
OBJECT MODELLING AND MOTION ANALYSISUSING CLIFFORD ALGEBRAEduardo Bayro-CorrochanoComputer Science Institute, Christian-Albrechts University, Kiel, Germany.edb@informatik.uni-kiel.d400.deJoan LasenbyDepartment of Engineering, Trumpington Street, Cambridge, UK.jl@eng.cam.ac.ukKeywords: Computer vision, invariance theory, cli�ord algebra, coordinate-free approach, geo-metric modelling, collision detection, motion analysis.AbstractThis paper discusses a coordinate-free geometric approach to object modelling and theanalysis of motion in computer vision. The new technique used to analyse the 3-dimensionaltransformations involved will be that of Cli�ord algebra or geometric algebra. This is notan approach designed speci�cally for the task in hand, but rather a framework for almostall mathematical physics. Both object modelling and estimating camera motion from dif-ferent scene projections have been heavily discussed in the literature, however the Cli�ordalgebra based method allows a more elegant reformulation which provides greater geomet-rical insight. The hope is that one can then extend the scope of the techniques to morecomplicated problems.1 IntroductionGeometric algebra has already been successfully applied to many areas of mathematical physics andengineering. The system adopts a coordinate-free approach and deals with rotations in n-dimensionalspace very e�ciently. The authors believe that it could be a useful tool for object modelling and mo-tion analysis where the 3-dimensional geometry of any given problem is of fundamental importance.The next section gives a brief introduction to Cli�ord Algebra. The is followed by sectionswhich present geometric equations for polyhedral object modelling and discuss the analysis of poly-hedral objects in contact situations with an application in robotics. Camera motion from two sceneprojections and the conclusions are presented in the �nal sections.2 An Outline of Cli�ord AlgebraCli�ord algebras are well-known to pure mathematicians. In this work we will use an interpretationcalled geometric algebra [1] which is a coordinate-free approach to geometry. In geometric algebrathe elements are coordinate-independent objects called multivectors which can be multiplied togetherusing a geometric product. It is thus very di�erent to standard vector calculus.2.1 The Geometric Product and MultivectorsThe geometric or Cli�ord product of two vectors a and b is written ab and de�ned asab = a�b+ a^b: (1)



Where the outer or wedge product, ^, of two vectors forms a bivector which is interpreted as a directedarea. The geometric product ab is therefore the sum of a scalar, a �b, and a bivector, a^b. In 3dimensions the the trivector (a^b)^c is an oriented 3-dimensional volume obtained by sweeping thebivector a^b along the vector c.In a space of dimension n there are multivectors of grade 0 (scalars), grade 1 (vectors), grade 2(bivectors), grade 3 (trivectors), etc... up to grade n. Any two such multivectors can be multipliedusing the geometric product. Consider two multivectors Ar and Bs of grades r and s respectively.The geometric product of Ar and Bs can be written asArBs = hABir+s + hABir+s�2 + : : :+ hABijr�sj (2)where hMit is used to denote the t-grade part of multivector M, e.g. habi = habi0 + habi2 =a � b+ a ^ b. In the following sections expressions of grade 0 will be written ignoring their subindex,i.e. habi0 = habi = a � b.2.2 Geometric Algebra and Rotors in 3-D SpaceFor an n-dimensional space we can introduce an orthonormal basis of vectors f�ig i = 1; :::; n, suchthat �i ��j = �ij. This leads to a basis for the entire algebra:1; f�ig; f�i^�jg; f�i^�j^�kg; : : : ; �1^�2^: : :^�n (3)Note that we shall not use bold symbols for these basis vectors. The highest grade element is calledthe pseudoscalar for the space. Any multivector can be expressed in terms of this basis, and while itis often useful to do so, we stress that the main strength of geometric algebra is the ability to carryout operations in a basis-free manner. The basis for the 3-D space has 23 = 8 elements given by:1|{z}scalar; f�1; �2; �3g| {z }vectors ; f�1�2; �2�3; �3�1g| {z }bivectors ; f�1�2�3g � i| {z }trivector : (4)The reference vector frame f�1; �2; �3g corresponds to the 3-D scene space XYZ coordinate basis.The trivector or pseudoscalar �1�2�3 squares to �1 and commutes with all multivectors in the 3-Dspace. Therefore it is given the symbol i. Note that this is not the uninterpreted commutative scalarimaginary j used in quantum mechanics and engineering.By straightforward multiplication it can be easily seen that the three bivectors can also be writtenas �2�3 = i�1 = i; �1�3 = �i�2 = j; �1�2 = i�3 = k: (5)These simple bivectors are spinors, as they rotate vectors in their own plane by 90�, e.g. (�1�2)�2 = �1,(�2�3)�2 = ��3 etc. Since (i�1)2 = �1, (�i�2)2 = �1, (i�3)2 = �1 and (i�1)(�i�2)(i�3) = i�1�2�3 =�1, the famous Hamilton relations i2 = j2 = k2 = ijk = �1 (6)are easily recovered. Interpreting the i; j;k as bivectors, it can be seen that they indeed represent90� rotations in orthogonal directions and will therefore provide a system particularly suited for therepresentation of 3-D rotations. Now, using nothing other than the above simple bivectors one canshow that the quaternion algebra of Hamilton is simply a subset of the geometric algebra of space.If a quaternion A is represented by [a0; a1; a2; a3], then there exists a one-to-one mapping betweenquaternions and rotors given byA = [a0; a1; a2; a3]$ a0 + a1(i�1) + a2(i�2) + a3(i�3) (7)In order to �nd out more about rotors in the geometric algebra we note that any rotation can berepresented by a pair of re
ections. It can be easily shown that the result of re
ecting a vector a inthe plane perpendicular to a unit vector n is



a? � ak = �nan (8)where a? and ak respectively denote parts of a perpendicular and parallel to n. Thus, a re
ection ofa in the plane perpendicular to n, followed by a re
ection in the plane perpendicular to m results ina new vector �m(�nan)m= (mn)a(nm) = Ra~R: (9)The multivectorR =mn is called a rotor. It contains only even-grade elements and satis�es R~R = 1.The transformation a 7! Ra~R is a very general way of handling rotations of multivectors of any gradeunlike the quaternion calculus. In 3-D we use the term `rotor' for those even elements of the spacethat represent rotations. Any rotor can be written in the form R = �eB=2, where B is a bivector.In particular, in 3-D we write R = e(�i �2n) = cos �2 � in sin �2 which represents a rotation of � radiansanticlockwise about an axis parallel to the unit vector n. If b = R1a~R1 and c = R2b~R2, the rotorscombine in a straightforward manner, i.e. c = Ra~R where R = R2R1.3 Polyhedral Object ModellingIn this section the analysis is restricted to the case of polyhedral objects which can appear in anyposition and can also be partially occluded. This approach cannot currently deal with objects whichhave many curved surfaces. Canny [2] used quaternions for object modelling. Quaternion algebra is asubset of Cli�ord Algebra, hence, the Cli�ord algebra approach for object modelling generalizes andextends the scope of standard techniques to cope with more complicated problems.Suppose an object undergoes a displacement from position 1 to position 2. Such a general displace-ment (D) will consist of a translation (T ) expressed by the vector t and a rotation (R) representedby the angle � with respect to some axis n described by the rotor R. In the analysis of this sectionthe reference frame f�1; �2; �3g is attached to the XYZ coordinate system at some chosen origin. Therotor R takes this frame to f�01; �02; �03g where �0i = R�i ~R for i = 1; 2; 3. Let us represent the objectpoints by position vectors relative to the origin.A point x1 maps to the new point x01 given by x01 = Rx1~R+t. An edge of the object is speci�ed bya unit vector e indicating the edge direction and by a vertex lying on the edge. After a displacement thenew edge is e0=R(T (e)) = R(e) = Re~R, since the edge is a property within the body and is thereforeuna�ected by the translation. Any point on the edge can be speci�ed by a vector V1 = x1 + �v1,where � is a variable parameter and v1 is a vector connecting two points, x1 and x2, on the edge suchthat v1 = x1 � x2. After a general displacement this goes toV01 = RV1 ~R+t. Now consider a polygonof N corners as an object, the connecting vectors fvig satisfy: vn = v1 + v2 + :: + v3 + :: + vn�1.This polygon can be speci�ed completely using these connecting vectors and one of the vertices,Vn = xn + vn = xn+ (v1 + v2 + :::+ vn�1). Therefore, after a displacement the polygon is speci�edby V0n = x0n + v0n, which can be written asV0n = Rxn~R+ t+Rvn~R = R(Vn)~R+ t (10)= Rxn~R+R(v1)~R+R(v2)~R+ :::+R(vn�1)~R+ tCollinear points represented as vectors on a planar surface can be detected using the constraintequation xn1^xn2^xn3 = 0, for any three such points. Points on a plane are in a \general position"if three of them are not collinear. The last equation can be used for selecting a set of points in somegeneral position.Polyhedral faces can be individually speci�ed by an outward normal unit vector nF and thedistance from the origin to the face dF for any point xF lying on the face. Alternatively a face can bespeci�ed by the homogeneous normal HF = dF + nF: (11)



Note that this multivector consists of a scalar and a vector and can simplify the equation of the planethrough the face. For example, any point x will be on the face ifx � nF � dF = �hHF(1� x)i = 0: (12)The multivectorHF transforms as follows under a general displacementD;HF0 = D(HF) = (RxF~R+ t)�(RnF ~R) + (RnF~R). Since (RxF~R) � (RnF~R) = xF � nF, this becomes HF0 = xF � nF + RnF~R +t � (RnF ~R) which can then be written asHF0 = D(HF) = RHF~R+ hRHF~Rti: (13)We will use this characterization of the displaced face in what follows.4 Detection of Polyhedral ContactsIn particular situations, the equations of the previous section can be used for de�ning a set of geometricrules useful for polyhedral modelling, contact detection, collision avoidance and path planning. Letus consider a moving object 1 and a static object 2 as the obstacle.Situation 1: A displaced object touches a vertex x2 of an obstacle with its face F1 . The vertexmust lie on the face F1 and therefore the equation hH0F1(1 � x2)i = 0 has to be satis�ed. Afterreplacing H0F1 = RHF1 ~R+ hRHF1 ~Rti the equation for situation 1 can be written ashRHF1 ~R(1� x2 + t)i = 0: (14)Situation 2: A displaced object touches a face F2 of an obstacle with its vertex x1 . This meanshHF2(1� x01)i = 0. Substituting x01 = Rx1 ~R+ t the equation for situation 2 becomeshHF2(1�Rx1~R+ t)i = 0: (15)Situation 3: Contact occurs when an edge of a displaced object touches an edge of an obstacle. Ifthe edges intersect at a point, all points of both edges belong to the same plane. The edge directionsand the vector joining x01 (on the edge of the displaced object) and x2 (on the edge of the obstacle)are coplanar. If the edge vectors are coplanar they either intersect at some point or they are parallel.This condition is true if (x01 � x2)^e2^e01 = 0 { if the edges are parallel then obviously we havee01^e2 = 0.Since we are working in 3-dimensions, (x01�x2)^e2^x01 is a trivector and can therefore be writtenas �i, where � is a scalar. Thus, �i = 0 is equivalent to saying that hi(i�)i = 0. The coplanaritycondition can then be written as hi(x01 �x2)^e2^x01i = 0 Since the quantity in the angled brackets ismade up of vector and trivector parts we can writehiRx1e1 ~Re2i+ hi(t� x2)Re1 ~Re2i = 0: (16)These equations can be used for collision avoidance and also for detection of overlapped polyhedralobjects. Note that manipulations using the multivector HF do not require a coordinate basis andtherefore provide us with greater geometric insight and transparency.A simple example of a grasping application will now be given. The symbols used are: ^ for thegeometric outer product, V for the Boolean AND operation and W for the Boolean OR operation.The example considers the positioning of a two �nger grasper in front of a static object. Considertwo points g1 and g2 which are the closest corners of the �nger tips and two points x1, x2 lying on theextremes of the object. These points lie on the adequate grasping surface de�ned during the previousobject recognition process. A geometric rule for good grasping is that three simple constraints haveto be simultaneously ful�lled. This can be written as C1V C2V C3 = 0, where the conditions C1 for



aperture, C2 for attitude and C3 for alignment, are given byC1 : R(g1 � g2)~R � x1 � x2C2 : hie12e21e14i_hie12e21e23i = 0 (17)C3 :  R(g1 + g2)~R+ 2t� (x1 + x2)2 !��R(g1 � g2)~R� = 0Here, x3 and x4 are points on the far side of the object, such that x1;x2;x3;x4 are in a plane whichis parallel to the 
oor. e12 = x1�(Rg2 ~R+t)jx1�(Rg2 ~R+t)j is the unit edge vector between the points x1 andg02, e21 = x2�(Rg1 ~R+t)jx2�(Rg1 ~R+t)j is the unit edge vector between the points x2 and g01 and e14 and e23 arerespectively the unit edge vectors x1�x4jx1�x4j and x2�x3jx2�x3 j .5 Camera motion from two scene projectionsThe `eight-point algorithm' of Longuet-Higgins [3] computes the 3D structure of a scene from acorrelated pair of perspective projections when the spatial relationship between the projections isunknown. This paper presents a method of obtaining the eight simultaneous equations in [3] viaa totally geometric approach using only vectors and rotations. Suppose the camera undergoes adisplacement taking it from position 1 to position 2. Such a general displacement will consist of atranslation plus a rotation. At each position the camera observes some point P in the scene. Theimage planes of the camera are �1 and �2. Let O1 be the optical centre of the camera at position 1and consider a frame with origin O1 and axes (�1; �2; �3), where �3 is perpendicular to the plane �1.Let X1 = ��!O1P be the position vector of P relative to O1, and x1 = ���!O1M1 be the position vector ofM1 relative to O1, where M1 is the projection of the point P onto the plane �1. Let the translationbe given by the vector t such that ���!O1O2 = t, where O2 is the translation of O1. A general rotationof � about some axis n will be described by the rotor R, where R = exp (�i �2n). Thus, the frame(�1; �2; �3) is rotated to a frame (�01; �02; �03) at O2 where �0i = R�i ~R for i = 1; 2; 3. At position 2 wehave a new image plane �2, and we let M2 be the projection of P onto �2. Relative to the frame atO1 we de�ne ~X = ��!O2P and ~x = ���!O2M2. If the position vectors of P and M2 relative to O2 are givenby X2 and x2, then it is clear that the relation, X2 = R(X1 � t) ~R, holds.In the geometric algebra approach the condition for coplanarity of ~X;X1 and t is just ~X^X1^t = 0.As in the previous section, we can now writehi ~X^X1^ti = hi ~XX1ti = hi ~RX2RX1ti = 0: (18)Using the de�nition of the geometric product and the fact that hABCi = hBCAi = hCABi, thecoplanarity condition can now be given byhX2R(iX1^t) ~R)i = 0 (19)With X1 = X11�1 +X21�2 +X31�3 it is then possible to write iX1^t = Xj1(i�j^t) � Xj1mjwhere the vector mj is de�ned by mj = i�j^t. m1;m2;m3 therefore lie in the plane perpendicularto t. If we apply the rotor R to the vectorsmj we obtain a set of rotated vectors which we shall call~mj = Rmj ~R. The coplanarity condition is now reduced to hX2Xj1 ~mji = 0. Evaluating the scalarpart of X2Xj1 ~mj gives X11 (X2� ~m1) +X21 (X2 � ~m2) +X31 (X2 � ~m3) = 0 (20)(X11 ;X21 ;X31) and (X12 ;X22 ;X32 ) are the true 3-dimensional cartesian coordinates of the point P relativeto the two viewpoints 1 and 2. Projected onto the image planes �1 and �2, the image coordinates of



P can then be de�ned as (x11; x21; x31 � 1) = (X11X31 ; X21X31 ; X31X31 ) and (x12; x22; x32 � 1) = (X12X32 ; X22X32 ; X32X32 ).Following the notation of Longuet-Higgins we write x�1 = X�1X31 and x�2 = X�2X32 . Dividing equation (20) byX31X32 then gives us xj1x2 � ~mj = 0 (21)The vectors x1 and x2 are known from measurements in the two image planes and equation (21)therefore provides us with a linear equation in the 9 unknowns f ~mijg.If ~M = ( ~m11; ~m21; ~m31; ~m12; ~m22; ~m32; ~m13; ~m23; ~m33) is a 9-element vector we can write equation (21) asAi � ~MT = 0. For each point Pi in the scene for which we have a match, there is a correspondingequation Ai � ~MT = 0. As described by Longuet-Higgins, the ratios of the 9 unknowns f ~mijg can beobtained by solving 8 simultaneous equations. We assume that such a solution has been found andthat the vectors ~mi are known. For inner products between the ~mi's we note that~mi � ~mj = h ~mi ~mji = hRmi ~RRmj ~Ri = hRmimj ~Ri = hmimji =mi �mj: (22)The above is simply a statement of the fact that the inner product of two vectors remains invariantunder a rotation. It can easily be shown that~mi� ~mj = (i�i^t)�(i�k^t) = �12h�it�jti + 12�ij (23)>From this it follows that ~mi� ~mi = 1� t2i for i = 1; 2; 3. It is therefore possible to reconstruct t easilyfrom a knowledge of the ~mi's. ti = �q1 � ~mi � ~mi (24)for i = 1; 2; 3, no summation implied. The rotor R is such that it rotatesmi into ~mi for i = 1; 2; 3, sothat R can be recovered using the following standard procedure. Given any two distinct vectors m1and m2 (because the fmig are coplanar we need deal only with any two) which are rotated under Rto give ~m1 and ~m2, the rotor R which gives this is R = exp (�i �2n) where � and n are given byn = i( ~m1 �m1)^( ~m2 �m2)ji( ~m1 �m1)^( ~m2 �m2)j (25)� = cos�1 ( (m1 � (m1�n)n)�( ~m1 � ( ~m1�n)n)j(m1 � (m1�n)n)�( ~m1 � ( ~m1�n)n)j) (26)To reconstruct the scene we �nd the true position vector X1 of some point P . If we write X1 = x1X31and X2 = x2X32 and substitute in X2 = R(X1 � t) ~R we haveX32x2 = X31Rx1 ~R�Rt ~R= X31 ~x2 � ~t (27)Now consider some vector orthogonal to x2, say p = i�1^x2 and take the inner product of equation(27) with p: X32x2�p = X31 ~x2 �p� ~t�p (28)As p is orthogonal to x2, this gives an explicit expression for X31X31 = ~t�p~x2�p (29)Having obtained X31 in this way the other coordinates X11 and X21 are simply found usingX11 = x11X31 and X21 = x21X31 (30)As was pointed out by Longuet-Higgins, the ambiguity in the choice of signs for t1 is resolved bydemanding that the forward coordinates of any point (i.e. X31 and X32 ) must be positive.



6 ConclusionsThe authors hope to have shown that the use of geometric algebra simpli�es object modelling and thegeometric interpretation of object displacement. It deals with real vectors and all quantities involvedin the methods have a de�nite geometric interpretation. The approach provides a simple formulationof algebraic constraints useful for either object detection or path planning. Instead of laborious matrixoperations, the geometric algebra based method o�ers stability and avoids the redundant elementspresent in matrix calculus.For the motion analysis it is useful to compare the geometrical quantities occurring in the geometricalgebra based method with the original version of Longuet-Higgins. In [3] a rotation matrix R is usedfor the unknown camera rotation; this is equivalent to our rotor R where the row vectors of R, whichin [3] are called R� are given by R� = ~R��R. Similarly, the column vectors of R, R� are given byR� = R�� ~R and therefore represent the way in which the basis vectors are rotated. The elements ofthe rotation matrix Rij can therefore be written as Rij = h ~R�iR�ji. The skew-symmetric matrix Sis given no geometrical interpretation in [3], but from the previous sections it is clear that the columnvectors of S are the three coplanar vectors �mi = �i�i^t, where mi is a vector perpendicular to �iand t. Their matrix Q = RS has elements Qij which are given, in our notation by Qij = hiR�i ~R�jti.Once t and ~mi are known (and therefore also mi) one is able to unwrap the rotation. It is in theunwrapping of R that our method di�ers from that in [3], and it is shown in the previous section thatthe geometric algebra method gives a more e�cient and transparent unwrapping.In terms of pure computational e�ciency the geometric algebra based method is similar to thestandard algorithm of Longuet-Higgins. However, the presented method allows us to unwrap thetranslation, rotation and scene coordinates using purely geometric techniques, in a more e�cient way.A more general geometric algebra least-squares approach to the problem of estimating camera motionin the absence of range data will be presented elsewhere.References[1] D. Hestenes and G. Sobczyk. Cli�ord Algebra to Geometric Calculus: A uni�ed language formathematics and physics. D. Reidel, 1984.[2] J. Canny. Collision detection for moving polyhedra. PAMI-8. 2, 200:209, 1986.[3] H.C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections.Nature, 293, 133:138, Sept. 1981.


