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Abstract

This paper presents a novel selforganizing type RBF neural network and introduces the geomet-
ric algebra in the neural computing field. Real valued neural nets for function approximation
require feature enhancement, dilation and rotation operations and are limited by the Euclidean
metric. This coordinate-free geometric framework allows to process patterns between layers in
a particular dimension and desired metric being possible only due to the promising projective
split. The potential of such nets working in a Clifford algebra C(V, 4) is shown by a simple
application of frame coordination in robotics.

1 Introduction

Geometric algebra is a coordinate-free approach to geometry based on the algebras of Grassmann
and Clifford and has already been successfully applied to many areas of mathematical physics
and engineering. The approach we adopt here is due to Hestenes [1]. A very brief outline of the
algebra will be given ([1-2] for more details) . For an n-dimensional space it can be introduced an

orthonormal basis of vectors {o;} 7+ = 1,...,n such that o;-0; = 6;;. This leads to a basis for the
entire Clifford algebra C(V, ,) (p even and ¢ odd elements):
1, Ao}, A{oing;}, A{oiAojnop}, ..., o1AOIA.L A0,

The highest grade element is called the pseudoscalar of the space. Any multivector can be ex-
pressed in terms of this basis. As well as vector addition and scalar multiplication we have a
non-commutative product which is associative and distributive over addition — this is the geomet-
ric or Clifford product. The geometric product of two vectors @ and b can be expressed as a sum
of its symmetric and antisymmetric parts ab = a-b + aAb. The inner product a-b is the standard
scalar product and produces a scalar. The outer or wedge product aAb is a new quantity we call a
bivector — the directed area formed by sweeping a along b. bAa will have the opposite orientation.
This is immediately generalizable to higher dimensions, e.g. (aAb)Ac is a trivector (oriented
volume). The outer product of k vectors is a k-vector or k-blade, and is said to have grade k. A
multivector is any linear combination of different grade objects. We can easily extend the above
definition of the geometric product to enable us to multiply any two blades and thus to multiply any
two multivectors. The outer product is much more useful than the standard cross product which is
not generalizable to dimensions other than 3. The 23-dimensional Pauli-Algebra has the following

basis: 1 (scalar), 04,049,035 (vectors), o,04,0203,030; (bivectors), o,04505 = i (trivector).
By straightforward multiplication it can be easily seen that the three bivectors can also be written
as 0,03 — 10; —t, 0,03 = —i0s = J, 0105 — 103 = k. These simple bivectors are spinors and

using them can be proved that the quaternion algebra of Hamilton is a subset of the geometric
algebra of space. In the 3-D space we use the term ‘rotor’ for those even elements of the space that
represent rotations. Any rotor can be written in the form R = +eB/?, where B is a bivector. In
particular, in 3-D we write R = e(~#50) = cos% —1n sin% which represents a rotation of # radians
anticlockwise about an axis parallel to the unit vector n. A potentially very useful expression for
the rotation operator R of a m-dimensional multivector x is y = RxR = e B/2xeB/2 where now B

is a m-bladed bivector. This can be further decomposed into a sequence of rotations by angles |64 |



in particular iz,-planes y = RRuy_1...RixR1...Rm_1Rum. where Ry = e B2</2 and R, = eB2+/2.
2 Real Valued Network Structures for Approximation

The approximation of general continuous functions using nonlinear networks is useful in areas of
system modelling and identification. Cybenko [3] used for the approximation the superposition
of weighted sigmoidal functions as follows. If ¢(.) is a continuous discriminatory function like a
sigmoidal, then a finite sum of the form

= Y waofwl(e - t) (1)

will approximate a given continuous function f, where wy;, € R and «; t;,w,; € R". For a given
¢ > 0, there is a sum given by equation (1), for which |g(z) — f(2)| < ¢ for all € [0,1]". Poggio
and Girosi [4] used instead for the same purpose a superposition of weighted Gaussian functions

Z wai G[Dy(z — 1)) (2)

where wy; € R, G is a Gaussian function, D; a N x N dilation diagonal matrix and x,t;; € R". The
vector ty; is a translation vector. These nets use real values for signal representation and processing
and are unfortunately limited by the Euclidean metric. In order to improve the representation and
processing of signals the authors designed a neural network in the geometric algebra framework.
Patterns are represented as multivectors and the linear correlator is replaced by a geometric corre-
lator.

3 Clifford Algebra Network Structures for Approximation

Let us analyze each case of section 2 in terms of this new geometric processing. Note that ws;, wy;,
x, t; are now multivectors and the geometric correlator is used instead the scalar correlator. Since
Clifford Algebra is not in general a division algebra, it is not possible to define higher dimensional
analogues of the sigmoid function [5]. In the first case, equation (1), the activation function proposed
by Georgiou et al [6] is used instead of the sigmoidal function. This complex activation function is
bounded and nonlinear and its partial derivative exists and is continuous

z

u(z) = ¥ g (3)

where z is any multivector. The inner vector product will be extended to a geometric product in
order to enhance the features for a better processing, namely
wli(x—t;) = wi(x—1t;) = wy-(x—t;)+wi A(x—t;) and wy0(+) = wyu(-) = wo-u(-) +wyAu()

then
N

g(x):ngiu[wu-(x—ti)—l—wu/\(x— )] (4)

i=1
In the radial basis function networks, equation (2), the dilation operation (via the diagonal matrix
D;) and the feature enhancement operation can be simultaneously implemented by means of a
geometric product, namely wy;G[D;i(x — t1;)] = e;w,,, G[(x — t,;)] where ¢ is now for outputs

N N
Z (e;wy,) —t4)] Z/\] (e;wo,) (5)
=1

=1



4 Net Architecture and Training Algorithm

The learning procedure for the cases of the previous section has to minimize a metric dependent
error function F(p) where § is the vector (not a multivector) which comprises all adjustable pa-
rameters. In the first case, the vector p (weights and activation values) can be adjusted using the
Clifford back propagation training rule [5]. This procedure is unfortunately limited to the Euclidean
metric. In contrast the selforganizing Clifford network allows according to the task, if necessary,
a different metric. The learning procedure of the net consists basically in the first phase of an
unsupervised method for the hidden layer, i.e. a multivector clustering algorithm, and a supervised
one for the output layer. The second phase of learning is supervised and if it is still necessary helps
to finetune all the net parameters. These phases and the recall mode are explained separately in
the next subsections.

4.1 Unsupervised learning

Figure 1 depicts the evolution of the net architecture during selfsorganization. This process is in
some aspects similar to the adaptive resonance theory selforganization [7]. At the very beginning
the waiting memory and the long term memory have virgin nodes. The input patterns give infor-
mation of different events and can resonate with a corresponding existing node. This capability
of the net is implemented by a resonance detector and control mechanism using a task dependent

metric and competitive learning.
(multivectors) g . 9,0 g m

1 M

p Evidence threshold
Lo €9 ke
resonance
control waiting
|Q stcge

<

(Multivectors)

(muttivector)
1

Fig 1.a Dynamic node coding Fig. 1.b Outstars labeling

Note that the geometric algebra approach allows the use of a specific metric for a particular task.
When a winner node is selected its weights are smoothly further adjusted. For each new input
pattern the control mechanism updates the weights of a resonant node either in the long term
memory or in the waiting stage. A candidate node resides in the waiting stage until it surpasses
an evidence threshold, then it will be shifted to the long term memory. After the net is stable
the parameters of the radial basis functions for each node are computed. These will be used
for computing the resonance grade or membership grade (A;) of a input multivector with similar
nodes. This factor will play an important role in the inhibition effect of the non-resonant nodes
(winner-takes-all) during the training of the next layer and during the recall mode.



4.2 Supervised learning

In this stage of the training the multivector weights of the output layer have to be adjusted. Passing
again the training patterns, the weights of the outstar of the resonant nodes are adapted using the
following simple rule

wy, (k+ 1) =w,, (k) + Na(k)(eo; —w,, (k)) (6)

where 7 is the multivector connection to the output node ith-, A; is a constant and indicates the
degree of the participation of the node j, a(k) is a gain factor. All multiplications are geometric
products and each output o; supplies a multivector. The multivector e could be set to w;~! or
another appropriate multivector as projective split vectors [8] or for the case of a simple multivector
association to the scalar unity, i.e. e = 1. The projective split can be used to connect the input
and output spaces of different dimensions and metric. As a result the invariant properties of the
input patterns are enhanced and make possible more observables for the net and in some cases
the nonlinearity in one space can be easily transformed to a linear one in the other space repre-
sentation. Here we can also appreciate the coordinate-free advantages of the geometric algebra.
Once an initial solution is found after the first training phase, a supervised learning method can
be additionally used in order to finetune all the network parameters. According F(p) the vector p,
which comprises w,; w,,, will be adjusted after each input and output values xy, f(z;) using the
metric dependent functional E(p, zy, f(x)).

4.3 Recall mode

In the recall mode the outputs of the radial basis functions moderate the participation of the
resonant nodes at the output energy level. This is captured by a simple equation

J

o, = Z Aj(ejws,,) (7)

ji=1

where o; is the ith output, J is the amount of hidden nodes, A; is the degree of the participation
of node j and is computed from the radial basis functions. e; as was mentioned before can be the
scalar 1 or a split vector, e.g. w7, .

5 Experimental Results

The motions of reference frames of joints in robotics can be nicely represented using screws or dual
quaternions. The figure 2 depicts the geometric abstraction of the problem. For this experiment
the range of movements was limited to a practical narrow area. For the approximation of this
mapping a combined structure using two Clifford selforganizing neural networks was implemented.
This is presented in figures 3. The two neural networks were set up in the Clifford algebra C(V; 3)
[1] accordingly and applied to approximate the mapping between the screw motions of systems A
and B. Note that we dedicated two independent networks for each part of the dual quaternion as
these dual parts are geometric different. For the selforganizing clustering we used as opposed to the
Euclidean metric the second component of the geometric product as a similarity measure. After
the selforganization of each network one has recognized a reduced number of long term nodes I and
J, i.e clusters of the real and dual part of the dual quaternions. Here we used in fast learning [7] a
moderate categorization threshold p;. In order to test the performance of the structure p; and p,



were varied so that in one case I=J=5 and in the second test I=5 and J=3.
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Fig 2. Mapping between two motion spaces Fig 3. Combined structure for fuzzy clustering

In the supervised phase the radial basis functions were tuned and then the Clifford outstarts were
adjusted. The structure is full connected and the weights of the outstars are also quaternions,
see figure 3. Note that the amount of the outputs is automatically defined by the bigger number
of clusters of the nets, i.e L=MAX(I,J). After the supervised training the net was recalled with
previously unseen patterns and due to its nice capability of fuzzy outputs the net was able to follow
the deviation of the main classes as expected. Some pattern examples are presented below. The
expected dual quaternions at the output are presented in table I.

[CatL I b0 [ b [ & [ b [[ by [ 8 [ 5 [ b ]
1 0.998 0.023 0.031 0.046 -0.061 0.411 0.508 0.754
2 0.927 0.143 0.191 0.287 -0.374 0.528 0.460 0.635
3 0.979 0.076 0.102 0.153 -0.199 0.468 0.494 0.711
4 0.874 0.186 0.248 0.372 -0.484 0.559 0.429 0.572
5 0.771 0.244 0.325 0.488 -0.636 0.589 0.370 0.462

Table I: Expected dual quaternions at the output
The outputs in terms of dual quaternions for each category (Cat.) and its A;_pax and Aj_prax
of the hidden layers are presented in the table II for a combined structure with I=J=L=5.

[Cat. b0 [ b [ 2 [ b [ by [ ¥ [ b [ b [[Ar—max [ As—max | NNy |
1.1 +0.998 +0.023 +0.031 +0.046 -0.060 +0.411 +0.509 +0.754 0.987 0.793 1,1
1.2 +0.999 +0.018 +0.024 +0.036 -0.047 +0.405 +0.510 +0.758 0.764 0.713 1,1
2.1 +0.927 +0.144 +0.192 +0.288 -0.374 +0.529 +0.460 +0.636 0.531 0.999 2,2
2.2 +0.936 +0.136 +0.181 +0.271 -0.353 +0.522 +0.466 +0.646 0.940 0.697 2,2
3.1 +0.981 +0.075 +0.100 +0.150 -0.195 +0.466 +0.495 +0.714 0.976 0.8850 3,3
3.2 +0.982 +0.073 +0.097 +0.146 -0.190 +0.465 +0.495 +0.715 0.952 0.708 3,3
4.1 +0.877 +0.184 +0.246 +0.369 -0.480 +0.558 +0.431 +0.576 0.988 0.979 4,4
4.2 +0.878 +0.184 +0.245 +0.368 -0.479 +0.558 +0.431 +0.576 0.987 0.975 4,4
5.1 +0.793 +0.234 +0.312 +0.468 -0.609 +0.585 +0.383 +0.485 0.950 0.790 5,5
5.2 +0.795 +0.233 +0.310 +0.466 -0.606 +0.585 +0.384 +0.487 0.945 0.787 5,5

Table II: Dual quaternions at the output structure with [I=J=L=5

Cat. [ bo [ b [ & [ b5 [ by [ ¥ [ o [ b [ M-max [ Ay_max [ NNy
11 F0.999 | F0.019 | F0.025 | F0.037 || -0.048 | +0.406 | F0.510 | +0.757 0.987 0.793 1,1
12 10.999 | F0.017 | $0.022 | +0.033 || -0.044 | +0.404 | +0.510 | +0.759 0.764 0.713 1,1
21 10927 | §0.144 | §0.192 | +0.288 || -0.374 | +0.520 | +0.460 | +0.636 0531 0.999 2.3
22 +0.964 | +0.102 | +0.185 | +0.203 || -0.264 | +0.492 | +0.484 | +0.687 0.940 0.697 2,3
31 10.984 | £0.068 | F0.091 | +0.136 || -0.177 | +0.460 | +0.497 | +0.720 1.000 0.952 3,2
32 10988 | +0.060 | F0.080 | +0.120 || -0.156 | +0.451 | +0.500 | +0.727 7.000 0.937 32
1 10.880 | +0.183 | +0.243 | +0.365 || -0.475 | +0.557 | +0.432 | +0.578 0.997 0.997 13
12 10.881 | £0.182 | +0.243 | +0.364 || -0.474 | +0.557 | +0.433 | +0.579 0.985 0.995 13
51 10.800 | +0.231 | $0.307 | +0.461 || -0.600 | +0.584 | +0.386 | +0.491 0.987 0.910 5.2
52 10.801 | $0.230 | $0.307 | +0.460 || -0.599 | +0.584 | +0.387 | +0.492 0.980 0912 52

Table III: Dual quaternions at the output structure with 1=>5, J=3, L=5

The coupled I and J winner nodes (N; and N;) for the global assessment at the output are indi-
cated at the right. The results for the structure with I=5, J=3 and L=5 are presented in table



III. Comparing both tables for the three last categories one can see that the combined network
with I=J=5 has a better performance than the second with I=5 and J=3. For example, for the 3-2
category the first structure gives the assessments 0.952 for the real part and 0.708 for the dual part
of the dual quaternion, whereas the second structure 1.000 and 0.937 respectively. The combined
network with I=J=5 is given more information about the approximated membership degree of the
dual part because it has dedicated more nodes for clustering. When a bigger p, is used as in the
combined network with =5 and J=3, the coding of the dual element is more rough affecting the
class assessment and eventually the overall performance. Note that there are two nodes which
are used for two different classes, i.e. 2,3 and 4,3; and 3,2 and 5,2. It may be possible for other
application that a combined structure with I#£J suffices. Therefore it is better that the left and the
right modules should use independent p’s.

6 Conclusion

This paper presents a novel selforganizing type RBF network using the Clifford algebra framework.
The authors have shown that the use of geometric algebra helps enormously to improve the po-
tential of network structures and to simplify the learning algorithms. In the network a new type
of embedded processing called projective split can be added for feature enhancement and better
invariants recognition. This type of neural networks can be cascaded in order to process patterns
using different space dimension and metric, the latter being possibly only due the projective split.
The potential of such nets working in a specific Clifford algebra C(V, ,) was shown by a simple
application of frame coordination in robotics.
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