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Abstract The design of technical systems with the capability of realizing perception—
action cycles will be motivated an the base of fusion of robotics, computer vision, and
signal processing or neural computation in a unified frame. This process of integration
and the overcoming of well known limitations within the contributing disciplines at least
partly may be supported by embedding the task in the frame of a powerful geometric
interpretable algebra. As such geometric algebra will be presented with respect to its
key ideas and some facets will be sketched of first realized applications in the frame of
the mentioned disciplines.

1 Introduction

In this paper we will present a mathematical framework for embedding the real-
ization of technical systems which are designed on principles of the perception—
action cycle (PAC). The use of PAC as a design principle of systems which should
have both capabilities of perception and action is motivated by ethology and has
its theoretical roots in the theory of non-linear dynamic systems. PAC is the
frame of autonomous behavior. It relates perception and action in a purposive
manner. The global competence of such systems results from cooperation and
competition of a set of behaviors, each as an observable manifestation of a cer-
tain kind of competence. If both acquired skill and experience are the sources
to yield competence, there is hope also to gain such attractive system properties
like robustness and adaptivity. The essence behind this extension of the active
vision paradigm is a certain kind of equivalence between visual perception and
action. That means both perceptual categories and those of actions are mutually
supported and have to be mutually verified. Perception and action constitute the
afferent and efferent interfaces of the agent to its environment. Using them in a
mature stage the active agent stabilizes its relation to the environment by equal-
izing categories of perception with those of action. The first ones are defined by
the experience that similar patterns cause similar actions (or reactions) and the
second ones correspond to the skill that similar actions cause similar patterns.

Following that line it should be possible to design both technical visual sys-
tems with support of active components of movement and seeing robots. This
necessitates the fusion of computer vision (as active vision), robotics, signal pro-
cessing, and neural computation. It becomes obvious that representations will



take on central importance. They have to relate the agent with the environment
in Euclidean space-time. Evaluating the actual situation with respect to the
representation problem we have to state both serious shortcomings within the
disciplines and gaps between them.

In order to overcome these problems the time is ripe to identify the deep reasons
for this situation. Our hypothesis is the following: Linear algebra of vector spaces
on real or complex numbers is a too poor language for representing phenomena of
the world as complete and effective as necessary. This results in limited capabili-
ties of reconstruction of complex objects from projected patterns in the approach
of explicit representation of structure and slow learning rates of higher order cor-
relations which are responsible for the structure of complex objects within an
implicit representation approach of neural nets. Even if the ultimate goal of an
agent is not visual reconstruction of the world, it has to find out the mapping
rules between visual percepts and the world they stand for, constrained by its
relations to that world.

What we need is a language which expresses a lot of group theoretical con-
strained geometric isomorphisms within the agent’s mind. This has to be a rich
algebraically structured geometry or a geometrically interpretable rich structured
algebra. We may only refer to some of the serious limitations of linear algebra.
In vector spaces of real numbers intrinsic representations are limited to zero or-
der geometric entities (points) without any symmetry. Geometric transforms are
restricted to translation. Lines and planes as geometric entities are no intrinsic
conceptions of linear vector spaces but result from a process of construction using
points and translation operations. Endowing vector spaces with complex numbers
results in representations of first order entities (lines) with even/odd symmetry.
Geometric transformations are enriched by rotation in the complex plane. In
both cases the scalar product enables only to model bilinear relations between
two vectors with an outcome as scalar. This poverty of operations hinders recog-
nition of intrinsic dimensionality or reconstruction of higher order entities which
constitute the perceivable world. Only by using richer numbers than real or com-
plex ones, respectively by enabling richer symmetry conceptions, vector spaces
can be modeled from subspaces which stand for irreducible invariants as members
of a basis system of structure of higher order then zero or one.

Our conception of the theory for PAC consists of two parts. First part is the
so—called geometric or Clifford algebra as the global frame for representations of
actions or patterns [1], [2], [3], [5], [7], [14]. To sketch out the basic conceptions
and to demonstrate some first results is the topic of this article. The second part
concerns the use of Lie algebra as local frame for both differential generation or
recognition of patterns (see e.g. [15]). In such frame a unified architecture of a
PAC system for the task of perception projects local patterns to the set of irre-
ducible invariants in the frame of geometric algebra and successively from these
projections complex patterns are constructed. Vice versa also local patterns of
actions are generated from such set to construct from them complex patterns of
motion and action. This algebraic constrained local approach also could be help-
ful to overcome the contemporary gap between geometric entities in Computer
Vision and structural primitives in signal theory and thus to realize Faugeras’



stratification approach [9] of vision on the signal level.

2 Geometric Algebra of Vector Spaces

What we need is a more general mathematics for easier modeling of both struc-
tures (perceived and generated) and operations. This mathematics has been
formulated in the last century by W. K. Clifford (1876) as an algebra of di-
rected numbers with both quantitative and operational interpretations. Clifford
algebra (see [16] for a modern survey) can be seen as result of the unification
of H. Grassmann’s algebra of extensions (1844), which concerns the quantita-
tive interpretation of numbers, with the algebra of quaternions, introduced by
W. R. Hamilton (1844) as an operational interpretation of numbers. With this
interpretation of the relations between the mentioned algebras we follow the ideas
of David Hestenes [13] who presented Clifford algebra as a ”unified language for
mathematics and physics” [10] and named it geometric algebra (GA) as Clifford
did. Tt is his great merit to reformulate and to work out Clifford algebra from
a geometrical point of view as a framework for describing physical processes in
the world. Thus, he also decided not to care about the long lasting debate of
pure mathematicians on the priority of Grassmann’s or Clifford’s algebra in es-
tablishing a universal geometric algebra [8]. Indeed, Clifford algebra contains
Grassmann algebra as a subalgebra.

Also the perception—action cycle concerns physical phenomena of the real world
and some problems in modern physics are indeed comparable to those of computer
vision, robotics or neural computation.

A geometric algebra GG, results from providing an n—dimensional vector space V,,
in addition to vector addition and scalar multiplication with a non—commutative
product. The geometric product is associative and distributive with respect to
addition. The geometric product of two vectors a, b is written ab and can be
understood according

ab=a-b+aAb

as the sum of a symmetric inner product @ = a - b and an antisymmetric outer
product B = a A b. In case that a, b are vectors — we say of grade one —
the inner product corresponds to the scalar product — its result is a scalar (of
grade zero), but the result of the outer product is a new entity of grade two.
This is called a bivector. That means, in contrast to the scalar product of vector
algebra, the geometric product of geometric algebra results in both contraction
(inner product) and expansion (outer product) of the grade of entities. As a
consequence we get from the product of n vectors ay, ..., a, a multivector

A=A+ (A +...+(A) ,

which is a mixture of multivector parts (A), of grade r. Any multivector A, =
(A), is called homogeneous of grade r or r—vector. Only if such r—vector can be
factored according

A, =ajay---a,



it is called an r—blade. The geometric product of any two homogeneous multi-
vectors A, , B; results in a spectrum of multivectors of different grade

ATBS = <A7'B5>|7'—5| + <A7‘B5>|7‘—s|+2 +...+ <A7‘Bs>r+s 5

ranging from pure inner product (A), -(B); = (A, B;)|,_,| to pure outer product
(A); A (B). = (A By

Thus, an n—dimensional vector space V,, uniquely determines a geometric al-
gebra G(A) = G, which itself spans a linear space of dimension 2”. From a

given set of n linearly independent vectors spanning V;, we get ( Z ) linear
independent r—blades. These r—blades themselves constitute a basis of the lin-
ear subspaces G,(A) of dimension ( Z ) of all r—vectors in (G,,. Each such

r-blade A, € G,(A) has a geometric interpretation as an uniquely oriented r—
dimensional vector space V;, = G1(A,), consisting of all vectors a which satisfy
aA A, =0, as subspace of V, = GG1(A). Thus, any r—vector part (A}, can be
understood as a projection of A into the space G,(V,) and any r—vector A, can
be formulated as a sum of r—blades. Since V}, is the vector space of A,,, it follows
aANA, =0and a; Aas A...Aa, = Al with [ as unit pseudoscalar or direction
of V,,. From the existence of such pseudoscalar follows the important intrinsic
duality principle of geometric algebra which results from any unit r—blade and
unit (n — r)-blade in I, I,,_, = I. As a result of this the relation

A= AT!

defines a dual A* of an r—vector A = (A), with respect to the unit pseudoscalar
I. The grade of A* is (n —r) due to AI™! = A - I~!. In case that A is an
r—vector and B is an s—vector, it results the duality of inner and outer product
corresponding to

A -B*"=(AAB)"
If r + 5 = n, then A AB equals a pseudoscalar P = A, and because 11~ =1,
it follows
[P]=[AAB]=(AAB)["'= A .B"
Here [P] = A is the bracket of the pseudoscalar P as used in Grassmann—Cayley
algebra (see chapter 4). Because the sign of the bracket is independent of the sig-

nature or metric of GG, 1t is possible to define for that algebra also two qualitative
operations. For any linear independent r—vector A and s—vector B

C=AAB

is the join (or union) of both. Thus C is of grade r + s. On the other hand, if A
and B are not linearly independent, the join represents the subspace which they
span. As another qualitative operation the meet (or intersection) of C = AV B
is indirectly defined with respect to the join as

C*=(AVB) = A" AB*



For r + s = n the join will span the whole space and the meet as a multivector
of grade |r — s| will be easily computed as

C=+(A" B)

Both operations are of fundamental importance due to their constructive prop-
erties for instance in projective geometry (see chapter 4).

3 Geometric Algebra of Euclidean 3D—Space

The perception—action cycle takes place in Euclidean space—time where the agent
is interested in recognizing and organizing processes in such world, even if for
some tasks only projective or affine constraints of Euclidean space are used. In
chapter 4 problems of projective geometry and kinematics are presented briefly.
Following the facts of chapter 2, the geometric algebra of Euclidean 3D-space
is 8—dimensional. Much higher—dimensional spaces result if geometric algebra is
applied to manifolds, as in chapter 5.

An n—dimensional vector space endowed with an orthogonal basis {oy},l =
1,...,n, and a bilinear form such that o; - o = J;x results in a basis of the
geometric algebra G,,:

Lia} Aoor}, {owokom}, ... 0100 . .0p
Thus, the basis of Gz = G(F3) is composed of the following components
1, {0'1,0'2,0'3}, {0'10'2 = i1,0'20'3 = i2,0'30'1 = i3},0’10’20’3 = Z s

which themselves constitute the basis vectors of the subspaces G, C Gj3. In
this way 4 is the unit trivector or unit pseudoscalar of Fs with 2 = —1, and
i;,1 = 1,2, 3 are the unit bivectors which are the basis vectors of the quaternion
algebra. Any multivector A € G3, A = a4+ a+ B + T is component wise
composed of multiples of these unit vectors of geometric algebra. However, due
to the duality principle, we can change the basis of any r—vector part by its dual
basis, e.g.
B = Byiy + Bals + Bsis, 1jlsig =1

or
B=1:/ with b:BlUl+BzUz+BgU3

This will be useful if consideration of different interpretations of any multivector
is of interest.

Any r—vector of (G5 can get an interpretation as geometric entity. Both points
and lines are represented by vectors and planes are represented by bivectors. The
relation of a line a with respect to a plane B is given by the geometric product
aB = a-B+aAB. If the line is on the plane we get aAB = 0 whereas a-B =0
corresponds to a line perpendicular to the plane.

An operational interpretation of multivectors results by considering the 4-dimen-
sional even subalgebra G§. Any multivector A € G, A = (A)g+(A)2 = a+B



is representing a spinor if B = ¢b is used. A spinor stands for a rotation—dilation
(not only in FE3). Indeed, the rotation component, represented by the rotor
R = +eB/? with the rotation plane represented by the bivector B, is a much
more general way of expressing rotations then using matrix operations or using
the frame of quaternions. The rotation B, = RATIN{, where R stands for the
conjugate of R and thus RR = RR = 1, of any r—vector A, works for all spaces
of any dimension on any type of objects, whatever grade. Moreover, it works
without the use of external coordinates.

4 Geometric Algebra of 4D-Space

The contemporary knowledge does not allow to work out the complete theory
of perception of spatio—temporal equivalence classes in the frame of stratified
space—time. This theory would permit to model projective, affine, or metric
perception of structure from differential motion in space. Instead, the visual
interpretation of the world from image sequences is treated either as stationary
n—views problem of structure from motion problem with limited information
capacity. By abandoning conceptions of time, kinematics often is considered as
spatial transformation or rigid displacement in Euclidean space.

In this chapter we will show the use of geometric algebra for either problems of
projective geometry or kinematics by embedding both tasks in different algebraic
frames.

For the sake of generality, in the characterization of the geometric algebra the
signature of G, has to be considered. Writing G, 4 - instead, where n = p4+q+r,
refers to the number of basis elements which square to 1 for p, —1 for ¢, and zero
for r. For example, G3 o9 = G(F3) stands for o7 =1, 1=1,2,3.

As has been shown by Hestenes [11], geometric algebra is well suited to deal with
problems of projective geometry. Because the projective space Ps is a non—metric
one, it has to be extended to an associated 4-dimensional vector space R4 with
the basis vectors 4;, l = 1,2, 3,4. To become consistent with the signature of G3
for the geometric algebra of the Euclidean space, the geometric algebra of R4 has
to be (1,30 [14]. The correspondence between both spaces is given by o; = v;7a,
¢t = 1,2,3. This 16-dimensional space is spanned by the basis

LAd {vave, ivave b, i} i

with 1 =1,2,3,4,k=1,2,3,77 = 1,92 = —1, i = y1727Y374, and > = —1. Here
~a plays the role of a selected direction. By computing the projective split of a
vector X = Xjv1 + Xaovys + X3zvz + Xyva

XA 7ya

4

X’y4:X’y4—|—X/\’y4:X4<1—|— )EX4(1—|—X)

any vector X € R4 may be related to a vector x € F3 and vice versa by

XAve Xi n X n X3 _ n n
- 0 f— - =10 o0 r303 = X
X, X4’71’Y4 X4’72’Y4 X4’73’Y4 101 202 303




it may be recognized that X; represent the homogeneous coordinates of x. The
projective split [12] is a very powerful tool for any mapping of entities between
spaces of different dimension [2], [4], [14]. In this way vectors, bivectors, and
trivectors in (1 3,0 correspond to points, lines, and planes in 3. Using the join
between any non—collinear points x1,x3,x3 € 3, respectively X1, X3, X3 € Rq4,
a plane II € (1 30 passing these points is represented by

M=X;AX2AX3=LAX3

with L = X1 A X2. As an example for the meet of entities in geometric algebra
we consider the intersection L V @ of the above defined line L with the plane
® =Y; AY2AYs. After using some algebra [2] the intersection point Z € Ry
is given by

Z=LV®=[X1X2Y2Y5]Y1 +[X1X:Y5Y1]Y; + [X1X2Y1Y,]Y5

In [14] the framework of geometric algebra has been applied for computing 3D
projective invariants. In [2] geometric algebra has been used to compute point
correspondences between n cameras and invariant projective depth by taking
into account n—linear constraints. It has been shown that geometric algebra is
superior to the recently used Grassmann—Cayley or Double algebra with respect
to both elegance of derivations and gain of geometric insight of operations.
Besides, geometric algebra is not special to problems of projective geometry. This
has been shown in [7], [4]. There the hand—eye calibration in visual robotics could
be solved as a linear problem. The simultaneous estimation of translation and
rotation is a nonlinear problem by itself. However, choosen a dual quaternion or
motor algebra this becomes a linear problem.

Dual quaternions belong to the general class of composed numbers a = b + we,
where the algebraic operator w specifies complex numbers for w? = —1, double
numbers for w? = 1 and dual numbers for w? = 0. In the last case the term b is
called the real part and ¢ corresponds to the dual part of a.

Clifford [6] recognized that dual quaternions are representations of a so—called
screw motion, which can be understood as a rigid motion (that means coupled
rotation and translation) of lines in E3. He introduced the dual quaternions
with the name motors as abbreviation of "moment and vector”. Motors are
the multivectors of the even 8-dimensional subalgebra G;&l of Gq,3,1, which
is the geometric algebra of a 4—dimensional vector space R4 with a pseudomet-
ric v = 0, 9 = =1, 1 = 1,2,3. In accordance to the requirement of the
algebraic operator of dual numbers G 3 is endowed with a unit pseudoscalar
i = 1927374 which squares i = 0. The basis of the degenerated algebra G3j3,1
is (1, {yavi }, {dyayi }, ©), where {747} define the basis of the real part and {éy4v }
define the basis of the dual part of motors [4].

The basic geometric interpretation of a motor M corresponds to the sum of two
non—coplanar lines,; represented in the dual basis of G3'7371, le.

M = X1X2 + X3X4
= (a0 + a1yay1 + asvyay2 + asvyays)



+i(bo + b1yay1 + bayays + b3vays)
= R+ R’

A motor therefore can be represented as a dual rotor. On the other hand a motor
is a coupled translation—rotation, i.e.

t
M=TR = (1—|—i§)R

Here the term T defines a so—called translator as a rotation plane displaced from
the origin of reference by vector t and with the same orientation of that vector.
By augmenting the space Es by using R4 instead, rigid displacements of lines is
a very attractive alternative of that of points. In dual number representation a
line 14,

ly=n+mAp=n+im, ‘=0 |,

represents by its real part the line direction n and by its dual part the moment
m which results from vector n and any vector p touching the line. Its motion in
terms of motors reads

" = MI;M = RnR + i(RnR’ + R'nR + RmR)

Of course also the other entities exist in the augmented space R4 but their use
in tasks of rigid transformations is limited in comparison to those of lines.

It seems that unrestricted merging of projective and kinematic tasks in the frame
of geometric algebra would be possible if the Fuclidean space E3 would be alge-
braically extended to Rs.

5 Geometric Algebra of Manifolds

Because geometric algebra plays the role of a very general scheme of embedding
any task of the PAC, it will be important also for analysis of multi-dimensional
signals and for (neural) mapping of perceived signals onto those of motor control.
i From the last problem follows the necessity to reconsider the role of the linear
assoclator in neural nets and to enrich i1t with the capability to process multivec-
tors. This topic [3] should be passed over here. Instead, we will consider some
problems of multi—dimensional signal processing, mentioned in the introduction,
with strong relevance to early visual processing.

The well known Fourier transform hitherto is inable to provide us with possi-
bilities of representing real multi-dimensional signals. That means it is only
limited to the separable case. This is strongly related with its linear nature. On
the other side real multi-dimensional structures are constituted in a non-linear
manner from one—dimensional basis functions. To become adequate for multi—
dimensional signals and simultaneously keeping its linear structure, a multi—
dimensional Fourier transform has to be algebraically extended to the requested



dimension. In [5] a Clifford Fourier transform (CFT) F¢(u) of an n—dimensional

signal f(x)
Fé(u) = /.../f(x)Qu(x)d"x
has been introduced by defining its basis functions as

n

Qu(X) — H e~ IR2TUKT

k=1

In contrast to the classic approach each one—dimensional component transforms
to its own complex domain, indicated by the n different imaginaries ji. From this
follows that the quaternionic Fourier transform (QFT), which is adequate to two-
dimensional signals, splits such signal into four components in the quaternionic
Fourier domain. Therefore not only more symmetry conceptions result but also
only on this way a multi-dimensional phase can be defined.

Another topic of future importance will be the design of local operators which
in the linear vector space of signals represent non-linear operators but in con-
trary to this in the multivector space of geometric algebra represent linear ones.
This problem is related to the problem of estimation of higher order correlations
of signals within the operator support. In principle each pixel of that domain
contributes with one dimension to the signal space and consequently very high—
order relations may be estimated. But this is hindered by the computational
complexity of the nonlinear nature of operators. By using Volterra series ap-
proach for the local estimation of signal structure and by embedding the task in
the frame of geometric algebra, the estimation problems become linear ones in
the corresponding multivector subspace of geometric algebra.

6 Conclusion

We presented Clifford or geometric algebra as a powerful and general scheme of
embedding any problem of perception—action cycle, ranging from kinematics via
projective geometry to signal theory. The paper summarizes some key ideas of the
algebra in relation to different applications in the mentioned fields. Although the
development of methodology is in its infancy yet, its potential becomes visible.
Both reformulations of well known approaches and extension to new approaches
will result in overcoming of existing limitations in the design of technical systems
which might be able to perform perception—action cycles in real-time.
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