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ABSTRACT

In this paper we present geometric algebra as a new
framework for the theory and computation of invariants and
multiple-view constraints in computer vision. We discuss
the formation of 3D projective invariants and a wholly geo-
metric formulation of constraints from a number of images.

1. INTRODUCTION

Geometric algebra (GA) is a coordinate-free approach to
geometry based on the algebras of Grassmann and Clifford;
the system we adopt here was pioneered by David Hestenes
[6]. We will outline the use of GA in the formulation of
projective geometry and discuss the algebra of incidence.
Using this we present a new methodology for the study of
geometric invariance and multiple-view constraints (more
detail can be found in [7, 1]). Throughout the paper the
convention of summing over repeated indices is assumed.

2. GEOMETRIC ALGEBRA: AN OUTLINE

Let G,, denote the geometric algebra of n-dimensions. This
is a graded linear space with vector addition, scalar multi-
plication and a non-commutative product which is associa-
tive and distributive over addition this is the geometric
or Clifford product. Any vector squares to give a scalar.
The geometric product of two vectors a and b is written ab
where

ab=a-b+anb. (1)

The inner product of two vectors, a-b, is the standard scalar
product and produces a scalar. The outer or wedge product
of two vectors, a A b, is a new quantity we call a bivector.
This is a directed area in the plane containing a and b,
formed by sweeping a along b see Figure 1.

Thus, bAa will have the opposite orientation making
the outer product anticommutative. This is immediately
generalizable to higher dimensions for example, (aAb)Ac,
a trivector, is the oriented volume formed by sweeping the
area a/Ab along vector ¢. The outer product of k vectors is
a k-vector or k-blade, and is said to have grade k. A mul-
tivector (linear combination of objects of different type)
is homogeneous if it contains terms of only a single grade.
Geometric algebra allows us to manipulate multivectors in
a way which keeps track of different grade objects.

In a space of 3 dimensions we can construct a trivector
a/AbAc, but no 4-vectors exist. The highest grade element in
a space is called the pseudoscalar. The unit pseudoscalar
is denoted by I and is crucial to ideas of duality.

Figure 1: The directed area, or bivector, aAb

Consider a linear function f mapping vectors to vectors
in the same space. We can extend f to act linearly on
multivectors via the outermorphism, f, such that

flainasA. . .Aa.) = f(ar)Af(a2)A. . .Af(a;). (2)
f therefore preserves the grade of any r-vector it acts on.
The action of f on general multivectors is then defined
through linearity. Since the outermorphism preserves grade,
the pseudoscalar of the space must be mapped onto some
multiple of itself. The scale factor in this mapping is the
determinant of f;

£(I) = det(f)I. (3)

3. PROJECTIVE SPACE

Points in real 3D space will be represented by vectors in £2
(3D Euclidean space). As is usual, we associate a point in
&% with a line in a 4D space, R'. In these two spaces we
define basis vectors: {v1,72,73,74} in R* and {01, 02,03} in
£% noting that v;2 = —1 for j=1,2,3 and 7§ = +1 (so that
I* = —1, where T = ~1729374). We identify R* and £? with
the geometric algebras of 4 and 3 dimensions. Choosing
~4 as a selected direction in R?, we can define a mapping
which associates the bivectors y;y4, i = 1,2,3, in R* with
the vectors o; = ~;v4, i = 1,2,3, in £*. This process is an
application of what Hestenes calls the projective split.

For a vector X = X171 + Xoy2 + Xays+ Xaya in R* the
projective split is achieved by taking the geometric product
of X and ~y4;

= Xa(1+2). (4)

XA
Xys = Xeys + XAvs = X (1 + X—%) =
4

We think of the vector = as a vector in £* which is associ-
ated with the bivector XAv4/X4 in R, i.e.



X Ava X Xo X3
= = a4+ 2 5
T ; o1+ oo+ o, (5)
= x; = ;f—;, for ¢+ = 1,2,3. This is equivalent to using

homogeneous coordinates, X, for . We therefore have
distinct spaces with a well-defined way of moving between
these spaces.

3.1. Formulation of Projective Geometry

In a given space any pseudoscalar P can be written as P =
ol where a is a scalar. If I~ is the inverse of I, then

PI™'=all ' =a =P (6)

where we have defined the bracket, [P], of the pseudoscalar
P. This bracket corresponds to the bracket of the Grassmann-
Cayley algebra.

We define the dual A™ of an r-vector A as

A" = ATh (7)

In an n-dimensional space, if A is an r-vector and B is an
s-vector (such that r + s = n), we have

[AAB] = (AAB)I"' = A-B". (8)

Here duality is simply multiplication by an element of the
algebra. One can define the join J = A A B of an r-vector
A and an s-vector B by

J =AAB if A and B are linearly independent.  (9)
If A and B have a common factor we can define the ‘inter-
section’ or meet of A and B as AV B given by

(AVB)" = A"AB", (10)

where the dual is taken with respect to the join of A and
B. If the join is the whole space the meet is given by

AV B = (A"AB*)I = (A"AB*)(I " 'I)I = £(A*-B) (11)

according as I> = 1. We therefore have the very simple
relation of AV B = +(A"-B). For more details see [7, 6].

3.2. Projective transformations

If a general point (z,y, z) in 3-D space is projected onto an
image plane point, (z',%'), the coordinates are related bys;

x/_a1$+ﬁ1y+512+61 "

ao® + oy + 622 + €2
ax+ Py +oz+¢é '

ar+ Py +oz+¢é

(12)
To make this non-linear transformation in £° into a linear
transformation in R* we define a linear function f (in R*)
where f is given by a

fn) =

fr) =

a1y + a2y2 + a3zyz + (1"}/4
Biy1 + B2y2 + Bays + B’M etc.. (13)

f maps X onto X’ such that the vector &' = 2’01 + 3’02 +

Z'o3 in £ is formed from X' via the projective split. Simi-
larly for 3" and 2'.

3.3. Algebra in projective space

Consider three non-collinear points, P;, P», Ps, represented
by vectors @1, T2, ®3 in £2 and by vectors X1, X», X3 in
R*. The line L1 joining points P, and P> can be expressed
in R* by the following bivector,

L1y = X1 AXs. (14)

Similarly, the plane ®123 passing through points P;, P>, P;
is expressed by the following trivector in R*

D123 = X1 AX2A X, (15)

Cousider now a line A = X;AX intersecting a plane & =
YAYoAYs  all vectors are in R*. Using the meet operation
we have [7, 1],

AV = [X1 XQYQYg]Y] +[X1 XsY3Y, ]Y2+[X1 XoY Y2]Y3
(16)

where [A1A2A3A,] is the magnitude of the pseudoscalar
formed from the four vectors which agrees with the result
in [2] if the r-extensors of the Grassmann-Cayley algebra
are identified with r-blades.

The intersection of two planes ®; = X; AX2AX3 and
®> = Y1AY2AY 3 is given by the meet of ®; and ®5, which
can be expanded [1] as

@1 Ve = [XiXoX3Y1](YaAY3) + [X1 XoX3Y2](Y3AY))

+[X1 X2 X5Y3](Y1AY2), (17)

producing a line of intersection (bivector in R*). This again
agrees with the expressions given in [2].

4. INVARIANTS

The ‘fundamental projective invariant of points on a line
is the cross-ratio. When a point on line L is projected
onto another line L', distances ¢ and t' are related by a

projective transformation of the form ¢' = % This non-

linear transformation in £' can be made linear in R? by
defining the linear function il mapping vectors onto vectors
in R

f,(m)=an+are, f (1) =0n+ By (18)
Consider 2 vectors X;,X, in R%. Form the bivector S; =
Xi1AX2 = A1 12, where I» = 7172 is the pseudoscalar for R2.
We now look at how §; transforms under fl:

S1 =X AX, = il(X1/\X2) = (dEti1)(X1 AXs).  (19)

Take 4 points on the line L whose corresponding vectors
in R? are {X;}, 4 =1,..,4, and consider the ratio R of 2
wedge products, which will transform as follows under L,
(Rl d Rll)
, X4GAX, (detf )XiAX,
POXEAX, (detf )XaAX

(20)

R is therefore invariant under fl. In order to convert to

1D distances we must consider how the bivector S; in R?
projects down to £

Xi1AXy = (T + S1v2)A(Toyr + Soy2) =

(T1S2 — T2 S1)y1y2 = S152(t1 — t2)Is. (21)



To form a projective invariant which is independent of the
choice of the arbitrary scalars S;, we then take ratios of
the bivectors X; AX; (to cancel detf ) and multiples of
such ratios so that the S;’s cancel. Consider the following
expression

(X AX )T, (XaAX) !
(X4 AX ) (X3 AX) Y

Invy =

In terms of 1D distances, under the projective transforma-
tion L, Invi goes to Inv; where

»_ S3Si(tz —t1)S4Sa(ta —ta)  (tz — t1)(ta — t2)
1T 8481 (ke — 61)S3S2(ts — t2)  (ta — 1) (s — t2)°
(22)

which is independent of the S;’s and is indeed the 1D cross-
ratio.

We can now extend these arguments to form invariant
quantities in 2 and 3 dimensions by taking multiples of ratios
of trivectors and 4-vectors, e.g.

(X5 AXaAX )T (X5 AXAX )T
(XsAXIAX) T (X5AXAX )T

Inv

Invy =

(
(
Toron — (X1 AXoAXAX )] (XaAX5AX2AXG) I,
3 = — —
4 ( 4

(X1 AX o AXAAX ) (XaAXIAXAXG)
23)

4.1. 3D invariants in terms of image coordinates

From six general 3D points P;, ¢ = 1,..,6, represented by
vectors {z;, X;} in £% and R*, we can form a number of 3D
projective invariants. One such invariant is

X0 X0 X3 X4][X X5 X0 X

Invs = . 24
P X XX X5 [X3 X4 X5 Xg) (24)

This is simply equation (23) written in terms of brackets.
Recent work has used the Grassmann-Cayley algebra [2] to
compute such invariants from a pair of images using image
coordinates and the fundamental matrix, F. Subsequent
work by Csurka and Faugeras [3] attempts to correct some
of Carlsson’s expressions by including omitted scale factors.
We will show that the resolution lies simply in reordering
the bracket decomposition rather than finding large num-
bers of complicated scale factors.
Consider the scalar S1234 formed from the bracket of 4
points
51234 = [X1X2X3X4] = (X]/\Xz)/\(X3/\X4)I47]. (25)

(X A X;) represents the line joining points P; and P;. We
let ap and bg be the centres of projection of the two cameras
with the two camera image planes defined by {a1,a2,as}
and {b1,b2,bs} see figure 2. The projection of points {P; }
are given by the vectors {a;} and {b;}. Note our vectors,
a;,b;, ... etc. are vectors in £* with R? representations of
A;, B, ..., etc.

Let the intersection of the lines joining points {a and a}}
and {a} and a}} be a}s3q (Alsgs in RY). Blag, is defined
similarly in the second image plane. It can be shown [7]
that by decomposing as in equation (25) it is possible to
write the bracket Si234 as given in [2]

S123a = [X1X2X3X4] = [AoBoAl334B1234]. (26)

View 1
? ’q View 2
b
Figure 2: Defining points of two camera planes

Note that when we take ratios of brackets we must ensure
that the same decomposition of X; A X; occurs in both
numerator and denominator so that the arbitrary factors
cancel. For example, Invs can be written as

{(X1AX)A (X3 AX ) H(X4AX)A (X2 AX )t
{(X1AX)A (X4 AX ) s H{ (X3 AX ) A (X AXg) gt
(27)
where this decomposition rule has been obeyed. In [3] it is
claimed that the following invariant of 6 points
[X 1 XX 3X4][X 1 X0 X5X)]
[X1 X2 X 5X;5)[X1 XX Xg]'

(28)

is not invariant when expressed in Carlsson’s terms. Their
solution is to include a large number of correcting scale
factors. One decomposition of this expression is

{XAX)A (X3 AX ) I {(Xi AX)A(X5AX) !
{(X1AX)A(X3AX ) Ha (X1 AX)A(XaAXe)

(29)
Here the same bivectors do not appear in both the numer-
ator and denominator so the scale factors will not cancel.
However, we are free to rearrange equation (28) in the fol-
lowing way;

[X1X4X,X35][X 1 X5X5Xg)
[X1 X5 X5 X35)[X1 X4 X>Xg]'

(30)

The decomposition now looks like

{(XiAX)A (X AX3) M {(X1AX5)A (KXo AXg) ™!
{(X] /\X5)/\(X2/\X3)}I471{(X1 /\X4)/\(X2/\X6)}I471
(31

and we see that the same bivectors appear in both numera-
tor and denominator and therefore all scale factors cancel.
Writing

[A0BoA'453B143][A0BoA’ 556 B526]

Invs = 32
? [AOBUAll523B’1523][A0B0A’1426Bl1426] ( )

will indeed produce an invariant thus dispensing with the
need for the scale factors proposed in [3].

5. POINT CORRESPONDENCES
For this analysis, let (a1,a2,as) (b1,b2,b3), (c1,c2,c3),
.+, (n1,m2,n3) define the image planes and let ao, bo,
Co,...,no be the corresponding optical centres.



5.1. Two cameras: the bilinear constraint

The projections of a world point P; (represented by x; and
X; in £* and R*) will be @} and b} in the two image planes
(A} and B} in R"). A} can be expressed as the intersection
of a line and image plane 1, see figure 2:

.A’I = (Ao A XZ) \ (Al AN As A Az) (33)

=[AoX;A2A3]A 1 4+ [AoX;A3A1]As + [A0X;A1AL]A;

and similarly for B} and C;. We can define three planes
through the optical centre of each camera, for example,
®,;, j =1,2,3 are planes through Ay defined by

b = AO/\AQ/\A?,’ d1y = AO/\A3/\A]7 $13 = AgNAIAAS.

(31)
The epipolar constraint is simply that ao, bg, a}, b; are
coplanar. This can be concisely written as Ly A Lp = 0
where Ls = AgAA, and Lg = BoAB], giving [A¢BoAB/]
0. Expressed in terms of the A, B} this gives

[AoBo(ait A1 + ainAs + @isAsz)(8i1B1 + Bi2B2 + 8i3B3)]

=a;TFB; =0, (35)

where F;; = [AoBoA;B;], is the well known fundamental
matrix.

5.2. Three cameras: the trilinear constraints

For point correspondences in three views we have constraints
of the following form;
LA/\{‘I‘Bi Vv ‘I‘Cj} =0 ,LB/\{fbAi Vv ‘I‘Cj} =0,

Lo/\{‘I’Ai V ‘I’BJ‘} =0 (36)
where ® 44, Ppr and Py are planes defined by P4, =
AoANALNA etc. The first constraint in equation (36) is
simply saying that line L4 and the line of intersection of
planes ®5; and ®¢; must intersect at a point this point
being P (drop subscript i on P, A’ etc.). We have

LA/\{‘I’R,' V@oj}: (37)

(AoAANA{(BoAB; AB')V (CoAC; AC} =0.
Using A’ = a;A;, B' = 3;B; and C’' = §;C; then enables

us to write
BoAB;AB' =
CoAC;AC" =

B(BoABiAB)) = 3,05
3m(CoAC;ACim) = 0m @5, (38)

where the planes ®;; etc. have been remaned as given
above. The constraint in equation (37) is now

k(Ao AAR) A B10m (81 V 85,)} =0 (39)
which can be put into the form
T arfidm = 0 (40)
where oy B c
Tyl = [AoAk(®i V @5,,)]. (41)

This is a trilinear constraint. There are obviously 9 possible
choices of the pair (ij). However, by expanding the bracket
in equation (41) it can be shown that only 4 of these are
independent. Since we had three original constraints, this
leads to a total of 12 trilinearity constraints as noted by [4].

Our tensor T,me is related to Hartley’s tensor, Tpqr [4], via;

Tt — Toar (42)
where p = 1if (3,1) = (2,3), p=2if (4,1) = (1,3) andp =3
if (4,1) = (1,2),(2,1). Similarly, g = 1if (j, m) = (2, 3) etc..
We also note that for given (4, j) only certain values of (I, m)
give non-zero expressions for 7.

The derivation of the trilinear constraints for lines is
given in [1].

5.3. Unifying the point constraints for n-views

If we have n views let us choose 4 of these views and denote
them by A, B, C and N. ®4; V ®p; gives a line passing
through world point P as does ®¢; V ®n,,. We therefore
have the condition

{®4; VO ;AN {®c1 V ®Nm} = 0. (43)

If N' =1 N1+n2N2 +n3N3 then this condition can be
written as

ar Bedim { (B V @L)A(RI V@)L =0, (44)

Therefore for n cameras or a moving sensor the general
equation for computing bi-, tri- and quadri-linear constraints

IS (®rr V@ YA{®rrm V Exn} =0 (45)
where K. M and N are any four cameras or any four views
from a moving observer. This equation subsumes the two
and three camera cases, i.e. for two cameras use Lx instead
of {®Pxr V @1} and Ly instead of {®rvm V ®nn} and for
three cameras use Lx instead of {®xy V @1} and {®r; V
®rrm } instead of {®arm V i}

6. CONCLUSIONS

We have shown how geometric algebra can be used in the
formation and computation of invariants and in deriving
a single constraint statement which holds for 1, 2, 3 or 4
views. The framework provides a single mathematical lan-
guage to replace the multitude of distinct systems currently
in use and can be used for most computer vision problems.
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