
Selforganizing Cli�ord Neural NetworkEduardo Bayro-Corrochano, Sven Buchholz, Gerald SommerComputer Science Institute, Christian Albrechts University, Kiel, Germany.email: edb, sbh, gs@informatik.uni-kiel.d400.deAbstractThis paper presents a novel selforganizing type RBF neural network and introduces the geomet-ric algebra in the neural computing �eld. Real valued neural nets for function approximationrequire feature enhancement, dilation and rotation operations and are limited by the Euclideanmetric. This coordinate-free geometric framework allows to process patterns between layers ina particular dimension and desired metric being possible only due to the promising projectivesplit. The potential of such nets working in a Cli�ord algebra C(Vp;q) is shown by a simpleapplication of frame coordination in robotics.1 IntroductionGeometric algebra is a coordinate-free approach to geometry based on the algebras of Grassmannand Cli�ord and has already been successfully applied to many areas of mathematical physicsand engineering. The approach we adopt here is due to Hestenes [1]. A very brief outline of thealgebra will be given ([1-2] for more details) . For an n-dimensional space it can be introduced anorthonormal basis of vectors f�ig i = 1; :::; n such that �i ��j = �ij. This leads to a basis for theentire Cli�ord algebra C(Vp;q) (p even and q odd elements):1; f�ig; f�i^�jg; f�i^�j^�kg; : : : ; �1^�2^: : :^�n.The highest grade element is called the pseudoscalar of the space. Any multivector can be ex-pressed in terms of this basis. As well as vector addition and scalar multiplication we have anon-commutative product which is associative and distributive over addition { this is the geomet-ric or Cli�ord product. The geometric product of two vectors a and b can be expressed as a sumof its symmetric and antisymmetric parts ab = a�b+ a^b. The inner product a�b is the standardscalar product and produces a scalar. The outer or wedge product a^b is a new quantity we call abivector { the directed area formed by sweeping a along b. b^a will have the opposite orientation.This is immediately generalizable to higher dimensions, e.g. (a^b)^c is a trivector (orientedvolume). The outer product of k vectors is a k-vector or k-blade, and is said to have grade k. Amultivector is any linear combination of di�erent grade objects. We can easily extend the abovede�nition of the geometric product to enable us to multiply any two blades and thus to multiply anytwo multivectors. The outer product is much more useful than the standard cross product which isnot generalizable to dimensions other than 3. The 23-dimensional Pauli-Algebra has the followingbasis: 1 (scalar), �1; �2; �3 (vectors), �1�2; �2�3; �3�1 (bivectors), �1�2�3 � i (trivector).By straightforward multiplication it can be easily seen that the three bivectors can also be writtenas �2�3 = i�1 = i; �1�3 = �i�2 = j; �1�2 = i�3 = k. These simple bivectors are spinors andusing them can be proved that the quaternion algebra of Hamilton is a subset of the geometricalgebra of space. In the 3-D space we use the term `rotor' for those even elements of the space thatrepresent rotations. Any rotor can be written in the form R = �eB=2, where B is a bivector. Inparticular, in 3-D we write R = e(�i �2n) = cos �2 � in sin �2 which represents a rotation of � radiansanticlockwise about an axis parallel to the unit vector n. A potentially very useful expression forthe rotation operator R of a m-dimensional multivector x is y = Rx~R = e�B=2xeB=2 where now Bis a m-bladed bivector. This can be further decomposed into a sequence of rotations by angles j�2kj



in particular i2k -planes y = RmRm�1:::R1x~R1:::~Rm�1 ~Rm. where Rk = e�B2k=2 and ~Rk = eB2k=2.2 Real Valued Network Structures for ApproximationThe approximation of general continuous functions using nonlinear networks is useful in areas ofsystem modelling and identi�cation. Cybenko [3] used for the approximation the superpositionof weighted sigmoidal functions as follows. If �(:) is a continuous discriminatory function like asigmoidal, then a �nite sum of the formg(x) = NXi=1 w2i�[wT1i(x� ti)] (1)will approximate a given continuous function f, where w2i 2 R and x; ti;w1i 2 Rn. For a given" > 0, there is a sum given by equation (1), for which jg(x)� f (x)j < " for all x 2 [0; 1]n. Poggioand Girosi [4] used instead for the same purpose a superposition of weighted Gaussian functionsg(x) = NXi=1 w2iG [Di(x� t1i)] (2)where w2i 2 R, G is a Gaussian function, Di a N�N dilation diagonal matrix and x; t1i 2 Rn. Thevector t1i is a translation vector. These nets use real values for signal representation and processingand are unfortunately limited by the Euclidean metric. In order to improve the representation andprocessing of signals the authors designed a neural network in the geometric algebra framework.Patterns are represented as multivectors and the linear correlator is replaced by a geometric corre-lator.3 Cli�ord Algebra Network Structures for ApproximationLet us analyze each case of section 2 in terms of this new geometric processing. Note that w2i, w1i,x, ti are now multivectors and the geometric correlator is used instead the scalar correlator. SinceCli�ord Algebra is not in general a division algebra, it is not possible to de�ne higher dimensionalanalogues of the sigmoid function [5]. In the �rst case, equation (1), the activation function proposedby Georgiou et al [6] is used instead of the sigmoidal function. This complex activation function isbounded and nonlinear and its partial derivative exists and is continuousu(z) = zc+ 1r jzj (3)where z is any multivector. The inner vector product will be extended to a geometric product inorder to enhance the features for a better processing, namelywT1i(x�ti)) w1i(x�ti) = w1i �(x�ti)+w1i^(x�ti) and w2i�(�)) w2iu(�) = w2i �u(�)+w2i^u(�)then g(x) = NXi=1w2iu[w1i � (x� ti) +w1i ^ (x� ti)]: (4)In the radial basis function networks, equation (2), the dilation operation (via the diagonal matrixDi) and the feature enhancement operation can be simultaneously implemented by means of ageometric product, namely w2iG[Di(x� t1i)]) ejw2jiG[(x� t1i)] where i is now for outputsgi(x) = NXj=1(ejw2ji)G [(x� t1i)] = NXj=1 �j (ejw2ji) (5)



4 Net Architecture and Training AlgorithmThe learning procedure for the cases of the previous section has to minimize a metric dependenterror function E(~p) where ~p is the vector (not a multivector) which comprises all adjustable pa-rameters. In the �rst case, the vector ~p (weights and activation values) can be adjusted using theCli�ord back propagation training rule [5]. This procedure is unfortunately limited to the Euclideanmetric. In contrast the selforganizing Cli�ord network allows according to the task, if necessary,a di�erent metric. The learning procedure of the net consists basically in the �rst phase of anunsupervised method for the hidden layer, i.e. a multivector clustering algorithm, and a supervisedone for the output layer. The second phase of learning is supervised and if it is still necessary helpsto �netune all the net parameters. These phases and the recall mode are explained separately inthe next subsections.4.1 Unsupervised learningFigure 1 depicts the evolution of the net architecture during selfsorganization. This process is insome aspects similar to the adaptive resonance theory selforganization [7]. At the very beginningthe waiting memory and the long term memory have virgin nodes. The input patterns give infor-mation of di�erent events and can resonate with a corresponding existing node. This capabilityof the net is implemented by a resonance detector and control mechanism using a task dependentmetric and competitive learning.
Fig 1.a Dynamic node coding Fig. 1.b Outstars labelingNote that the geometric algebra approach allows the use of a speci�c metric for a particular task.When a winner node is selected its weights are smoothly further adjusted. For each new inputpattern the control mechanism updates the weights of a resonant node either in the long termmemory or in the waiting stage. A candidate node resides in the waiting stage until it surpassesan evidence threshold, then it will be shifted to the long term memory. After the net is stablethe parameters of the radial basis functions for each node are computed. These will be usedfor computing the resonance grade or membership grade (�j) of a input multivector with similarnodes. This factor will play an important role in the inhibition e�ect of the non-resonant nodes(winner-takes-all) during the training of the next layer and during the recall mode.



4.2 Supervised learningIn this stage of the training the multivector weights of the output layer have to be adjusted. Passingagain the training patterns, the weights of the outstar of the resonant nodes are adapted using thefollowing simple rule w2ji(k + 1) = w2ji(k) + �j�(k)(eoi �w2ji(k)) (6)where i is the multivector connection to the output node ith-, �j is a constant and indicates thedegree of the participation of the node j, �(k) is a gain factor. All multiplications are geometricproducts and each output oi supplies a multivector. The multivector e could be set to w1i�1 oranother appropriate multivector as projective split vectors [8] or for the case of a simple multivectorassociation to the scalar unity, i.e. e = 1. The projective split can be used to connect the inputand output spaces of di�erent dimensions and metric. As a result the invariant properties of theinput patterns are enhanced and make possible more observables for the net and in some casesthe nonlinearity in one space can be easily transformed to a linear one in the other space repre-sentation. Here we can also appreciate the coordinate-free advantages of the geometric algebra.Once an initial solution is found after the �rst training phase, a supervised learning method canbe additionally used in order to �netune all the network parameters. According E(~p) the vector ~p,which comprises w1i w2ji will be adjusted after each input and output values xk; f(xk) using themetric dependent functional E(~p;xk; f(xk)).4.3 Recall modeIn the recall mode the outputs of the radial basis functions moderate the participation of theresonant nodes at the output energy level. This is captured by a simple equationoi = JXj=1 �j(ejw2ji) (7)where oi is the ith output, J is the amount of hidden nodes, �j is the degree of the participationof node j and is computed from the radial basis functions. ei as was mentioned before can be thescalar 1 or a split vector, e.g. w�11i .5 Experimental ResultsThe motions of reference frames of joints in robotics can be nicely represented using screws or dualquaternions. The �gure 2 depicts the geometric abstraction of the problem. For this experimentthe range of movements was limited to a practical narrow area. For the approximation of thismapping a combined structure using two Cli�ord selforganizing neural networks was implemented.This is presented in �gures 3. The two neural networks were set up in the Cli�ord algebra C(V0;3)[1] accordingly and applied to approximate the mapping between the screw motions of systems Aand B. Note that we dedicated two independent networks for each part of the dual quaternion asthese dual parts are geometric di�erent. For the selforganizing clustering we used as opposed to theEuclidean metric the second component of the geometric product as a similarity measure. Afterthe selforganization of each network one has recognized a reduced number of long term nodes I andJ, i.e clusters of the real and dual part of the dual quaternions. Here we used in fast learning [7] amoderate categorization threshold �i. In order to test the performance of the structure �1 and �2



were varied so that in one case I=J=5 and in the second test I=5 and J=3.
Fig 2. Mapping between two motion spaces Fig 3. Combined structure for fuzzy clusteringIn the supervised phase the radial basis functions were tuned and then the Cli�ord outstarts wereadjusted. The structure is full connected and the weights of the outstars are also quaternions,see �gure 3. Note that the amount of the outputs is automatically de�ned by the bigger numberof clusters of the nets, i.e L=MAX(I,J). After the supervised training the net was recalled withpreviously unseen patterns and due to its nice capability of fuzzy outputs the net was able to followthe deviation of the main classes as expected. Some pattern examples are presented below. Theexpected dual quaternions at the output are presented in table I.Cat:L b0 b1 b2 b3 b00 b01 b02 b31 0.998 0.023 0.031 0.046 -0.061 0.411 0.508 0.7542 0.927 0.143 0.191 0.287 -0.374 0.528 0.460 0.6353 0.979 0.076 0.102 0.153 -0.199 0.468 0.494 0.7114 0.874 0.186 0.248 0.372 -0.484 0.559 0.429 0.5725 0.771 0.244 0.325 0.488 -0.636 0.589 0.370 0.462Table I: Expected dual quaternions at the outputThe outputs in terms of dual quaternions for each category (Cat.) and its �I�MAX and �J�MAXof the hidden layers are presented in the table II for a combined structure with I=J=L=5.Cat: b0 b1 b2 b3 b00 b01 b02 b3 �I�MAX �J�MAX NI ,NJ1.1 +0.998 +0.023 +0.031 +0.046 -0.060 +0.411 +0.509 +0.754 0.987 0.793 1,11.2 +0.999 +0.018 +0.024 +0.036 -0.047 +0.405 +0.510 +0.758 0.764 0.713 1,12.1 +0.927 +0.144 +0.192 +0.288 -0.374 +0.529 +0.460 +0.636 0.531 0.999 2,22.2 +0.936 +0.136 +0.181 +0.271 -0.353 +0.522 +0.466 +0.646 0.940 0.697 2,23.1 +0.981 +0.075 +0.100 +0.150 -0.195 +0.466 +0.495 +0.714 0.976 0.8850 3,33.2 +0.982 +0.073 +0.097 +0.146 -0.190 +0.465 +0.495 +0.715 0.952 0.708 3,34.1 +0.877 +0.184 +0.246 +0.369 -0.480 +0.558 +0.431 +0.576 0.988 0.979 4,44.2 +0.878 +0.184 +0.245 +0.368 -0.479 +0.558 +0.431 +0.576 0.987 0.975 4,45.1 +0.793 +0.234 +0.312 +0.468 -0.609 +0.585 +0.383 +0.485 0.950 0.790 5,55.2 +0.795 +0.233 +0.310 +0.466 -0.606 +0.585 +0.384 +0.487 0.945 0.787 5,5Table II: Dual quaternions at the output structure with I=J=L=5Cat: b0 b1 b2 b3 b00 b01 b02 b3 �I�MAX �J�MAX NI ,NJ1-1 +0.999 +0.019 +0.025 +0.037 -0.048 +0.406 +0.510 +0.757 0.987 0.793 1,11-2 +0.999 +0.017 +0.022 +0.033 -0.044 +0.404 +0.510 +0.759 0.764 0.713 1,12-1 +0.927 +0.144 +0.192 +0.288 -0.374 +0.529 +0.460 +0.636 0.531 0.999 2,32-2 +0.964 +0.102 +0.135 +0.203 -0.264 +0.492 +0.484 +0.687 0.940 0.697 2,33-1 +0.984 +0.068 +0.091 +0.136 -0.177 +0.460 +0.497 +0.720 1.000 0.952 3,23-2 +0.988 +0.060 +0.080 +0.120 -0.156 +0.451 +0.500 +0.727 1.000 0.937 3,24-1 +0.880 +0.183 +0.243 +0.365 -0.475 +0.557 +0.432 +0.578 0.997 0.997 4,34-2 +0.881 +0.182 +0.243 +0.364 -0.474 +0.557 +0.433 +0.579 0.985 0.995 4,35-1 +0.800 +0.231 +0.307 +0.461 -0.600 +0.584 +0.386 +0.491 0.987 0.910 5,25-2 +0.801 +0.230 +0.307 +0.460 -0.599 +0.584 +0.387 +0.492 0.980 0.912 5,2Table III: Dual quaternions at the output structure with I=5, J=3, L=5The coupled I and J winner nodes (NI and NJ) for the global assessment at the output are indi-cated at the right. The results for the structure with I=5, J=3 and L=5 are presented in table



III. Comparing both tables for the three last categories one can see that the combined networkwith I=J=5 has a better performance than the second with I=5 and J=3. For example, for the 3-2category the �rst structure gives the assessments 0.952 for the real part and 0.708 for the dual partof the dual quaternion, whereas the second structure 1.000 and 0.937 respectively. The combinednetwork with I=J=5 is given more information about the approximated membership degree of thedual part because it has dedicated more nodes for clustering. When a bigger �2 is used as in thecombined network with I=5 and J=3, the coding of the dual element is more rough a�ecting theclass assessment and eventually the overall performance. Note that there are two nodes whichare used for two di�erent classes, i.e. 2,3 and 4,3; and 3,2 and 5,2. It may be possible for otherapplication that a combined structure with I 6=J su�ces. Therefore it is better that the left and theright modules should use independent �'s.6 ConclusionThis paper presents a novel selforganizing type RBF network using the Cli�ord algebra framework.The authors have shown that the use of geometric algebra helps enormously to improve the po-tential of network structures and to simplify the learning algorithms. In the network a new typeof embedded processing called projective split can be added for feature enhancement and betterinvariants recognition. This type of neural networks can be cascaded in order to process patternsusing di�erent space dimension and metric, the latter being possibly only due the projective split.The potential of such nets working in a speci�c Cli�ord algebra C(Vp;q) was shown by a simpleapplication of frame coordination in robotics.References[1] D. Hestenes and G. Sobczyk. Cli�ord Algebra to Geometric Calculus: A uni�ed languagefor mathematics and physics. D. Reidel, 1984.[2] E. Bayro-Corrochano and J. Lasenby. 1995. Object modelling and motion analysis usingCli�ord algebra. Proceedings of Europe-China Workshop on Geometric Modeling and Invariantsfor Computer Vision, Ed. Roger Mohr and Wu Chengke, Xi'an, China, 143:149, April 1995.[3] G. Cybenko. Approximation by superposition of a sigmoidal function. Mathematics of control,signals and systems, 2, 303:314, 1989.[4] T. Poggio and F. Girosi. Networks for approximation and learning. IEEE Proc., 78, 9, 1481:1497,Sept. 1990.[5] J.K. Pearson and D.L. Bisset. Back Propagation in a Cli�ord Algebra. Arti�cial Neural Net-works, 2, I. Aleksander and J. Taylor (Ed.), 413:416, 1992.[6] G. M. Georgiou and C. Koutsougeras. Complex domain backpropagation. IEEE Trans. onCircuits and Systems, 330:334, 1992.[7] G.A. Carpenter and S. Grossberg. ART-2: Selforganization of stable category recognition codesfor analog input patterns. Appl. Optics, 26(23), 4919:4930, 1987.[8] D. Hestenes. The design of linear algebra and geometry. Acta Appl. Math., 23, 65:93, 1991.


