(j1j2...Jr) = +1
or —1 according as 7 is an even or odd permutation

of (1,2,3,...,r). See [8] for further discussion of this
result.

1.1.1 Intersection of a line and a plane

Consider a line A = X3 AX5 intersecting a plane ® =
Y AY2AYs — all vectors are in R*. The intersection
point is expressible using the meet operation

AVE®=(XiAXy)V(Y1AY2AY3). (5)

Using the definition of the meet given in [10] we have

AVO=—A"-d (6)

since the pseudoscalar of R* (which we call I or some-
times I4) squares to —1. This leads to

A* D = (A1) @ = —(AI)-®. (7)



Using equation 4 we can then expand the meet AV &
as

{(AD)(Y2AY3)} Y1 + {(AD-(Y3AY1)}Y:

+ {(AD)-(Y1AY3)}Y35.(8)

If [AjA5A3A,] is taken to be the magnitude of the
pseudoscalar formed from the four vectors, then with
some manipulation the meet reduces to (neglecting an
overall minus sign)
AVve®=[X;X,Y,Y3]Y, +[Xi1XoY5Y,]Y,
+[X1X2Y1Y5]Ys (9)

giving the intersection point (vector in R?*). Note that
this i1s precisely the expansion of the meet given by
the Grassmann-Cayley algebra [2]. We must identify
the r-extensors of the Grassmann-Cayley algebra with
r-blades in our geometric algebra.
The equivalent bracket in £3 is formed by evaluating
the following volume
(332—331)/\(333—331)/\(334—331)[3_1, (10)
where we use the idea of the projective split discussed

in [10], ®; = %ﬂ We can summarize the above
relationships between the brackets of 4 points in R*
and &3 as follows

(X1 X0 X5X,y] = (X1 AXoAXAX ),

={(w2 — @) (X3 — )N (4 — 931)}]3_1

1.1.2 Intersection of two planes

The intersection of two planes ®; = X; AX3A X3 and
Py = YIAY2AY3 is given by the meet of @1 and P,;
D VP = (X1AX2AX) V(Y1IAY2AYS).  (11)

As before, this can be expanded using the definition of

the meet and the fact that (®,7)-Y; = —[X;X:X5Y;],

to give

D1vPy = [X1 X2 X3 Y1 (YoAY3)+H[X1 X2 X5Y 2] (YY)
+ [X1 X2 X5Y5](Y1AYS), (12)

producing a line of intersection (bivector in R*). Iden-
tifying 2-extensors with bivectors , the above expansion
is seen to be the same as the expressions given in [2].
The intersection of two lines can be similarly dis-
cussed. The 4D algebra described above has been
implemented using the computer algebra package

MAPLE.

2. Point and line correspondences

We will now look at point and line correspondences
between two, three and n cameras. For the analysis,
let (al, as, a3) (bl, bz, bg), (Cl, Ca, 03) (nl,nz, n3)
define the image planes in views 1, 2, 3,..,n and let ag,
by, ¢y, .... ng be the corresponding optical centres. We
start with the well-understood case of two cameras.

2.1. Two cameras; thebilinear constraint

The projections of a world point P; (represented
by #; and X; in £ and R?') will be a} and b} in the
two image planes and the R* representations of these
quantities will be denoted by uppercase vectors, e.g.
Al and B]. A} can be expressed as the intersection of
a line and image plane 1 (see figure 2, [10]):

Al = (AgAX;)V (A1 A Ay A As) (13)
= [AoX; A As] A1 +[AoX; AsA ] Ar+HA0X; A1 A]As

and similarly for B and C;. We can define three planes
through the optical centre of each camera, for example,
®y;, j =1,2,3 are planes through Ay defined by

CI)H = Ao/\Az/\Ag, <I>12 = Ao/\A3/\A1,
P15 = AgAAIAA,.  (14)

Taking two views, say 1 and 2, the epipoles are defined
as the intersections e; and es of the line joining ay and
by with the image planes. In R*, E; and E, are found
easily as pointed out by Carlsson [2], for example;

E, = (Ao/\Bo) V (Al/\AZ/\AS) (15)
= [AOBoA2A3]A1+[A0B0A3A1]A2+[A0BOA1Az]AS'

Since E; lies in the plane defined by Ay ABgAB; for
any 1, we have

E.1A(AgABoAB;) = 0. (16)

Expanding this equation leads to F'e = 0, where & =
(61,62, 63) HE] =¢1Aj+e0As+e3A3 and F 1s the well
known fundamental matrix ( (F);; = [AoBogA;B;]).
The coordinate vector of the epipolar point of view 1
therefore corresponds to the null-space of the trans-
pose of the fundamental matrix . Now, the epipolar
constraint is simply that ag, bo, al, b, are coplanar
if a! and b; are projections of the same world point.
This can be concisely written as L4 A Lgp = 0 where
Li=AoANAl and Lp = By AB; or [A¢BoAB}] = 0.
Expressed in terms of the A}, B! this gives
[AoBo(os1A1+ai2As+a;3A3)(6i1 B1+52B2+8i3Bs)]
=a;" FBi =0. (17)
The epipolar or bilinear constraint has also been ex-
pressed [4, 7] in terms of intersections of the planes ®;;.
For example, lines Ly = Ag A A; and Lg = Bg A B;
intersect if Ly A Lp = 0. Since Ly = a;1(Apg A Ay) +
Oziz(Ao/\Az)—FOzig(Ao/\Ag) and AQ/\A1 = @12 vV <1)13
etc., we can write Ly A Lg = 0 as
(i1®12 V P13+ ja P13 V P11 + ajaPq1 V P12)A (18)

(Bi1®Pa2 V Baz + GiaPaz V Pay + BiaPay V $aa) = 0.
This is equivalent to equation 4 of [4]. If we had a
3rd camera we would have two further constraints from
LaALc =0, ([AgCoALC]] = 0) and Ly A Le = 0,
([BoCoB;C;] = 0).



Figure 1. The trilinear constraint in terms of
intersecting lines and planes.

2.2. Three cameras. thetrilinear constraints

For point correspondences in three views we also
have constraints of the following form;

LA/\{CI)BZ'\/CI)C]'}IO ,LB/\{CI)Ai\/(I)Cj}:Oa
LC/\{CI)AZ' vV <I>B]'} =0 (19)

where ® 45, Ppj and P, are planes defined by @45 =
Ao/\Ak/\A; etc. The first constraint in equation 19 is
simply saying that line L 4 and the line of intersection
of planes ®p; and ®¢; must intersect at a point — this
point being P (drop subscript i on P, A’ etc.), see
Figure 1. Let us express this first constraint in terms
of R* vectors

Lan{®pi V &c;} = (20)
(AgAADA{(Bo AB; AB' )V (CoAC; AC)} = 0.
The points A’, B’, C’ can also be expanded in terms
of R* vectors; A’ = oA, B’ = 3;B; and C' = 6;C;.
We can therefore write
BoAB;AB' = [i(BoAB;AB) = 308
CoAC;AC = 6,(CoAC;ACH) = 6,95, (21)

]ma
where we have now renamed the planes ®;; etc. as
given above. The constraint in equation 20 can now be
written as

(Ao AAR) A Brdm (O V @5} =0 (22)
which can be put into the form
T arfiby, =0 (23)
where o
T3 = [AoAR(®]] v @) (24)

This is a trilinear constraint [6]. There are obviously
9 possible choices of the pair (ij). However, by ex-
panding the bracket in ( 24) it can be shown that only
4 of these are independent — say (1,1), (2,2), (1,2)
and (2,1). Since we had three original constraints, this
leads to a total of 12 trilinearity constraints as noted

by [4]. We note here that our tensor Tﬁm is related to
Hartley’s tensor [7] via;

Tﬁm — Tpgr (25)

where p = 1if (4,1) = (2,3), p = 2 if (¢,{) = (1,3)
and p = 3 if (¢,0) = (1,2),(2,1). Similarly, ¢ = 1 if
(j,m) = (2,3) etc.. We also note that for given (4, j)
only certain values of (I, m) give non-zero expressions
for 7.

2.3. Line correspondences between three cameras

Here we outline the derivation of the trilinear con-
straints for lines. We will not need Pliicker coordinates
or indeed any constructions that we have not already
discussed in the point case.

Given world points P; and P,, whose R* represen-
tations are P; and Ps, the line L5 joining Py and P,
can be expressed as Lis = P1AP,. L5 projects down
to lines in the three image planes, these are

LY, = ALAAL L8, =BIAB, LS, = C/AC),. (26)

As before, we can expand A} as oz§ A;. L%, can then be
expanded in terms of the ‘basis bivectors’ L;? as follows

Liy = Iy L (27)
where L’f‘ = Az/\Ag, L’24 = A3/\A1 and L? = Al/\Az
and I} = adad — aia ete. Similarly we have

Lfgz = l;LF, L1cz = %Lgm (28)

Note here that the coefficients which describe the lines
Ui, and [}/ have been denoted as such to coincide with
Hartley’s notation. To arrive at a constraint between
the lines in the image planes we note that the line Lq,
can be expressed as the meet of the planes (BoAB{ABS)
and (CoAC/ACY). Also L, = A{AA) can be written
as the meet of planes (AgAP1AP3) and (A1AA2AA3).
We therefore have the identity

ATANAL = {AGA{(BoABIABS) V
(CoACIACH IV (ATAALANASG).  (29)
Using the expansions in terms of the line coefficients
this reduces to
L = {AoA{l1@F V 1,051}V (AL AAANA3). (30)
This can then be simplified using the definition of the
meet;
L = LU {[A{®F vV O YA LAY, (31)

From this it is clear that the relationship between the
Us is



Figure 2. The quadrilinear constraint in terms
of pairs of intersecting planes.

= G {[Ac{®f Vv & A]
= Gl {[AcAL{ef v & }]
= 40 Thim (32)

from the definition of 7' in terms of Hartley’s tensor.
This 1s precisely the constraint obtained by Hartley,
but here it is arrived at via purely geometric reasoning.

2.4. Point correspondences between n cameras. n-
linear constraints

In &3 there are just three important intersections;
the intersection of a line and a plane, a plane and a
plane, and a line and a line and it is therefore unlikely
that taking more and more cameras will continue to
give more constraint information. Using the condition
that two lines intersect in space we can relate 4 views;
we do this by joining two sets of intersecting planes,
see Figure 2. If we have n views let us choose 4 of
these views and denote them by A, B, C and N. ®4; V
D gy gives a line passing through world point P as does
DoV Py, We therefore have the condition

{CDA]'\/CI)B]C}/\{CI)CI\/CI)Nm}IO. (33)

If N' =9 Ny +1:N5+n3N3 then this condition can
be written as

o Bubenu{ (D V QL) A(RL V @1y, )} = 0. (34)

The bracketed quantity above can be expanded in
terms of the bilinear and trilinear constraints in a sim-
ilar manner to that given by [4]. Therefore for a set up
of n cameras or a moving sensor the general equation
for computing bi- tri- and quadri-linear constraints is

{CI)Kk\/q)Ll}/\{q)Mm\/q)Nn}:O (35)

where K,LL,M and N are any four of the n cameras or
any four views from a moving observer. Note that this
equation subsumes the two and three camera cases, 1.e.
for two cameras use L instead of {®gxpV®Pr;} and Ly,
instead of {® 1, V ®np, } and for three cameras use Lg
instead of {®xy V @r;} and {®r; V Pasp} instead of

Figure 3. Invariant projective depth using n
uncalibrated cameras.

3. Projective structure using n uncali-
brated cameras

Here we will use the geometric algebra formulation
of projective geometry to compute the projective depth
discovered by Shashua [11]. Projective depth is simply
the cross-ratio of projected points lying on an epipolar
line of any of the n cameras.

3.1. Homomor phic transfor mations

Consider a world point P and 4 other distinct points
P;i=1,2,3,4 defining a tetrahedron. Let 7p = P1 A
P3AP4 and 7 = P1AP AP35 and assume P does not lie
on either of these two planes — see figure 3. Let R; and
S; be the intersections of the line joining the optical
centre of the ith camera with point P with the planes
g and 7g, e.g. Ry = 7pV (AAP). Let R} and S} be
the projections of the points R; and S; onto the nth
image planes — e.g. R% = (BgAR;1) V (B1AB2AB3)
etc. Note that RZ: and SZ: are simply the projections
of the world point P onto the ith image plane, e.g.
Ri = S{ = (AgAP) V (A1 AA3AA3). Let us call the
tth image plane ;.

In order to compute a cross-ratio which will be de-
fined later, we must be able to calculate the image co-
ordinates of R}, S!'. We can do this by finding the ho-
momorphic transformations or homographies relating
projected points in one image plane to the projected
points in another. Consider the homography between
image planes v; and ; due to the plane mg. If the
projections of P, Py, P3 onto ¢; and ¢; are {P{} and
{Pi}, for k = 1,2, 3, then the linear function LS] rep-
resenting this transformation must satisfy

[3(PL) =P fork=123. (36)

Here we are working in R so that the non-linear pro-
jective transformations in £2 (plane to plane) become
linear — the above linear-function representation is out-
lined in [10]. Similarly, the corresponding homography
due to the plane ng is represented by the linear func-
tion L]j given by



JE(PL) =P fork =134 (37)

If four point correspondences from each plane are
known then these linear functions can be recovered up
to a scale factor by simple linear techniques. Since
the homographies must map the epipole in one im-
age plane onto the epipole in the other, we can choose
the epipoles as the fourth point if these are known,
ii(E]Z) = Eij etc.

3.2. Computing the projective depth

The fundamental projective invariant in 1D 1s the
cross-ratio.  We can form a cross-ratio from the
collinear points P, Ry, S1, Ag, namely

(S1AAQ)I; T (RiAP)IS!

= : 38
g (RiAANL ! (SIAP)I! (38)

See [10] for a discussion of the formation of invariants
in the geometric algebra framework. p will be invariant
when projected onto any other image plane. Consider
this cross-ratio in the image plane of the second cam-

era, 2 “1 ;2 A2y =1
) (STAE )1 (RIAP)I; . (39)
(RIAE o)t (SIAPH) ;!

S
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If we know the linear functions f ifz’ then we can

write this ratio as
(L POAER) L (1, (POAPY) !

T (R PHAEL)L ! (R (PHAPYH LY

(40)

Recall that the homographies were determined only up
to a scale factor, therefore we are free to choose the
scale factors for is and iR such that

(f,(PYAE) I
(f(PHAE) I

~1. (41)

Assuming that each homography found between planes
t,7, 1s scaled in this way, we have a general form for
the ratio, which we write as k, given by

k= ((f5@YAPHI/((FEPHAPHLT). (42)

This is the invariant termed projective depth in [11].
If we have a number of views available then, in this
framework, a more robust estimate of k would be given
by ) )

oo Ly LEINP)E!
. R/ pi iNy—17
where n is the number of estimates used. We can write

(42) as

(43)

(FFPOAP)) = K(f5(POAPT), (a4)

which can then be rearranged to give

(AP + kfS(P)APT = 0. (15)

This tells us that P is parallel to (L};L(PZ) —I—kLS](PZ))
Therefore, if the linear functions LS] , L]j and the invari-

ant k are known, we can projectively reconstruct P7.

4. Conclusions

This paper shows how the constraints relating point
and line correspondences in multiple views are formed
in a geometrically intuitive manner using the geomet-
ric algebra framework. For the case of three views, the
derivations of the trilinear constraints are derived us-
ing nothing more than the intersections of planes and
lines — there is no introduction of matrices or Plucker
coordinates. Finally, we illustrate how to form a useful
projective invariant [11] in this framework.
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