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Abstract

This paper presents a new selforganizing type RBF
neural network and introduces the Geometric Algebra
framework in the neurocomputing field. Real valued
neural nets for function approximation require feature
enhancement, dilation and rotation operations and are
limited by the Fuclidean metric. The authors believe
that more general and flexible neural networks should
be designed in order to capture important geometric
characteristics of the manifolds. This is an important
goal overlooked ever since. Geometric algebra is a sys-
tem which allows the design of neural networks in a
coordinate-free framework to process patterns between
layers using different dimensions and desired metric.
The potential of such nets working in a Clifford alge-
bra C(V,,4) is shown by a simple application of frame
coordination in robotics.

1 Introduction

Geometric algebra is a coordinate-free approach to
geometry based on the algebras of Grassmann and Clif-
ford [2] and has already been successfully applied to
many areas of mathematical physics and engineering
[2, 3, 4]. This paper shows that general and more flex-
ible neural networks can be designed in the Geometric
algebra framework to process patterns between layers
using different dimensions and desired metric.

An outline of the algebra will be given in the next
section and the reader is referred to [2] for more de-
tails. The third section involves a discussion on the
metric in neural computing. The new architecture and
its learning procedure is presented in the fourth sec-
tion. Finally experimental results of the robotics field
and the conclusion sections follow.
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2 An Outline of Clifford Algebra

Clifford algebras are well-known to pure mathemati-
cians [1]. In this work it will be used an interpretation
called geometric algebra [2] which is a coordinate-free
approach to geometry. In geometric algebra the ele-
ments are coordinate-independent objects called mul-
tivectors which can be multiplied together using a ge-
ometric product. It is thus very different to standard
vector calculus.

2.1 The Geometric Product and Multivectors

The geometric or Clifford product of two vectors a
and b is written ab and defined as

ab =a-b+aAb. (1)

Where the outer product, A, of two vectors forms a
bivector which is interpreted as a directed area. The
geometric product ab is therefore the sum of a scalar,
a-b, and a bivector, aAb. In 3 dimensions the the
trivector (aAb)Ac is an oriented 3-dimensional volume
obtained by sweeping the bivector aAb along the vector
c.

In a space of dimension n there are multivectors of
grade 0 (scalars), grade 1 (vectors), grade 2 (bivec-
tors), grade 3 (trivectors), etc... up to grade n. Any
two such multivectors can be multiplied using the geo-
metric product. Consider two multivectors A, and B
of grades r and s respectively. The geometric product
of A, and B, can be written as

A;B; = (AB), | +(AB),,,_,+...+(AB),_, (2)

where (M), is used to denote the ¢-grade part of mul-
tivector M, e.g. (ab) = (ab)y + {(ab)s =a-b+aAb.
In the following sections expressions of grade 0 will be
written ignoring their subindex, i.e. {ab)y = (ab) =

a-b.



2.2 Geometric Algebra and Rotors

For an n-dimensional space it can be introduced an
orthonormal basis of vectors {o;} i =1, ..., n such that
0;-0; = &;;. This leads to a basis for the entire algebra:

L, {Ui}a

{oing;},  {oiNojNoy},
.., o1ATaA. .. Aoy, (3)

Note that it shall not be used bold symbols for these
basis vectors. The highest grade element is called the
pseudoscalar of the space. Any multivector can be ex-
pressed in terms of this basis, and while it is often useful
to do so, it can be stressed that the main strength of ge-
ometric algebra is the ability to carry out operations in
a basis-free manner. The 23-dimensional Pauli-Algebra
has the following basis:

1 ,{0'1,0'2,0'3},{0’10’2,0’20’3,0’30’1},{0’10’20’3} =1.

scalar vectors
(4)

By straightforward multiplication it can be easily
seen that the three bivectors can also be written as

bivectors trivector

0903 =101 =%, 0103 = —i0y =],

0'10'2:i0'3:k. (5)

Using these simple bivectors it can be proved that the
quaternion algebra of Hamilton is a subset of the ge-
ometric algebra of space. If a quaternion A is repre-
sented by [ag, a1, as, as], then there exists a one-to-one
mapping between quaternions and rotors given by

./4 == [Clo, ai, as, Clg] — ag + al(ial) + Clz(iO'z) + Clg(iUg,)

(6)
In order to find out more about rotors in the geomet-
ric algebra we note that any rotation can be repre-
sented by a pair of reflections. It can be easily shown
that the result of reflecting a vector a in the plane
perpendicular to a unit vector n is a_ — a; = —nan
where a_ and a respectively denote parts of a per-
pendicular and parallel to m. Thus, a reflection of
a in the plane perpendicular to n, followed by a re-
flection in the plane perpendicular to m results in
a new vector —m(—nan)m = (mn)a(nm) = RaR.
The multivector R = mn is called a rotor. It con-
tains only even-grade elements and satisfies RR = 1.
In the 3-D space we use the term ‘rotor’ for those
even elements of the space that represent rotations.
Any rotor can be written in the form R = +eB/2,
where B is a bivector. In particular, in 3-D we write
R = ¢(-i5n) — cos% —in sin% which represents a ro-
tation of # radians anticlockwise about an axis parallel
to the unit vector n.

A potentially very useful expression for the rotation
operator R of a m-dimensional multivector x 1s

y = RxR = e~ B/%xeB/? (7)

where now B is a m-bladed bivector. This equation can
be further decomposed into a sequence of rotations by
angles |02x| in particular igg-planes

y = RmRm—1~~~R1XR1~~~Rm—1Rm~ (8)

where Ry = e~ B2x/2 and Ry, = eB2x/2,
3 Metric and Clifford Neural Networks

Classic neural network models and their training al-
gorithms are essentially dependent of the metric, scalar
product and norm. It is important to remark that all
these mathematical characteristics are only related to
the base of the vector space of the algebra and there-
fore fully independent of the attributed algebraic struc-
ture. In other words the metric is exclusively defined
by the space modelling using a particular vector ba-
sis. The quality of a neural network design in an alge-
braic framework depends of the modelling of the space
involving a particular metric and the relation of this
modelling with its associated algebraic product.

Recently Person et al [5] extended the complex Per-
ceptron developed by Georgiou and Koutsougeras [6]
in the Clifford algebra framework. The approach of
Pearson 1s unfortunately also limited to the Euclidean
metric. This uses as net inputs W- X | net outputs o; =
WX W X| and as learning rule Wiy = Wi + o Xy,
where X}, is the conjugate vector. Common rules of
complex conjugation are not automatically preserved in
the Clifford algebra. A difference between a more gen-
eral Clifford Algebra and complex numbers is shown by
the equation & = (|#|, 0, s3, ..., s ) where s; #£0 stands
for the resultant multivector of grade i. One operation
which is similar is Yy = y& V&, y multivectors.

Pearson et al [5] used the same transfer function
u(z) = ﬁ (where z is any multivector) as the one

used by Georgiou et al which is based in the Euclidean
1/2
norm in terms of the algebra || = (ZA [az]i) [2].

Georgiou et al [6] used for the prove of the learning rule
of the complex perceptron explicitly special character-
istics of the complex numbers like the Euler’s function
€!? = cos¢$ + ising. Due the noncommutative mul-
tiplication of the geometric product Pearson et al [5]
had to prove their learning rule in a different way. Af-
ter tests using the simulated Clifford backpropagation
multi-layer perceptron of Pearson, the authors of this
paper believe that the network using the norm of the
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Figure 1.a Dynamic node coding.

Euclidean space behaves actually as a simple real val-
ued backpropagation neural network and it has also
convergence problems. As a result one can affirm that
the design of the architecture and learning rule of the
Clifford type neural networks is still an open question.

The previous brief analysis shows that one should
look for more flexible structures which also allow the
processing with non-Euclidean metrics. In this paper
the authors present a neural network which can be for-
mated in any Clifford Algebra C(V, ;). Therefore the
network can process signals in any desired metric. The
selforganization phase is implemented in terms of basic
concepts of the resonance theory and in the supervised
phase Clifford outstars are tuned. The design guar-
anties that the neural network i1s able to capture im-
portant characteristics of the geometric structure of the
data. The authors believe that is the main motivation
for geometric algebra applications in neural computing.
This important scientific goal has been overlooked ever
since.

4 Net Architecture and Training Algo-
rithm

The learning procedure for the cases of the previous
section has to minimize an error function E(p) where
P is the vector (not a multivector) which comprises all
adjustable parameters.

In the Pearson’s implementation [5], the vector p'
(weights and activation values) can be adjusted using
the Clifford back propagation training rule. This proce-
dure is unfortunately limited to the Euclidean metric.
In contrast the selforganizing Clifford network allows
according to the task, if necessary, a different metric.
The learning procedure of the net consists basically in
the first phase of an unsupervised method for the hid-
den layer, i.e. a multivector clustering algorithm, and a
supervised one for the output layer. The second phase
of learning is supervised and if it is still necessary helps
to finetune all the net parameters. These phases and
the recall mode are explained separately in the next
subsections.
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Figure 1.b Outstars labeling.

4.1 Unsupervised Learning

Figure 1.a depicts the evolution of the net architec-
ture during selfsorganization. This process is in some
aspects similar to the adaptive resonance theory selfor-
ganization [7]. At the very beginning the waiting mem-
ory and the long term memory have virgin nodes. The
input patterns give information of different events and
can resonate with a corresponding existing node. This
capability of the net is implemented by a resonance
detector and control mechanism using a task depen-
dent metric and competitive learning. Note that the
geometric algebra approach allows the use of a specific
metric for a particular task. When a winner node is se-
lected its weights are smoothly further adjusted. Dur-
ing the coding of a new pattern the control mechanism
updates the weights of a resonant node which could be
either in the long term memory or in the waiting stage.
A candidate node resides in the waiting stage until 1t
surpasses an evidence threshold, then it will be shifted
to the long term memory. After the net is stable the
parameters of the radial basis functions for each node
are computed. These will be used for computing the
resonance grade or membership grade (A;) of an input
multivector with the jth-nodes. This factor will play
an important role in the inhibition effect of the non-
resonant nodes (winner-takes-all) during the training
of the next layer and during the recall mode.

4.2 Supervised learning

In this stage of the training the multivector weights
of the output layer have to be adjusted, see figure 1.b .
Passing again the training patterns, the weights of the
outstar of the resonant nodes are adapted using the



following simple rule

wa, (k+ 1) = wa,, (k) + Aja(k)(oq, — Z Ajw,, (k)

(9)
where 7 1s the multivector connection to the ith-output,
A; is a constant and indicates the degree of the partic-
ipation of the node j, a(k) is a gain factor and og,
the desired ¢ — th output multivector. All multiplica-
tions are geometric products and each output o; sup-
plies a multivector. Each output multivector could be
composed as the geometric product of two multivectors
0; = e;y,; where e; could be set to a projective split vec-
tor [2] or to the scalar unity, i.e. e; = 1, for the case of
a simple multivector association. The projective split
can be used to connect the input and output spaces
of different dimensions and metric. The multivector y,
could be set to w1; or any other. As a result the invari-
ant properties of the input patterns can be enhanced
and made more observables for the net and in some
cases the nonlinearity in one space can be easily trans-
formed to a linear one in the representation of the other
space. Here we can also appreciate the coordinate-free
advantages of the geometric algebra. Once an initial
solution is found after the first training phase, a super-
vised learning method can be additionally used in order
to fine-tune all the network parameters. According to
an error function E(p) the vector §, which comprises
wi; wa;, will be adjusted after each input and ¢ — th
output values @y, f;(®y) using the descend gradient of
the functional

o w, f(24)) = lov, (o) — Fw)l” (10
as follows
Pk = Pr—1— (V[C(ﬁk—hwk,fi(wk))]) (11)

This requires partial derivatives with respect to multi-
vectors [2].

4.3 Recall mode

In the recall mode the outputs of the radial basis
functions moderate the participation of the resonant
nodes at the output energy level. This i1s captured by
a simple equation

J
O; = Z/\jwzj’ (12)
ji=1

where o; 1s the ith output, J is the amount of hidden
nodes, A; is the degree of the participation of node j
and is computed from the radial basis functions.
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Figure 2. Mapping between two motion space.
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Figure 3. Combined structure for fuzzy clustering.

5 Experimental Results

The motions of reference frames of joints in robotics
can be nicely represented using screws or dual quater-
nions. Figure 2 depicts the geometric abstraction of
the problem.

For this experiment the range of movements was lim-
ited to a practical narrow area. For the approximation
of this mapping a combined structure using two Clif-
ford selforganizing neural networks was implemented.
This is presented in Figures 3.

The two neural networks were set up in the Chif-
ford algebra (Vg 3) [2] accordingly and applied to ap-
proximate the mapping between the screw motions of
systems A and B. After the selforganization of each
network one has recognized a reduced number of long
term nodes I and J, i.e clusters of the real and dual part
of the dual quaternions. Here we used in fast learning
[7] a moderate categorization threshold p. In the su-
pervised phase the radial basis functions are tuned and
then the Clifford outstarts are adjusted. The structure
is full connected and the weights of the outstars are
also quaternions, see Figure 3. Note that the amount
of the outputs is automatically defined by the bigger



number of clusters of the nets, i.e L=MAX(T,J). After
supervised training the net was recalled with previously
unseen patterns and due to its nice capability of fuzzy
outputs the net was able to follow the deviation of the
main classes as expected. Some pattern examples are
presented below. The ideal dual quaternions at the
output are presented in Table I. The outputs in terms
of dual quaternions for each category (Cat.) and its
Ar—max and Aj_prax of the hidden layers are pre-
sented in the Table IT for a combined structure with
I=J=L=b5. The combined network with I=J=5 has a
better performance than a combined with I=5>J, be-
cause 1t has more nodes dedicated for clustering. When
a lower p is used as in the case I=5>J, the coding of
the dual element is more rough affecting the overall
performance. For space reasons we can not include
comparative experiments for this case. It may be pos-
sible for other application that a combined structure
with I#£J suffices. Therefore in general it is better that
the left and the right modules should use independent

p’s.

[CatZ ][ ¥ by by by [ v b7 b) b3
1 0.998 0.023 0.031 0.046 -0.061 0.411 0.508 0.754
2 0.927 0.143 0.191 0.287 -0.374 0.528 0.460 0.635
3 0.979 0.076 0.102 0.153 -0.199 0.468 0.494 0.711
4 0.874 0.186 0.248 0.372 -0.484 0.559 0.429 0.572
5 0.771 0.244 0.325 0.488 -0.636 0.589 0.370 0.462

Table I: Expected dual quaternions at the output.

The potential of such nets working in a specific Clif-
ford algebra C(V}, ;) is shown by a simple application of
frame coordination in robotics. A combined structure
consisting of two Clifford nets in parallel is applied for
fuzzy clustering of dual quaternions.
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Cat. [ bg by by b3 T @] b7 b b3 [ Ar—max NJ_MAX
1.1 —+0.998 —+0.023 —+0.031 —+0.046 -0.060 —+0.411 —+0.509 +0.754 0.987 0.793
1.2 —+0.999 —+0.018 —+0.024 —+0.036 -0.047 —+0.405 —+0.510 +0.758 0.764 0.713
2.1 +0.927 —+0.144 —+0.192 —+0.288 -0.374 —+0.529 —+0.460 —+0.636 0.531 0.999
2.2 —+0.936 —+0.136 —+0.181 +0.271 -0.353 —+0.522 —+0.466 —+0.646 0.940 0.697
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4.2 +0.878 —+0.184 —+0.245 —+0.368 -0.479 —+0.558 —+0.431 +0.576 0.987 0.975
5.1 +0.793 —+0.234 —+0.312 —+0.468 -0.609 —+0.585 —+0.383 —+0.485 0.950 0.790
5.2 +0.795 —+0.233 —+0.310 —+0.466 -0.606 —+0.585 —+0.384 +0.487 0.945 0.787

Table II: Dual quaternions at the output structure

with I=J=L=5.

6 Conclusion

This paper presents a novel selforganizing type RBF
network using the Clifford algebra framework. The au-
thors have shown that the use of geometric algebra
helps enormously to improve the potential of network
structures and to simplify the learning algorithms. In
the network a new type of embedded processing called
projective split can be added for feature enhancement
and better invariants recognition. This type of neu-
ral networks can be also cascaded in order to process
patterns using different space dimension and metric,
the latter being possibly only due the projective split.



