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Abstract. Geometric algebra is a universal mathematical language which
provides very comprehensive techniques for analyzing the complex geo-
metric situations occurring in robotics and computer vision. The appli-
cation of the 4D motor algebra for the linearization of the the hand-eye
calibration problem is presented. Geometric algebra and its associated
linear algebra framework is a very elegant language to express all the
ideas of projective geometry. Using purely geometric derivations, the
constraints for point and line correspondences in n-views and projective

invariants are computed.

1 Introduction

W. K. Clifford (1876) defined the so called geometric product in an attempt to
merge the algebra of the extension of H. Grassman (1877) with its quantitative
interpretation of numbers and the algebra of the quaternions of W.R. Hamilton
(1843) with its operational interpretation of numbers. The Clifford algebra is
well known to pure mathematicians, but were long ago abandoned by physicists
in favour of the vector algebra of Gibbs, which is indeed what is most commonly
used today in most areas of physics. The approach to Clifford algebra we adopt
here was pioneered in the 1960’s by David Hestenes [4] who has, since then,
worked on developing his version of Clifford algebra — which will be referred to as
geometric algebra — into a unifying language for mathematics and physics. In this
paper we will specify a geometric algebra G,, of the n-dimensional space by Gy, 4 »,
where p, q and r stand for the number of basis vectors which squares to 1, -1 and
0 respectively and fulfill n=p+q+r. Its even subalgebra will be characterized by
gz;l—,qm' In robotics, the emphasis of this paper i1s that of the hand-eye calibration
using motion of lines. For computer vision geometric algebra provides a very
natural language for non-metrical projective geometry and algebra of incidence.
Using n uncalibrated cameras the constraints for point and line correspondences

and projective invariants are computed.



2 Modelling the 3D Motion of Points, Lines and Planes

In this section we present the modelling of the 3D motion of basic geometric
entities using the algebra of the motors g;oyl. Firstly we summarize the dual
expressions derived in [1] for points ¢ = 1 + i@, planes ¢ = n + id and lines
lag = n + tm, where the real part can be seen as the line direction and the dual
part as the moment of the the line.

The motion of a point can be represented as
M(1+iz)M = TR(1 + iz)RT = | + i(RzR + 1) (1)
and of the line
l,= MI,M = Rn, R+ i(RnyR + R'ny,R + Rm,R). (2)
The motion of a plane can be seen as the motion of the dual of the point

M(n +id)M = RnR + i(d + (RnR) - 1). (3)

3 Motors for hand-eye calibration as a case of motion of

lines

The well known hand-eye equation firstly formulated by Shiu and Ahmad [5]
reads

AX = XB (4)

where A = A Az_l and B = B1B2_1 express the elimination of the transforma-
tion hand-base to world. Equation (4) can be reformulated as Az_lAlY =YB.
Now if A2_1A1 1s written as a function of the projection parameters it is possible

to get an expression fully independent of the intrinsic parameters C, i.e.

N;IN; N_l(nl —1n2) Rt
-1 2 2
A, A = oF ) “lor 1| (5)

Taking into consideration the selected matrices and relations, this result allows
anyway to consider the formulation of the hand-eye problem again with the

standard equation (4) which can be solved in terms of motors as
MA MX = MX MB (6)

where M4 = A+ iA'", Mg =B+ iB and Mx = R+ iR'. According to the

congruence theorem of Chen [3] in this kind of problem the rotation angle and



pitch of M 4 and M p remain invariant through out all the hand movements.
Thus the consideration of this information can be neglected. It suffices to regard
the rotation axis of the involved motors, i.e. the previous equation is reduced
as the motion of the line axis of the hand towards the line axis of the camera.
For that we can use the equation (2) for the computation of the real and dual

components of I 4, 1.e.
l4=a+iad = RbR+i(RbR + RV R+ R'bR). (7)

After some simple manipulations according the relation RR/ + R'R =0 we get

HE

where the matrix - we will call § -1s a 6 x 8 matrix and the vector of unknowns

the following matrix

a—b [a+b]x 031 Osx3
a —b'[a’ +b]y a—b[a+b]

(RT, R/T) is 8-dimensional. Recall that we have two constraints on the unknowns

so that the result 1s a unit dual rotor with
RR=1 and RR =0. (9)
Suppose now that n > 2 motions are given. We construct the 6n x 8 matrix
T T e
T'=|55,...5, (10)

which in the noise-free case has rank 6 and compute the singular value decom-
position (SVD) of T = UXVT where ¥ is a diagonal matrix with the singular
values, the columns of U are the left singular vectors, and the columns of V" are
the right singular vectors. If the rank is 6 than the last two right singular vectors
vy and vg - corresponding to the two vanishing singular values - span the null
space of T. We write them as composed of two 4 x 1 vectors vy! = (uf vT)
and vg? = (ul vl). A vector (RT, R/T) satisfying T(RT, R/T)T = 0 must be

a linear combination of vz and vg, hence
uz
Va2

ER

The two degrees of freedom are fixed by the constraints (9) which imply two

e + Ag

Vi

quadratic equations in A; and As which can be solved after simple algebraic
manipulations. The computational algorithm and more technical details of this

approach can be found in [1].



4 Point and line linear constraints

In this section we will outline the geometric algebra approach to the analy-
sis of point and line correspondences between two and three cameras. For the
projective space P? we choose the geometric algebra Gy 50 [2]. Let (a1, as, as)
(b1, ba, b3), (1, c2, c3) define the image planes in views 1, 2, 3 and let ag, by, ¢g
be the corresponding optical centres. We start with the well understood case of

two cameras.
4.1 Two cameras: the bilinear or epipolar constraint

Now, the epipolar constraint is simply that ag, bo, a}, b} are coplanar if a} and
b, are projections of the same world point. This can be concisely written as
LaANLg=0where Ly = AgAA} and Ly = By AB; or [A¢BoA.B}] = 0. The

latter expressed in terms of the A}, B}

[AoBo(a;1 A1+ aisAs 4 @i3A3) (61 B1 + GiaBa + 6i3B3)] = a; T FB; = 0. (11)

4.2 Three cameras: the trilinear constraints

For point correspondences in three views we also have constraints of the following

form;
LA/\{@BZ'\/@CJ'}:O, LB/\{@AZ'\/@CJ'}:O, LC/\{@Ai\/@Bj}:O (12)

where @ 41, Ppr and @y, are planes through the optical centres of views 1,
2 and 3 and through the world point P; defined by @45 = Ag /\Ak/\A; etc. So,
the first constraint in equation (12) is simply saying that line L and the line of
intersection of planes ®p; and ®¢; must intersect at a point — this point being P
(drop subscript i on P, A’ etc.), see Figure 1. Let us express this first constraint

in terms of R* vectors
Lan{®piVPcit = (AcAANA{(BoAB; AB )V (CoAC; AC)}=0. (13)

The points can be also expanded in terms of the R* vectors A’ = a1 A +asAs+
asAs, B' = 31B1+ 3:Ba+ 3B3 and C' = §;C1 +3J2C2+463C3. We can therefore
write BoAB;AB’3,(BoAB;AB;) = 395 and CoAC;AC = 6, (CoAC;AC,,) =
(5m§15jcm,where we have now renamed the planes @17 etc. as given above. The

constraint in equation (13) can now be written as

ap(AoANAR)A{ B (P V &5,)} =0 (14)



Fig. 1. The joint of a line with the resultant line of two intersecting planes.

which can be put into the tensor form
T ki, =0 (15)

where
Titm = [AoAR(®F Vv &5, (16)

This is equivalent to the trilinear constraint.

4.3 Line correspondences between three cameras

Suppose we have world points P; and P,, whose R* representations are P, and
P5. The line Li; joining Py and Ps can be expressed as L1s = P1APs. L
projects down to lines in the three image planes we shall call L4, = AJAA),
LB, = B/ AB), and L§, = C]ACY,.

As before, we can expand Af as afA; + abAs + abAg. L{, can then be
expanded in terms of the ‘basis bivectors’ L;? as follows L%, = lkL;?, where
L‘f‘ = AsNA3, L‘24 = A3AA; and L4 = AjAA, and ) = a%a% — aéa% etc.
Similarly we have LE, = I/ LP and L{, = I/, LS, . To arrive at a constraint between
the lines in the image planes we note that the line L1, = P1AP5 can be expressed
as the meet of the planes (BoAB]AB)) and (CoAC|ACY). Also L, = A AA),
can be written as the meet of planes (Ag APy AP32) and (A AA2AA3). We
therefore have the identity

ATAAL = {AGA{(BoABIABS) V (CoACIACH TV (AL AALAAG).  (17)
Using the expansions in terms of the line coefficients this reduces to

L = {AAN{UPE VI 51}V (AL AALAAS) (18)

m



where @113 = ByAB2ABs3, etc.. Using the definition of the meet we can form the
expression I L4 = 11! {[Ao{®F v &5 YA, ]LA}. From this it is clear that the

relationship between the I’s is
le = UL [AQ{DF vV 05 YAL] = UL Thm,
from the definition of 7" in terms of Hartley’s tensor.

5 Projective Invariants

This section shows the power of geometric algebra by computing a well known
invariant which results when we consider six 3D points F;, ¢ = 1,..,6 in general
position, represented by vectors {z;, X;} in E® and R* respectively. 3D pro-
jective invariants can be formed from these points, and an example of such an

Invariant 1s
XX XXy [XuX5X X ]

[X1 XXy X5][X3X X0 X6
It will be highly desirable to compute the brackets [X;X;X;X;] simply in terms

of image coordinates of points P;, P;, P, P, in order to compute this

Inv =

(19)

invariant straightforwardly. Consider the scalar Sjs34 formed from the bracket

of 4 points
S1a34 = [X1 X0 X3X ] = (XAXAXAX ) [~ = (XAX)A(X3AX ) 7L (20)

The quantities (X; A X5) and (X3 A X4) represent the line joining points Pj
and Py, and Ps and Ps. Let the projection of points { P;} through the centres of
projection onto the image planes be given by the vectors {a}} and {b.} which
are ordinary vectors in E°. The representations of these vectors in R* will be
A; B; A} B;... etc. In [2] it is shown that the bracket of these 4 points (in R*)

can be equated as
Sto3s = [X1X0X3X4] = [A¢BoA]534B934]. (21)

Thus, when we take ratios of brackets to form our invariants we must ensure
that, if we want to express the brackets in the form of equation (21), the same
decomposition of X; A X; must occur in the numerator and denominator so that

these arbitrary factors cancel. In the case of Inv, we have

{(XGAX ) A (X3AX ) ™ H(XaAX ) A (XA X ) 7t
{(XGAX) A (X AX) L H (X3 AX)A (X AX ) ™

Inv =

(22)



The problem of how to express such invariants in observed coordinates still
remains. This is not a trivial task as this invariant has been derived in 3D using
the 4D definition of the fundamental matrix and it needs to be transferred to
3D. Expanding the bracket in equation(21) by expressing the intersection points
in terms of the A’s and B’s and defining a matrix F such that

Fij = [AgBoA,B;] (23)

and vectors auj234 = (Oé1234,1, 1234,2, Oé1234,3) and 31234 = (51234,1, 51234,2, 51234,3).

It is easy to see that we can write Sio34 = aT12341~7B1234 . The ratio

(aT12341:—'ﬁ1234) (aT45261~734526)

Inv = = = (24)
(T 1245 F By 945) (T 3426 F B3496)
is therefore seen to be an invariant. Now if we define F' by
Fri = (Ag-va)(Br-ya) Fr (25)
then it follows that
ik FriBi = (AL-y4) (Bl -~4)0ik Fricir. (26)

If F is estimated then an F defined as in equation (25) will also act as a funda-
mental matrix in R*. Now let us look again at the invariant Inv. According to

the above, we can write the invariant as

(5T1234F€1234) (5T4526F64526)¢1234¢4526

(5T1245F€1245) (5T3426F63426)¢1245¢3426

Inv =

(27)

where
¢pq7‘s = (A;)qrs '74)(B;)qrs 74) (28)
By expressing A’,34 as the intersection of the line joining A} and A% with

the plane through Ag, A}, Al we can projective split and equate terms to give

(A/1234'74)(A£1526'74) — pi2as(ft3a26 — 1)
(ABgns-v4)(Aloasva)  Hasze(pi23a — 1)

(29)

The values of u are readily obtainable from the images. The factors B;;qrs"ﬁl are
found in a similar way so that if b],3, = A123ab) + (1 — A1234)b5 ete., the overall
expression for the invariant becomes

(5T1234F€1234)(5T4526F€4526) H1245(ft3a26 — 1) A1245(Az426 — 1)

Inv = .
(5T1245F€1245)(5T3426F€3426) pasas(piaza — 1) Aasas(Ai23a — 1)

. (30)

Thus, to summarize, given the coordinates of a set of 6 corresponding points
in the two image planes (where these 6 points are projections from arbitrary

world points but with the assumption that they are not coplanar) we can form

3D projective invariants provided we have some estimate of F'.



6 Conclusions

This paper has focused in the geometry and algebra of 3D and 4D spaces which
are necessary for the representation and manipulation of basic geometric entities
required in robotics and computer vision. In the case of the hand-eye calibra-
tion when the 3D representation is extended to the 4-D space using the motor
algebra the problem of computing the unknown motion becomes linear. In com-
puter vision geometric algebra does not need to invoke the standard concepts
of classical projective geometry, all that is needed is the idea of the projective
split relating the quantities in B* to quantities in our 3D world and the alge-
bra of incidence. The case of computing linear constraints and invariants using
n uncalibrated cameras is elegantly carried out. Here the duality principle and
projective split help to reduce the complexity of the computation. It have been
seen by the problems treated in this paper that geometric algebra indeed has a
powerful representation capability and a strong geometric basis. That is why the
authors believe that it is a competitive language to provide a unified approach

[6] for the design and implementation of visual guided autonomous systems.
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