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Abstract

This paper discusses a coordinate-free geometric approach to object modelling and the
analysis of motion in computer vision. The new technique used to analyse the 3-dimensional
transformations involved will be that of Clifford algebra or geometric algebra. This is not
an approach designed specifically for the task in hand, but rather a framework for almost
all mathematical physics. Both object modelling and estimating camera motion from dif-
ferent scene projections have been heavily discussed in the literature, however the Clifford
algebra based method allows a more elegant reformulation which provides greater geomet-
rical insight. The hope is that one can then extend the scope of the techniques to more
complicated problems.

1 Introduction

Geometric algebra has already been successfully applied to many areas of mathematical physics and
engineering. The system adopts a coordinate-free approach and deals with rotations in n-dimensional
space very efficiently. The authors believe that it could be a useful tool for object modelling and mo-
tion analysis where the 3-dimensional geometry of any given problem is of fundamental importance.

The next section gives a brief introduction to Clifford Algebra. The is followed by sections
which present geometric equations for polyhedral object modelling and discuss the analysis of poly-
hedral objects in contact situations with an application in robotics. Camera motion from two scene
projections and the conclusions are presented in the final sections.

2 An Outline of Clifford Algebra

Clifford algebras are well-known to pure mathematicians. In this work we will use an interpretation
called geometric algebra [1] which is a coordinate-free approach to geometry. In geometric algebra
the elements are coordinate-independent objects called multivectors which can be multiplied together
using a geometric product. It is thus very different to standard vector calculus.

2.1 The Geometric Product and Multivectors

The geometric or Clifford product of two vectors a and b is written ab and defined as

ab =a-b+aAb. (1)



dimensions the the friwector (aAb)Ac 1s an oriented 3-dimensional volume obtained by sweeping the
bivector aAb along the vector c.

In a space of dimension n there are multivectors of grade 0 (scalars), grade 1 (vectors), grade 2
(bivectors), grade 3 (trivectors), etc... up to grade n. Any two such multivectors can be multiplied
using the geometric product. Consider two multivectors A, and Bg of grades r and s respectively.
The geometric product of A, and By can be written as

A:B. = (AB),,. + (AB),,, ,+...+ (AB),_, (2)

where (M) is used to denote the t-grade part of multivector M, e.g. (ab) = (ab)g + (ab); =
a-b+ aAb. In the following sections expressions of grade 0 will be written ignoring their subindex,

i.e. (ab)g = (ab) =a-b.

2.2 Geometric Algebra and Rotors in 3-D Space

For an n-dimensional space we can introduce an orthonormal basis of vectors {o;} ¢« = 1,....n, such
that o0;-0; = d;;. This leads to a basis for the entire algebra:

L, Ao}, Aoino;}y, {oino;Nor}, ..., o1AoaA.. Aoy, (3)

Note that we shall not use bold symbols for these basis vectors. The highest grade element is called
the pseudoscalar for the space. Any multivector can be expressed in terms of this basis, and while it
is often useful to do so, we stress that the main strength of geometric algebra is the ability to carry
out operations in a basis-free manner. The basis for the 3-D space has 2°> = 8 elements given by:

\1/_/,{0'1,0'2,0'3}, {0'10'2,0'20'3,0'30'1}, {0'10'20'3} =1. (4)

scalar

vectors bivectors trivector

The reference vector frame {0y, 02,03} corresponds to the 3-D scene space XYZ coordinate basis.
The trivector or pseudoscalar 10503 squares to —1 and commutes with all multivectors in the 3-D
space. Therefore it is given the symbol i. Note that this is not the uninterpreted commutative scalar
imaginary j used in quantum mechanics and engineering.

By straightforward multiplication it can be easily seen that the three bivectors can also be written
as
0203:i01 :’L.7 0103 = —iUQZj, Ulgzziggzk. (5)

These simple bivectors are spinors, as they rotate vectors in their own plane by 90°, e.g. (0103)02 = 071,
(0203)09 = —03 ete. Since (i01)2 =—1, (—i02)2 =—1, (i03)2 = —1 and (i01)(—102)(i03) = i010905 =

—1, the famous Hamilton relations
=3 =k=1ijk=—1 (6)

are easily recovered. Interpreting the 2,7,k as bivectors, it can be seen that they indeed represent
90° rotations in orthogonal directions and will therefore provide a system particularly suited for the
representation of 3-D rotations. Now, using nothing other than the above simple bivectors one can
show that the quaternion algebra of Hamilton is simply a subset of the geometric algebra of space.
If a quaternion A is represented by [ag, a1, az, as], then there exists a one-to-one mapping between
quaternions and rotors given by

A = [ag, a1, ag, as] < ag + a1(io1) + az(ioy) + as(ios) (7)

In order to find out more about rotors in the geometric algebra we note that any rotation can be
represented by a pair of reflections. It can be easily shown that the result of reflecting a vector a in
the plane perpendicular to a unit vector n is



where a_ and a)) respectively denote parts ol a perpendicular and parallel 1o L. 1 hus, a refllection ol
a in the plane perpendicular to n, followed by a reflection in the plane perpendicular to m results in
a new vector "

—m(—nan)m = (mn)a(nm) = RaR. (9)
The multivector R = mn is called a rotor. It contains only even-grade elements and satisfies RR = 1.
The transformation a — RaR is a very general way of handling rotations of multivectors of any grade
unlike the quaternion calculus. In 3-D we use the term ‘rotor’ for those even elements of the space

that represent rotations. Any rotor can be written in the form R = +eB/?, where B is a bivector.
In particular, in 3-D we write R = e(=2%) = cosg —n smg which represents a rotation of 6 radians

anticlockwise about an axis parallel to the unit vector n. Ifb= Rlaf{;l and ¢ = szfiz, the rotors
combine in a straightforward manner, i.e. ¢ = RaR where R = RyR;.

3 Polyhedral Object Modelling

In this section the analysis is restricted to the case of polyhedral objects which can appear in any
position and can also be partially occluded. This approach cannot currently deal with objects which
have many curved surfaces. Canny [2] used quaternions for object modelling. Quaternion algebra is a
subset of Clifford Algebra, hence, the Clifford algebra approach for object modelling generalizes and
extends the scope of standard techniques to cope with more complicated problems.

Suppose an object undergoes a displacement from position 1 to position 2. Such a general displace-
ment (D) will consist of a translation (7)) expressed by the vector t and a rotation (R) represented
by the angle # with respect to some axis n described by the rotor R. In the analysis of this section
the reference frame {0y, 04,03} is attached to the XYZ coordinate system at some chosen origin. The
rotor R takes this frame to {0}, 0%, o4} where o/ = Ro;R for i = 1,2,3. Let us represent the object
points by position vectors relative to the origin.

A point x1 maps to the new point x| given by x} = Rx;R+t. An edge of the object is specified by
a unit vector e indicating the edge direction and by a vertex lying on the edge. After a displacement the
new edge is € =R(T (e)) = R(e) = ReR, since the edge is a property within the body and is therefore
unaffected by the translation. Any point on the edge can be specified by a vector Vi = x; + Avy,
where ) is a variable parameter and vy is a vector connecting two points, x; and Xz, on the edge such
that vi = x; — x2. After a general displacement this goes to V/; = RVlf{—l—t. Now consider a polygon
of N corners as an object, the connecting vectors {v;} satisfy: v, = vi+va+ ..+ vs+ ..+ vy 1.
This polygon can be specified completely using these connecting vectors and one of the vertices,
Vi =Xy +Vn =X+ (Vi +V2+...4+vy_1). Therefore, after a displacement the polygon is specified
by VI = x. + v, which can be written as

V! = Rx,R+t+Rv,R=R(V,) R+t (10)
= Rx,R+R(vi)R+R(vy)) R+ ..+ R(vp1 )R+t

Collinear points represented as vectors on a planar surface can be detected using the constraint
equation Xp3 AXp2AXys = 0, for any three such points. Points on a plane are in a “general position”
if three of them are not collinear. The last equation can be used for selecting a set of points in some
general position.

Polyhedral faces can be individually specified by an outward normal unit vector ng and the
distance from the origin to the face dp for any point xg lying on the face. Alternatively a face can be
specified by the homogeneous normal

HF :dF‘|‘nF- (11)



X -Nng — dF = —<HF(1 — X)> =0. (12)

The multivector H transforms as follows under a general displacement D; Hy' = D(Hf) = (RXFfE +t)
(RHFR):I- (RHFR) Since (RXFR) . (RHFR) = Xr ' I, this becomes HF/ = Xp- nr + RHFR +
t - (RnpR) which can then be written as

Hy' = D(Hp) = RHpR + (RHgpRt). (13)

We will use this characterization of the displaced face in what follows.

4 Detection of Polyhedral Contacts

In particular situations, the equations of the previous section can be used for defining a set of geometric
rules useful for polyhedral modelling, contact detection, collision avoidance and path planning. Let
us consider a moving object 1 and a static object 2 as the obstacle.

Situation 1: A displaced object touches a vertex xs of an obstacle with its face Fy . The vertex
must lie on the face Fy and therefore the equation (Hp (1 — x3z)) = 0 has to be satisfied. After

replacing  Hp, = RHFlf{ + (RHp, fit} the equation for situation 1 can be written as

(RHp,R(1 — x» + t)) = 0. (14)

Situation 2: A displaced object touches a face F, of an obstacle with its vertex x; . This means
(Hp,(1 — x})) = 0. Substituting x; = Rx;R + t the equation for situation 2 becomes

(Hp,(1 — Rx;R +1t)) = 0. (15)

Situation 3: Contact occurs when an edge of a displaced object touches an edge of an obstacle. If
the edges intersect at a point, all points of both edges belong to the same plane. The edge directions
and the vector joining x} (on the edge of the displaced object) and x2 (on the edge of the obstacle)
are coplanar. If the edge vectors are coplanar they either intersect at some point or they are parallel.
This condition is true if (x} —x2)AezAe] = 0 — if the edges are parallel then obviously we have
e Nes = 0.

Since we are working in 3-dimensions, (x] — X3)Ae2AX] is a trivector and can therefore be written
as a1, where « is a scalar. Thus, ai = 0 is equivalent to saying that (i(za)) = 0. The coplanarity
condition can then be written as (1(x] — x2)AegAX]) = 0 Since the quantity in the angled brackets is
made up of vector and trivector parts we can write

(iRxye;Res) + (i(t — x5)ReyRey) = 0. (16)

These equations can be used for collision avoidance and also for detection of overlapped polyhedral
objects. Note that manipulations using the multivector Hy do not require a coordinate basis and
therefore provide us with greater geometric insight and transparency.

A simple example of a grasping application will now be given. The symbols used are: A for the
geometric outer product, A for the Boolean AND operation and \ for the Boolean OR operation.

The example considers the positioning of a two finger grasper in front of a static object. Consider
two points gy and gy which are the closest corners of the finger tips and two points x;, X2 lying on the
extremes of the object. These points lie on the adequate grasping surface defined during the previous
object recognition process. A geometric rule for good grasping is that three simple constraints have
to be simultaneously fulfilled. This can be written as C; AC; ACsz = 0, where the conditions C; for



C1 : R(gl — gz)f{ 2 X1 — X2

Cy : (iejpesery) \/~<ie12e21e23> =0 (17)
Csz : (R(gl +8:)R —;21: — (At Xz)) . (R(gl - gz)f{) =0

Here, x5 and x4 are points on the far side of the object, such that x;,x5,x3,x4 are in a plane which
. -(Rg,R+t)
is parallel to the floor. e, = —1=(87
b P xi-(Rg,Rab)]
Rg Rit)

/7 ey = -(ng,
B e = Rg,R+t)

: Xl—X4 X2 X3
respectively the unit edge vectors XX and XX

is the unit edge vector between the points x; and

is the unit edge vector between the points x; and g} and ey and ey3 are

5 Camera motion from two scene projections

The ‘eight-point algorithm’ of Longuet-Higgins [3] computes the 3D structure of a scene from a
correlated pair of perspective projections when the spatial relationship between the projections is
unknown. This paper presents a method of obtaining the eight simultaneous equations in [3] via
a totally geometric approach using only vectors and rotations. Suppose the camera undergoes a
displacement taking it from position 1 to position 2. Such a general displacement will consist of a
translation plus a rotation. At each position the camera observes some point P in the scene. The
image planes of the camera are oy and ay. Let Oy be the optical centre of the camera at position 1
and consider a frame with origin Oy and axes (01, 02, 03), where o3 is perpendicular to the plane o;.
Let X = ﬁ be the position vector of P relative to Oy, and x; = 01—2\41> be the position vector of
M relative to Oy, where M is the projection of the point P onto the plane a;. Let the translation
be given by the vector t such that 01—02> = t, where O, is the translation of ;. A general rotation
of # about some axis n will be described by the rotor R, where R = exp (—ign). Thus, the frame
(01,09,03) is rotated to a frame (o7, 0}, 0%) at Oy where of = Ro,R for i = 1,2,3. At position 2 we
have a new image plane as, and VLle;E M5 be the projection of P onto ay. Relative to the frame at
01 we define X = Oy P and x = O3 Ms. If the position vectors of P and M; relative to Oy are given
by X, and x,, then it is clear that the relation, X, = R(X; — t)R, holds.

In the geometric algebra approach the condition for coplanarity of X, X; and t is just XAX At = 0.
As in the previous section, we can now write

(IXAX AL) = (XX t) = (RX,RX;t) = 0. (18)

Using the definition of the geometric product and the fact that (ABC) = (BCA) = (CAB), the

coplanarity condition can now be given by
(X,R(iX; At)R)) =0 (19)

With X; = X{oy + X?0, + XJ03 it is then possible to write iX At = X{(iaj/\t) = X{mj

where the vector m; is defined by m; = i0;At. my, m;y, ms therefore lie in the plane perpendicular
to t. If we apply the rotor R to the vectors m; we obtain a set of rotated vectors which we shall call
m; = Rm]R The coplanarity condition is now reduced to <X2X1 m;) = 0. Evaluating the scalar
part of Xy X{m; gives

X (Xpmy) + X{(Xy 1) + X7(Xy-1i25) = 0 (20)

(X}, X7, X?) and (X3, X3, X7) are the true 3-dimensional cartesian coordinates of the point P relative
to the two viewpoints 1 and 2. Projected onto the image planes oy and «y, the image coordinates of



e 0 L S = L AT T Tz P, - = S
X? X3 then gives us 4

r1Xy-m; =0 (21)
The vectors x; and X3 are known from measurements in the two image planes and equation (21)
therefore provides us with a linear equation in the 9 unknowns {m;}

If M = (i1, mi,m},m},m3,m5,mi m3 m3) is a 9-element vector we can write equation (21) as
A;-M = 0. For each point P; in the scene for which we have a match, there is a corresponding

equation A;-M ~ = 0. As described by Longuet-Higgins, the ratios of the 9 unknowns {m;} can be
obtained by solving 8 simultaneous equations. We assume that such a solution has been found and
that the vectors m; are known. For inner products between the m;’s we note that

rhzrhj = <rhn”h]> = <Rm2f{Rm]f{> = <Rm2m]f{> = <m2m]> =m;-m;. (22)
The above is simply a statement of the fact that the inner product of two vectors remains invariant
under a rotation. It can easily be shown that

iy = (ioiAt)-(iopAt) = —Loitoit) + 14;; (23)

;From this it follows that m;-m; = 1 —¢? for ¢ = 1,2, 3. It is therefore possible to reconstruct t easily

from a knowledge of the m,;’s
;= +y/1 —m;-m, (24)

for 2 = 1,2, 3, no summation implied. The rotor R is such that it rotates m,; into m; for 1 = 1,2, 3, so
that R can be recovered using the following standard procedure. Given any two distinct vectors m,
and my (because the {m;} are coplanar we need deal only with any two) which are rotated under R
to give my and ms, the rotor R which gives this is R = exp (—ign) where 6 and n are given by

)
)]
my-n)n) (1, — (1 n)n)

) | (26)

my-n)n)- (1 — (1 -n)n)

(m1 ) 2 —

(m
i(my — my ) A (1 —
= cos! ( (

' = {|< oy

To reconstruct the scene we find the true position vector X; of some point P. If we write X; = x; X7

and X3 = x3 X7 and substitute in Xy = R(X; — t)f{ we have

(25)

m
m

X2x, = X’Rx;R —RtR
= X3X2 — t (27)
Now consider some vector orthogonal to xs, say p = 107 Axs and take the inner product of equation
(27) with p:
Xoxyp= X%y p—t-p (28)

As p is orthogonal to x,, this gives an explicit expression for X7}

o2

‘P
X? = 29
1 )NCQP ( )
Having obtained X7 in this way the other coordinates X; and X} are simply found using
X =X} and X =a22X} (30)

As was pointed out by Longuet-Higgins, the ambiguity in the choice of signs for ¢; is resolved by
demanding that the forward coordinates of any point (i.e. X7 and X3) must be positive.



1ne autnhors Nope to nave snowl that the use Ol geomnetric algebra simpliles object modaelling and the
geometric interpretation of object displacement. It deals with real vectors and all quantities involved
in the methods have a definite geometric interpretation. The approach provides a simple formulation
of algebraic constraints useful for either object detection or path planning. Instead of laborious matrix
operations, the geometric algebra based method offers stability and avoids the redundant elements
present in matrix calculus.

For the motion analysis it is useful to compare the geometrical quantities occurring in the geometric
algebra based method with the original version of Longuet-Higgins. In [3] a rotation matrix R is used
for the unknown camera rotation; this is equivalent to our rotor R where the row vectors of R, which
in [3] are called R, are given by R, = Ro,R. Similarly, the column vectors of R, R are given by
R; = Raﬁf{ and therefore represent the way in which the basis vectors are rotated. The elements of
the rotation matrix R;; can therefore be written as R;; = <].:~{0'Z'RO']‘>. The skew-symmetric matrix S
is given no geometrical interpretation in [3], but from the previous sections it is clear that the column
vectors of S are the three coplanar vectors —m; = —io;At, where m; is a vector perpendicular to o;
and t. Their matrix () = RS has elements ();; which are given, in our notation by ¢);; = <iRaif{th>.
Once t and m,; are known (and therefore also m;) one is able to unwrap the rotation. It is in the
unwrapping of R that our method differs from that in [3], and it is shown in the previous section that
the geometric algebra method gives a more efficient and transparent unwrapping.

In terms of pure computational efficiency the geometric algebra based method is similar to the
standard algorithm of Longuet-Higgins. However, the presented method allows us to unwrap the
translation, rotation and scene coordinates using purely geometric techniques, in a more efficient way.
A more general geometric algebra least-squares approach to the problem of estimating camera motion
in the absence of range data will be presented elsewhere.
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