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Abstract

In this paper we present geometric algebra as a new and complete framework for the
theory and computation of invariants in computer vision and compare it with the currently
popular Grassmann-Cayley (or Double) algebra. We will show that geometric algebra is a
very elegant language for expressing all the ideas of projective geometry and is a system in
which real computer implementations are straightforward. Using these techniques we will
try to resolve some recent confusion in the literature over the formation of 3D projective

invariants in terms of image coordinates.

1 Introduction

Geometric algebra is a coordinate-free approach to geometry based on the algebras of Grassmann
[?] and Clifford [?]. The algebra is defined on a space whose elements are called multivectors
and it has an associative and fully invertible product called the geometric or Clifford product.
Some preliminary applications of geometric algebra in the field of computer vision have already
been given [?, ?, ?], and here we extend these applications to include the study of geometric
invariance. Geometric algebra provides a very natural language for projective geometry and has
all the necessary equipment for the tasks which the Grassmann-Cayley algebra is currently used
for. The Grassmann-Cayley algebra expresses the ideas of projective geometry, such as the meet
and join, very elegantly, but it lacks an inner (regressive) product and some other key concepts.

The next section will give a brief introduction to geometric algebra. For a more complete intro-
duction see [?] and for other brief summaries see [?, 7, ?]. Given this background we can look at
the familiar concepts of projective space and homogeneous coordinates, outline the formulation of
projective geometry in the geometric algebra and introduce the concept of the projective split. We
then deal with projective transformations and illustrate the formation of 1D, 2D and 3D projective
invariants in this framework. We will illustrate the comparisons between our methods and those
of the Grassmann-Cayley algebra by considering 3D projective invariants and discussing what we

believe to be confusion which has occurred over this issue in the recent literature.
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2 Geometric Algebra: an outline

The algebras of Clifford and Grassmann are well known to pure mathematicians, but were long
ago abandoned by physicists in favour of the vector algebra of Gibbs, which is indeed what is
most commonly used today in most areas of physics. The approach to Clifford algebra we adopt
here was pioneered in the 1960’s by David Hestenes [?] who has, since then, worked on developing
his version of Clifford algebra — which will be referred to as geometric algebra — into a unifying

language for mathematics and physics.

2.1 Basic Definitions

Let G, denote the geometric algebra of n-dimensions — this is a graded linear space. As well as
vector addition and scalar multiplication we have a non-commutative product which is associative
and distributive over addition — this is the geometric or Clifford product. A further distinguish-
ing feature of the algebra is that any vector squares to give a scalar. The geometric product of two
vectors @ and b is written ab and can be expressed as a sum of its symmetric and antisymmetric

parts

ab=a-b+and, (1)

where the inner product a-b and the outer product aAb are defined by
1
ab = §(ab—|—ba) (2)
1
anb = §(ab—ba). (3)

The inner product of two vectors is the standard scalar or dot product and produces a scalar.
The outer or wedge product of two vectors is a new quantity we call a bivector. We think of a
bivector as a directed area in the plane containing a@ and b, formed by sweeping a along b — see
Figure ?7?.

Thus, bAa will have the opposite orientation making the wedge product anticommutative as
given in equation ??7. The outer product is immediately generalizable to higher dimensions — for
example, (aAb)Ac, a trivector, is interpreted as the oriented volume formed by sweeping the
area a A\b along vector ¢. The outer product of k vectors is a k-vector or k-blade, and such a
quantity is said to have grade k. A multivector (linear combination of objects of different type) is
homogeneous if it contains terms of only a single grade. The geometric algebra provides a means of
manipulating multivectors which allows us to keep track of different grade objects simultaneously
— much as one does with complex number operations.

In a space of 3 dimensions we can construct a trivector aAbAc, but no 4-vectors exist since there
is no possibility of sweeping the volume element aAbAc over a 4th dimension. The highest grade
element in a space is called the pseudoscalar. The unit pseudoscalar is denoted by [ and is

crucial when discussing duality.



2.2 The Geometric Algebra of 3-D Space

In an n-dimensional space we can introduce an orthonormal basis of vectors {o;} ¢ = 1,...,n, such

that o;-0; = 6;;. This leads to a basis for the entire algebra:
L, Ao}, Aoinoi}y, {oiNojhor}, ..., o1AoIA. Aoy (4)

Note that we shall not use bold symbols for these basis vectors. Any multivector can be expressed

in terms of this basis. The basis for the 3-D space has 2% = 8 elements given by:

\1/_/, {0'1,0'2,0'3}, {0'10'2,0'20'3,0'30'1}, {0'10'20'3} =1. (5)

scalar

vectors bivectors trivector

It can easily be verified that the trivector or pseudoscalar oj0,03 squares to —1 and commutes
with all multivectors in the 3-D space. We therefore give it the symbol ¢; noting that this is not
the uninterpreted commutative scalar imaginary j used in quantum mechanics and engineering.

Multiplication of the three basis vectors {o;} by 7 results in the three basis bivectors;
Ulggzigg UQUgZigl 03071 :iUQ (6)

These simple bivectors rotate vectors in their own plane by 90° and it can easily be shown that

the quaternion algebra is simply a subset of the geometric algebra of 3-space.

2.3 Formulation of Projective Geometry

Here we will outline the approach pioneered by Hestenes for using geometric algebra to discuss
the algebra of incidence. For a more extended discussion we refer the reader to [?].

A geometric algebra G, can be written as G(p, ¢) where p and ¢ are the dimensions of the maximal
subspaces with positive and negative signatures respectively (the signature of a vector a is positive,
negative or zero according as a* > 0, < 0, = 0) — for real applications we find it useful to specify
the signature to facilitate actual computations. We will see later that we adopt the standard
Euclidean signature G(3,0) for ordinary space, £, but that we are forced to adopt a signature of
G(1,3) for the 4-dimensional space we associate with the projective space.

In Euclidean spaces of 2 and 3 dimensions the unit pseudoscalar squares to —1. In G(1,3) it is
easy to see that this is also the case. If 7;, ¢ = 1,2,3,4 are our basis vectors in the 4D space, and

v;2 = —1 for j=1,2,3 and ~§ = +1, then

(M1727372) (M727374) = (127374) (12¥374) = —(9374) (9374) = — 1. (7)

The sign of I? depends on the signature of the space. In a given space any pseudoscalar P can be

written as PP = ol where « is a scalar. If 7! is the inverse of I, so that /7! = 1, then,

Pl =all™ =a =[P (8)

where we have defined the bracket of the pseudoscalar P, [P], as its magnitude, arrived at
by multiplication on the right by I=!. This bracket is precisely the same as the bracket of the
Grassmann-Cayley algebra. The sign of the bracket does not depend on the signature of the space.



To introduce the concepts of duality we define the dual A* of an r-vector A as

A= AT (9)

;From this definition we see that the dual of an r-vector is an (n — r)-vector (e.g. duality of lines
(r =1) and planes (n —r =3 —1) in 3 space). In an n-dimensional space, if A is an r-vector and
B is an s-vector (such that r + s = n), it can be shown that the following identity for the dual of
the outer product holds

[AANB] = (AAB)I™' = A-B*. (10)
We note that duality is simply multiplication by an element of the algebra, and that there is
therefore no need to introduce a special operator or any concept of a different space.
In an n-dimensional geometric algebra one can define the join J = AA B of an r-vector A and

an s-vector B by

J=AAB if A and B are linearly independent. (11)

It A and B are not linearly independent the join is not given simply by the wedge but by the
subspace that they span. J can be interpreted as a ‘common dividend of lowest grade’ and is
defined up to a scale factor. It is easy to see that if (r + s) > n then J will be the pseudoscalar
for the space. In what follows we will use A for the join only when the blades A and B are not
linearly independent, otherwise we will use the ordinary outer product, A.

If A and B have a common factor (i.e. there exists a k-vector C such that A = A’C' and B = B'C
for some A’, B’) then we can define the ‘intersection” or meet of A and B as AV B where

(AV B)* = A*AB". (12)

That is, the dual of the meet is given by the join of the duals. In equation ?? the dual of (AV B)
is understood to be taken with respect to the join of A and B. In most cases of practical interest
this join will be the whole space and the meet is therefore easily computed so that a more useful

expression for the meet is obtained as follows
AV B = (A*AB)I = (A*AB*)(I7'I)I = £(A*-B) (13)

according as I? = £1. We therefore have the very simple and readily computed relation of
AV B =+(A*-B). The above concepts are discussed further in [?].

2.4 Linear Algebra

In this section we will give a brief review of the geometric algebra approach to linear algebra.
More detailed reviews can be found in [?, ?].
Consider a linear function f which maps vectors to vectors in the same space. We can extend f

to act linearly on multivectors via the outermorphism, f, defining the action of f on blades by

flaihaz .. Na,) = fla)Aflaz)A. . .Af(a,). (14)

We use the term outermorphism because f preserves the grade of any r-vector it acts on. The

action of f on general multivectors is then defined through linearity. f must therefore satisfy:
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flaihaz) = fla))f(as)
f(A) = (f(A)) (15)
flarar + azay) = Oéli(ch) + Oézi(az)

The outermorphism of a product of two linear functions is therefore the product of the outermor-
phisms, i.e. if f(a) = fz(fi(a)), then we can write f = f_f. .
Since the outermorphism preserves grade, we know that the pseudoscalar of the space must be

mapped onto some multiple of itself. The scale factor in this mapping is the determinant of f;

J(I) = det(f)I. (16)

This is much simpler than many definitions of the determinant. Using this definition, most

properties of determinants can be established with little effort.

3 Projective Space and Projective Transformations

In classical projective geometry one defines a 3D space, P>, whose points are in 1—1 correspondence
with lines through the origin in a 4D space, R*. Similarly, k-dimensional subspaces of P? are
identified with (k+1)-dimensional subspaces of R*. Such projective views can provide very elegant
descriptions of the geometry of incidence (intersections, unions etc.), but in order to carry out
any real computations one is forced to introduce some sort of basis and associated metric. From a
mathematical viewpoint the projective space, P?, would have no metric, the basis and metric are
introduced in the associated 4D space. In this 4D space a coordinate description of a projective
point is conventionally brought about by using homogeneous coordinates. The usefulness of the
projective description of space is often only realised via the introduction of such homogeneous

coordinates.

3.1 The Projective Split

Points in real 3D space will be represented by vectors in €2, a 3D space with a Euclidean metric.
Since any point on a line through some origin O will be mapped to a single point in the image
plane, we will find it useful to associate a point in £ with a line in a 4D space, R*. In these two
distinct but related spaces we define basis vectors: {v1,72,73,74} in R* and {0y, 09,05} in E°.
We identify R* and &* with the geometric algebras of 4 and 3 dimensions, G, and Gs. We require
that vectors, bivectors and trivectors in R* will represent points, lines and planes in 2. Suppose
we choose v, as a selected direction in R*, we can then define a mapping which associates the

bivectors v;v4, ¢ = 1,2,3, in R* with the vectors oy, ¢ = 1,2,3, in £3;

g1 = Y1Y4 O2 = Y2V4 O3 = Y37V4- (17)

To preserve the Euclidean structure of the spatial vectors {o;} (i.e. of = +1) it is easy to see

that we are forced to assume a non-FEuclidean metric for the basis vectors in B*. We choose to use



vi=+1,v = —1,1=1,2,3. This process of associating the quantities in the higher dimensional
space with quantities in the lower dimensional space is an application of what Hestenes calls the
projective split.

For a vector X = Xyv1 + Xove + X393 + Xyy4 in R?* the projective split is obtained by taking the
geometric product of X and v4;

XAy

4

Note that & contains terms of the form ~174, 7274, 7374 or, via the associations in equation 7?7,
terms in oy, 04, 03. We can therefore think of the vector @ as a vector in £ which is associated
with the bivector X Av,/ X4 in R™.

If we start with a vector @ = 0y + 220, + 2303 in £, we can represent this in R* by the vector

X = Xl"}/l + XQ"}/Q + Xg’}/g + X4"}/4 such that

Lo XA XN X
X, X T e
X1 X5 X3
_ 19
TR TR (19)
= x; = ig—i, for ¢ = 1,2,3. The process of representing & in a higher dimensional space can

therefore be seen to be equivalent to using homogeneous coordinates, X, for . Thus, in
this geometric algebra formulation we postulate distinct spaces in which we represent ordinary
3D quantities and their 4D projective counterparts, together with a well-defined way of moving

between these spaces.

3.2 Projective transformations

It is well known that there are various advantages to working in homogeneous coordinates.
If a general point (x,y,z) in 3-D space is projected onto an image plane, the coordinates (z',y’)

in the image plane will be related to (x,y, z) via a transformation of the form:

x,_a1x+ﬂly+512+61 ;T + oy + 62z + €

oNz:L'—I—By—I—SZ—I—é ’ oNz:L'—I—By—I—SZ—I—é

(20)

To make this non-linear transformation in £ into a linear transformation in R* we define a linear

function ip mapping vectors onto vectors in R* such that the action of ip on the basis vectors

{7} is given by

ip(%) = o+ ey +asys +ay

[,02) = B+ Baya + Bavs + B

ip(%) = 8171 + 8372 + 8373 + Sy

[ (a) = amteartearntin (21)

3

A general point P in €° given by @ = xay + yoy + 203 becomes the point X = (X7, + V2 +
Z~s 4+ Way) in R, where v = X/W, y = Y/W, 2 = Z/W. We can then see that ip maps X onto
X’ where



3
X' =>{(alX+8Y +6Z+ W)yt + (aX +8Y +6Z + eW)y (22)

i=1
The vector &' = 2’0y + y'o9 + 2’03 in £ corresponds to X', where @’ is as given in equation (?7).
Similar expressions are obtained for y" and 2.
Note that in general we would take a3 = fa, 3 = fB ete. so that 2/ = f (focal length),
independent of the point chosen. Via this means the non-linear transformation in & becomes
a linear transformation, ip, in R*. Use of the linear function ip makes the invariant nature of

various quantities very easy to establish.

3.3 Algebra in projective space

There has been much recent interest in the use of the Grassmann-Cayley or double algebra as
an elegant means of formulating the algebra of incidence [?, 7, ?, ?]. Here we will show briefly
how the main algebraic results of the Grassmann-Cayley algebra arise naturally when we express
projective geometry in geometric algebra.

Consider three non-collinear points, P, P, Ps, represented by vectors @, &,, &3 in £ and by
vectors Xy, Xy, X3 in R*. The line L, joining points P, and P, can be expressed in R* by the
following bivector,

L12 - Xl/\Xz. (23)

Any point P, represented in R* by X, on the line through P, and Py, will satisfy

This is therefore the equation of this line in R*. In general such an equation is telling us that X
belongs to the subspace spanned by X; and X,.
Similarly, the plane ®195 passing through points P, P, P; is expressed by the following trivector
in R*

D93 = X A XA X, (25)
In £ there are generally three types of intersections we wish to consider. We will look at two of
these cases as an illustration and for these we will require the following general result, giving the

inner product of an r-blade, A, = a1Aa@zA.....Aa,, and an s-blade, B; = biAbaA.....Abs (for s < r)

Bs-(a1AazA....hay) =D e(ijaer)Bs-(aj, Naj, A Aaj)aj s A ... Ny, (26)

J

where we sum over all combinations 3 = (j1, ja, ...., j») such that j; < js < .... < jr. €(J1J2.--Jr) =
+1 if j is an even permutation of (1,2,3,...,r) and —1 if it is an odd permutation. See [?] for

further discussion of this result.

3.3.1 Intersection of a line and a plane

Consider a line A = X; AX, intersecting a plane ® = Y;AY,AY3 — all vectors are in R*. The

intersection point is expressible using the meet operation



Using the definition of the meet given in equation 7?7 we have

AVO = —A"0 (28)

since the pseudoscalar for R*, which we shall call I, if any ambiguity is possible, squares to —1.

This leads to
A*-q):(A]_l)-CI):—(A])-CI). (29)

According to equation ??7 we can then expand the meet as

AVO = (AD)-(Y1AY2AYs)
= (A (Y2AY3) Y + {(AD)-(YsAY )Y + {(AD)-(Y1AY2)}Y5]. (30

Noting that (Al)-(Y;AY;) is a scalar, we can evaluate the above by taking scalar parts. If we
write [A;A;A3A,] as a shorthand for the magnitude of the pseudoscalar formed from the four
vectors, then with some manipulation we can see that the meet reduces to (neglecting an overall
minus sign)

AV O =X XY Y35 Y, + [Xi XYY Y2 + [ XX, Y Y)Y (31)

giving the intersection point (vector in R*). Note that this is precisely the expansion of the
meet that would result from the analysis in the Grassmann-Cayley algebra [?, ?]. We can see
that we must identify the r-extensors of the Grassmann-Cayley algebra with r-blades in our
geometric algebra. Also, the definition of the bracket of four vectors in R* as the magnitude of
the pseudoscalar formed from the outer product of the vectors is equivalent to its definition as the
determinant of the four vectors in the Grassmann-Cayley algebra.

JFrom the definition of the bracket given above it is easy to show that the equivalent bracket in

&? is formed by evaluating the following volume

(®y — @) A (T3 — 21 )N (T4 — 1) [ (32)

where, as before, @; = % If the W; =1, we can summarize the above relationships between
V4

the brackets of 4 points in R* and &® as follows
[X1X2X3X4] = (Xl /\XQ/\Xg/\X4)]4_1 = {(5132 — 5131)/\(5133 — 5131)/\(5134 — 5131)}]3_1. (33)

3.3.2 Intersection of two planes

We now consider the intersection of two planes ®; = X;AX;A X35 and &3 = Y{AY2AY3. The
meet of ®; and P, is given by

(I)l \/ (I)Q — (Xl /\XQ/\Xg) \/ (Yl /\YQ/\Yg) (34)
As before, this can be expanded as

OV By = {(O1)- Y1 (Y2 AYs) + {(D11) Yo H(YsAY L) + {(@.1)- Y3} (YiAY,).  (35)



Following the arguments of the previous section we can show that (®17)-Y,; = —[X;X:X5Y,], so
that the meet is

OV Py = [ Xy XoX5Y1](Y2AY3) 4+ [XiXeX5Y o (YaAY:) + [ Xi X X5Y5](YiAYs), (36)

producing a line of intersection (bivector in R*). If one identifies the 2-extensors of the Grassmann-
Cayley algebra with bivectors in the geometric algebra, the above expansion is seen to be the same
as the expressions given in [?].

The intersection of two lines can be similarly discussed.

The 4D algebra described above has been implemented using the computer algebra package
MAPLE and all of the operations discussed here are easily evaluated.

4 Invariance using Geometric Algebra

In this section we will use the framework established so far to show how standard geometric

invariants are derived in this approach.

4.1 1-D and 2-D Projective Invariants from a Single View

The 1-D Cross-Ratio

The ‘fundamental projective invariant’ of points on a line is the so-called cross-ratio, p, defined
as _ACBD  (ts—t)(ta — 1)

PZ=BCAD ~ (h—t)(ts — 1a)
where t; = |PA|, ty = |PB|, t3 = |PC|, t4 = |PD|, for points P, A, B,C, D on some line L. It is
fairly easy to show that for the projection through some point O of the collinear points A, B,C, D

onto any line L', p remains constant. For this 1D case, any point ¢ on the line L can be written
as q = toy relative to P, where oy is a unit vector in the direction of L. We then move up a
dimension to a 2D space, with basis vectors (v1,72), we will call R? in which g is represented by
the vector Q;

Q=Ty+ 57

whnere, as elore, we assoclate w1 € Divector = T01 SO a = . €N a poin
here, as before, iate g with the bivect %M Loy so that t = T/S. When a point
V2

on line L is projected onto another line L', the distances ¢ and ¢’ are related by a projective

transformation of the form

t,_ozt—l—ﬂ
at+ 3’

This non-linear transformation in €' can be made into a linear transformation in R? by defining

(37)

the linear function f mapping vectors onto vectors in R?;

fim) = am+ay
fi(n) = Bim + By



Consider 2 vectors X, X, in R%. Form the bivector §; = X;AX, = A\ [y, where Iy = 417, is the

pseudoscalar for R?. We now look at how &; transforms under I

This last step follows since a linear function must map a pseudoscalar onto a multiple of itself,
this multiple being the determinant of the function. Suppose that we now take 4 points on the
line L whose corresponding vectors in R? are {X;}, ¢ = 1,..,4, and consider the ratio Ry of 2

wedge products;

X3 AX,
Ry = : 39
T XanX, (39)
Then, under f , Ry — R, where
XiAXS detf )Xy AX
R = =+ QZ(GL) b (40)

R is therefore invariant under f . However, we want to express our invariants in terms of distances

on the 1D line; for this we must consider how the bivector §; in R? projects down to &'.

XiAXy = (T 4 S1yv2) A (Tey + S2y2)
= (T152 - T251)71’72
— 5152(t1 - tz)]g. (41)

In order to form a projective invariant which is independent of the choice of the arbitrary scalars
Si, we must then take ratios of the bivectors X;AX; (so that detf, cancels) and multiples of such

ratios so that the S;’s cancel. More precisely, consider the following expression

(X3 AX ) (X AX ) I
(X AX ) (X3AX ) I3

Inv, =

Then, in terms of distances along the lines, under the projective transformation f, Invy goes to

Inv| where
r_ S3Sl(t3 — t1)5452(t4 — tz) _ (tg — tl)(t4 — tg)
LSS (ty — 11)S3S0(ts — 1y)  (ty — 1) (13— 1y)’

which is independent of the S;’s and is indeed the 1D classical projective invariant, the cross-

Inv

(42)

ratio. Deriving the cross-ratio in this way enables us to easily generalize it to form invariants in

higher dimensions.
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The 2-D generalization of the Cross-Ratio

For points in a plane we again move up to a space with one higher dimension which we shall call
R3. Let a point P in the plane M be described by the vector @ in £? where & = 20y + yo,. In
R? this point will be represented by X = X~y + Y~y + Zv3 where v = X/Z and y = Y/Z. As
before, we can define a general projective transformation via a linear function f, mapping vectors
to vectors in R®. We can then follow through the arguments used in the 1D case to form invariant

quantities by taking multiples of ratios of trivectors, e.g.

(X5 AXGAX ) I (X5 AXAX ) IS
(X5 AXGAX ) I (X5 AXGAX ) IS

Invy, =

We can then interpret this ratio in £* as

(5135 — 5134)/\(5135 — 5133)]_1(5135 — 5132)/\(5135 — 5131)]2_1 _ A543A521
(&5 — @A (T5 — ®3) I3 (25 — o)A (25 — ®4)[;" As13450

Invy, =

where %Aijk is the area of the triangle defined by the 3 vertices @;,«;, ;. This invariant is

regarded as a 2D generalization of the 1D cross-ratio.

4.2 3-D Projective Invariants from Multiple Views

4.2.1 The 3-D generalization of the Cross-Ratio

When considering general points in £* we have seen that we move up one dimension to work in
the 4D space R*. The point ® = 20y +yoq, + zo3 in £ is written as X = Xy + Yo+ Zvy3 + Wy,
where v = X/W, y = Y/W, 2 = Z/W. As before, a non-linear projective transformation in &
becomes a linear transformation, described by the linear function f, in R*.

Again, as in the 1D and 2D case we form invariant quantities by taking multiples of ratios of

4-vectors, e.g.
(X AXGAXZAX )T XA X AXGAXG) I

Invs = : 44
M T X A XA X AX) T (XA X A X AX) [ ! (44)

Using the arguments of the previous sections we can write
(Xl/\Xz/\Xg/\le)];l = W1W2W3W4{(§132 — 2131)/\(5133 — 2131)/\(5134 — 2131)}]3_1 (45)

We can therefore see that the invariant Inwvs is the 3D equivalent of the 1D cross-ratio and consists

of ratios of volumes;

‘/1234 ‘/4526

’
‘/1245 ‘/3426

where V;;x; is the volume of the solid formed by the 4 vertices &;, @;, x, 2.

(46)

Invs =

Conventionally all of these invariants are well known but above we have outlined a general process

for generating projective invariants in any dimension which is straightforward and simple.
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4.2.2 3D projective invariants in terms of image coordinates

Suppose we have six general 3D points P;, i = 1,..,6, represented by vectors {@;, X;} in £ and
R* respectively. We have seen in section 4.2.1 that 3D projective invariants can be formed from
these points, and an example of such an invariant is

(X1 X2 X3 X ][ X4 X5 X2 X]
(X XX X 5] [ X3 Xy X X]

Invs =

(47)

This is simply equation ?? rewritten in terms of brackets. If it is possible to express the bracket
[X;X;X;X;] in terms of the image coordinates of points P;, P;, Py, P, then we can easily compute
this invariant. Some of the most recent work on this problem has utilized the Grassmann-Cayley
algebra [?, 7, ?]. It has been shown [?] that it is not possible to compute general 3D invariants
from a single image and in [?] Carlsson tried to show how to compute such invariants from a pair
of images in terms of the image coordinates and the fundamental matrix, F', using the Grassmann-
Cayley algebra. Subsequent work by Csurka and Faugeras [?] claims to have corrected some of
Carlsson’s expressions by including omitted scale factors. Here we will translate the approach of
Carlsson into the geometric algebra framework in an attempt to address this question. We will
also show that the claim of Csurka et al. is indeed correct but that the resolution lies simply in
reordering the bracket decomposition rather than finding large numbers of omitted scale factors.

Consider the scalar 57234 formed from the bracket of 4 points
51234 — [X1X2X3X4] — (Xl /\Xz/\Xg/\X4)]4_1 — (Xl /\Xg)/\(Xg/\X4)]4_1. (48)

The quantities (X; A X3) and (X3 A Xy) represent the line joining points P; and P, and P5 and
Py. We let ag and by be the centres of projection of the two cameras and suppose that the two
camera image planes can be defined by the two sets of vectors {a;, as, az} and {by, by, b3} — see
figure ??. Let the projection of points {F;} through the centres of projection onto the image
planes be given by the vectors {a’} and {b.}. Note that this notation follows that of Carlsson [?]
but that our vectors, a;, b;, etc. are ordinary vectors in £%. We then let the representations of
these vectors in R* be A;, B;, Al B...., etc.
Expressing X1 A Xy (resp. X3AXy) as the meet of the planes Uy and Vi (resp. Uz and V3) through
the image points and the centres of projection gives
XiAX, = (AgAATAAL) YV (BoABIABY) = Ui AV, (49)
X3AXy = (AgAAZAAL) V (BoABIABY) = UsAVs. (50)

Si934 can therefore be written as Sygzq = {(Uy V Vi) A (Uz V Va)} 1,71, (From the definition of the

meet this equation can be simplified to
51234 - — {(Ul vV Uz)/\(‘/l vV ‘/2)} ]4_1. (51)
Using the similar expression for V; V V5, Sia34 then reduces to

Stast = — {[AoA] AL A [BoB] B)B)|[AcBoA B} + [AoA| A} A}|[ByB| B} B [A,B, AL B}
(52)
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Now consider a point in the first image plane which is the intersection of the lines joining points
{a} and a}} and {a} and a}} — call this point a@},,,. Let the R* representation of this point be

Al,.,. We can expand the points Al and A!,., in terms of the R* vectors Ay, Ay, As:
A; = 1A Fa2A+ai3As 1 =123 (53)

A/1234 = 02341 A1 + 19342A 9 + 1234 3A 5. (54)
Similarly, if B},5, is the R* representation of the intersection point b/,,, in the second image plane

(i.e. the intersection of the lines joining {b} and b}} and {b} and b/, }) then we can write the points

! !
B; and Bj,;, as

B, = (1B +8,2B2+ isBs i =1,2,3
Blsss = [12341B1 + B12342B2 + [1234,3Bs. (55)

We can form Al,,, from the meet of the line A/ A Af, and the plane Ag A A5 A Al;
Algay = [AJASAGAL]AG + [ATAJALACJAL + [ATALAGAGA, (56)

Similarly for Bl,5,;

Bl = [BiB;B3B|Bo + [BiB;B}Bo|B; + [BB;B.B;]B;. (57)
Therefore we can evaluate the bracket [A¢BoA/,5,B!,54] as follows

[A0B0A/1234B/1234] = - {AO A A/1234} A {BO A ]3/1234}]4_1
= _{[A;Alei;Ao][B;BIQBOAS][AOASBOBQ] +
[ATALAGAL)[B BB, Bo|[AcA BBl }. (58)

After some reordering of terms we note that this is precisely the expression for the bracket Sis34
given in equation ??. Thus, to summarize, we are able to write the bracket of the 4 points (in R*)

as

51234 = [X1X2X3X4] = [AOBOA/1234B/1234]‘ (59)

Note here that the bracket [X;X;X3X4] has been equated to [A¢BoA,5,B!,54] by the process of
splitting up the bracket into two parts, Xy A X3 and X3 A X4 and then expressing each of these
lines (bivectors) as the meet of two planes (trivectors) as in equation ??. Thus, when we take
ratios of brackets to cancel out scale factors and form our invariants we must ensure that, if we
want to express the brackets in the form of equation ??, the same decomposition of X; A X; must
occur in the numerator and denominator so that these arbitrary factors cancel. In the case of

Invs, we have

/ X AX ) A (X AX ) H TG AX ) A (XA X)L ! 60
" T X AX) A KA X)) ™ { (X A X A (X A Xg) ! (60)

so we see that this decomposition rule has been obeyed. Now in [?] it is claimed that the invariant
of 6 points which can be thought of as arising from 4 points and a line, namely

[X1 XXX 4] [ X1 X0 X5 Xo]
[ X1 XXX 5[ X XX, Xe)

Invs =

(61)
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is not invariant when expressed in Carlsson’s terms. Their solution is to include a large number
of correcting scale factors. If we were to decompose the expression as given in equation ?? in the

manner outlined previously, we would have

{(Xa AX ) AXsAX ) (X A X)) A(XK A X ) H ™!
(X AX ) A (X3 AX ) J LT (X AX ) A (XA Xg) F L™

(62)

Invs =

It is clear that the same bivectors do not appear in both the numerator and denominator and
therefore there will not be the required cancelling of scale factors. However, suppose we simply

rearrange equation 7?7 in the following way;

XX XX 5] [ X1 X5 X Xo6]
[ X1 X5 XX 5] [ X Xy X Xg)

(63)

/ J—
Invy =

This can always be done since interchanging vectors in X; A X; A X, A X; simply changes the sign

of the pseudoscalar. Now, the decomposition would look like

ool — {(XGAX A (X AX ) M H (X AX ) A (XA X ) T 61
M T X AXG ) A (X A X ) (X A XA (X AX) (64)

We now see that the same bivectors appear in both numerator and denominator and therefore

that all scale factors should cancel. Writing

Invs = (X1 X5 X5 X ] [X1 X5 X5 X - [AOBOA/1423B/1423][AOBOA/1526B/1526] (65)
(X1 XX X5][ X0 XX Xe]  [AoBoA]523B553][A0BoA] 426B1 2]

where A ;i is the point in R* corresponding to the intersection point a’;y as defined previously,
will indeed produce an invariant. There is thus no need for the introduction of the scale factors

proposed in [?].

5 Conclusions

We have presented a brief introduction to the techniques of geometric algebra and shown how
they can be used in the algebra of incidence and in the formation and computation of invariants.
For intersections of planes, lines etc. and for the discussion of projective transformations it is
useful to work in a 4D space we have called R*. We find that we do not need to invoke the
standard concepts or machinery of classical projective geometry, all that is needed is the idea of
the projective split relating the quantities in R* to quantities in our 3D world. We believe that
with this approach we can achieve everything that has currently been achieved with the standard

approaches, but that we can do it in a more geometrically intuitive fashion.
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