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Abstract. In this paper we will look at some 3D projective invariants
for both point and line matches over several views and, in the case of
points, give explicit expressions for forming these invariants in terms of
the image coordinates. We discuss whether such invariants are useful by
looking at their formation on simulated data.

1 Introduction

The following sections will derive the forms for some 3D projective invariants
using the system of Geometric Algebra (GA). Geometric algebra is a coordinate-
free approach to geometry based on the algebras of Grassmann [5] and Clifford
[3] — the approach we adopt here was pioneered by David Hestenes [7,6]. We
will use the GA framework for projective geometry and geometric invariance
outlined in [9,10]. A more extensive discussion of the formation of invariants in

GA is given in [11].

2 Geometric Algebra — a Brief Outline

An n-dimensional geometric algebra is a graded linear space. As well as vector
addition and scalar multiplication we have a non-commutative product which 1s
associative and distributive over addition — this is the geometric or Clifford
product. A further distinguishing feature of the algebra is that any vector squares
to give a scalar. The geometric product of two vectors a and b is written ab and
can be expressed as a sum of its symmetric (a-b) and antisymmetric (aAb) parts

ab=a-b+aNb. (1)

The inner product of two vectors is the standard scalar or dot product. The
outer or wedge product of two vectors is a new quantity we call a bivector.
We think of a bivector as a directed area in the plane containing a and b,
formed by sweeping a along b. Thus, b A a will have the opposite orientation
making the wedge product anticommutative. The outer product is immediately
generalizable to higher dimensions — for example, (a Ab)Ac, a trivector, is
interpreted as the oriented volume formed by sweeping the area a Ab along
vector ¢. The outer product of k vectors is a k-vector, which has grade k. Sums
of objects of different grades are called multivectors and GA provides a system
in which we can efficiently manipulate multivectors. In a space of 3 dimensions
we can construct a trivector aAbAe, but no 4-vectors exist. The highest grade
element in a space is called the pseudoscalar. The unit pseudoscalar is denoted

by I.



3 Projective Space and the Projective Split

Points in real 3D space will be represented by vectors in £3, a 3D space with
a Euclidean metric. Since any point on a line through some origin O will be
mapped to a single point in the image plane, we associate a point in £3 with a
line in a 4D space, R*. We then define basis vectors: (y1,7v2,7s,74) in R* and
(01,09,03) in £ and identify R* and £3 with the geometric algebras of 4 and 3
dimensions. We require that vectors, bivectors and trivectors in RB* will represent
points, lines and planes in £3. Choosing v4 as a selected direction in R*, we can
then define a mapping which associates the bivectors v;v4, ¢ = 1,2,3, in R*
with the vectors o;, i = 1,2,3, in £3. This process of association is called the
projective split. To ensure o7 = +1 we are forced to assume a non-Euclidean
metric for the basis vectors in R*. We choose touse v = +1, v; = —1,i=1,2,3.
For a vector X = X171 + Xovs + X373 + X4v4 in R* the projective split
is obtained by taking the geometric product of X and ~4. This leads to the
association of the vector @ in £2 with the bivector XAvs/ X4 in R* so that

X1 n Xo n X3 X1 n Xo n X3 2)
€r = —/ - - = —0 —0C —0
Xy TR TRHT T T TTXT
which = z; = ))g;, for i = 1,2,3. The process of representing « in a higher

dimensional space can therefore be seen to be equivalent to using homogeneous
coordinates, X, for x.

3.1 Projective Geometry and Algebra in Projective Space

We now look at the basic projective geometry operations of meet and join, and
briefly discuss algebra in projective space. For more detail the reader is referred
to [8,11,9]

Any pseudoscalar P can be written as P = al where « is a scalar, so that

PIl=all™'=a=[P]. (3)

This bracket is precisely the bracket of the Grassmann-Cayley algebra. We then
define the dual, A*, of an r-vector A as

A* = AL (4)
The join J = A A B of an r-vector A and an s-vector B by
J=AAB if A and B are linearly independent, (5)

while i1t can be shown that the meet of A and B can be written as
A\/B:(A*/\B*)I:(A*/\B*)(I_lf)I:(A*~B). (6)

The join and meet can be used to describe lines and planes and to intersect
these quantities. Consider three non-collinear points, Py, P>, Ps, represented by
vectors &1, #9, 3 in £ and by vectors X, X, X3 in R*. The line L, joining
points Py and P», and the plane @123 passing through points Py, P2, P5, can be
expressed in R* by the following bivector and trivector respectively:

L12 = X1 /\X2 @123 = X1 /\Xz/\Xg. (7)

In &3 the intersection of a line and a plane, two planes and two lines can be
dealt with entirely using the meet operation. Details and derivations are given

in [11].



4 3-D Projective Invariants from Multiple Views
Given six general 3D points P;, i = 1,..,6, represented by vectors {x;, X;} in £3
and R*, we can form 3D projective invariants. One such invariant is

[X X5 X 5X,4][X4X5X 5 X 6] )
[X 1 XX, X5] [ XXX Xq]

Invl =

If one can express the bracket [X;X;X;X;] in terms of the image coordinates
of the points, then this invariant will be readily computable. Some recent work
which has addressed this problem has utilized the Grassmann-Cayley (CG) al-
gebra [2,4]. In [2] invariants were computed from a pair of images in terms of
the image coordinates and the fundamental matrix, F', using the CG-algebra.
Despite the clarity of the derivations in [2], some degree of confusion has arisen
when subsequent workers have tried to implement these invariants with real data
[4]. In the following sections we will look at how we would derive, using the GA
formalism, explicit expressions for the invariants in terms of the experimental
data and discuss why this confusion has arisen.
Consider the scalar S;934 formed from the bracket of 4 points

Sioza = [X1XoX3Xy] = (X AXAX3AX ) 71 = (X AKX )A(X3AX ) 11 (9)

The quantities (X1 AX2) and (X3 AXy) represent the lines joining points Py &
Py, and P3 & P4. ag and by are the centres of projection of the two cameras and
the two camera image planes are defined by the two sets of vectors {a, as,as}
and {by, by, bs}. The projection of points {P;} through the centres of projection
onto the image planes are given by the vectors {a!} and {b}. Note that the
vectors, a;, b;, etc., are vectors in £3; we let the representations of these vectors
in R* be A; B;, A} B!..., etc.

It can be shown [11] that we are able to reproduce the result given in [2],
namely that it is possible to write the bracket of the 4 points (in R*) as

S1a34 = [X1X2X5X4] = [A¢BoA | 45,B434], (10)

where A’53, is the 4D representation of af 34, the intersection of the lines join-
ing {a] & a4} and {a} & a}}. In [11] equation (10) is obtained by splitting
up the bracket into X; A Xy and X3 A X4, and then expressing each of these
lines (bivectors) as the meet of two planes (trivectors). When we take ratios
of brackets to form invariants, the same decomposition of X; A X; must occur
in the numerator and denominator so the factors, due to the choices of the 4
components, cancel. In the case of Invl given in equation (8), we have

{(XGAX ) A(X3AX ) H(XaAX ) A (XA X ) 7t

Invl = {(Xl/\Xz)/\(X4/\X5)}[4—1{(X3/\X4)/\(Xz/\X6)}I4_1

(11)

so we see that this decomposition rule has been obeyed. Consider now the in-
variant which can be thought of as arising from 4 points and a line (since the
line X3 AXy appears in each bracket), namely

[X X5 X 5X,4][X; X5 X5 X 6]

Inv2 = .
[X1 X X3X5][X 1 XXy X6]

(12)



We note that we can simply rearrange equation (12) into the form of equation (8)
and decompose into bivectors to obtain the following
[AoBoA453B1425][A0Bo A 556B504]

Inv2 = i i i i .
[A0B0A1523B1523] [A0B0A1426B1426]

(13)

So far the invariants have been derived in 4D using the 4D definition of the
fundamental matrix; we therefore need to correctly transfer the expression to
3D. Expanding the bracket in equation (10) by expressing the intersection points
in terms of the As and Bs (A} = a;;A; and B} = 3;;B;) and defining a matrix
F such that .

F;; = [A¢BoA;B;] (14)
and vectors atj234 = (Oé1234,1, 1234,2, Oé1234,3) and 33234 = (51234,1, 51234,2, 51234,3),
it is easy to see that we can write Syo34 = al 1934F B934 [2]. The ratio

(aT12341~*—'ﬁ1234) (aT4526F64526)
(@ 1245 F B1oas) (@ 3226 F B3yas)

is therefore an invariant. We now wish to express Invl in terms of the observed
image coordinates and the fundamental matrix calculated from these coordi-
nates. A point P; will be projected onto points a} and b} in image planes 1 and
2, which can be written as

Invl = (15)

a, = ay + \i(ax — a1) + pi(as — ay) = §;1a1 + dinas + dizas (16)

so that 2?21 §;; = 1. Similarly, we have b} = €;1b1 + €;2b2 + €;3b3 (so that
3 € =1). Using the projective split we can now write the «;;’s and f;;’s in
j=1 €ij g J J

terms of the d;;’s and ¢;;’s:

BZ"’M

Bj 7

Al
7 746

Ay = —045 i = €4 17
J Aj"}/4 J ﬁ] J ( )

The ‘fundamental’ matrix F is such that o ;FB; = 0, if a; and 3; correspond
to the same world point P;. Given more than eight pairs of corresponding ob-
served points in the two planes, (8;,€;), i = 1,..,8, we can form an ‘observed’
fundamental matrix F such that

5TZ'FEZ' =0. (18)

This F' can be found by some method such as the Longuet-Higgins 8-point
algorithm [12] or, more correctly, by some method which gives an F' which has
the true structure [13]. Therefore, if we define F' by

Frp = (Ag-ya) (B ya) Fr (19)
then it follows from equation (17) that
ik FrBit = (AlL-va) (Bl 4a)dir Frieir. (20)

Therefore an F defined as in equation (19) will also act as a fundamental matrix

in R%,



According to the above, we can write the invariant as

(5T1234F€1234) (5T4526F€4526)¢1234¢4526

(5T1245F€1245) (5T3426F€3426)¢1245¢3426

Invl = (21)

where ¢pgrs = (A;qrsfm)( ;;qrs'74)~ The ratio of the 87 Fe terms using only the
observed coordinates and the estimated fundamental matrix, will therefore not
be an invariant — one must include the factors ¢i234 ete. It is easy to show [11]
that these factors can be formed as follows:

Since af, al, and af,3, are collinear we can write afy5, = pi234ay + (1 —
p1234)ah. Then, by expressing A',s4 as the intersection of the line joining A}
and A}, with the plane through Ay, A5, A} we can projective split and equate
terms to give

(Al234-74) (Alis26-74) _ P25 (3426 — 1) (22)
(Abaze va)(Alaasya)  pasoe(pizss — 1)
We obtain the values of p from the images. The factors B;qrs -~4 are found in a

similar way so that if b/1234 = /\1234bﬁ1 +(1- /\1234)bg etc., the overall expression
for the invariant becomes

Inol — (5T1234F€1234)(5T4526F64526) H1245(f3a26 — 1) A1245(Az426 — 1)
(5T1245F€1245)(5T3426F63426) tas26(ft123a — 1) Aas26(A1234 — 1)

. (23)

While the above has adopted the approach of forming all invariants in 4D and
then finding the equivalent expression in 3D, the approach outlined in [2] gave
the invariant in the form of equation (15), but did indeed define o234 as follows:

ajas Nagag (24)

where the N in this equation is the meet of the Cayley-Grassmann algebra.
Thus, 1234 1s not the homogeneous coordinate vector of the intersection point
of the two lines in the image plane joining A} & A} and Aj & A/, but rather
some multiple of that vector, given by equation (24). It can be easily shown that
computing the invariant using equation (24) and the corresponding expressions
for the other intersection points, produces exactly those correction factors arrived
at by us in equation (23). It is therefore likely that the past confusion over
the formation of the invariants has been soley due to the misinterpretation of
the nature of the quantities aji and 8,545 however, the derivation we have
presented here is totally unambiguous and, by clearly distinguishing between 3-
and 4D quantities, cannot be misinterpreted.

5 3D Projective Invariants for Lines

Consider again the projective invariant Inv2. Splitting equation (12) into bivec-
tors gives

[L1ALs]|[LsALy4]
[L1 AL4][LsALs]

Where, L1 = Xl/\Xg, L2 = Xz/\X4, L3 = Xl/\X6 and L4 = Xz/\Xg,. We thus
have an invariant of four lines (provided the lines are not coplanar). Following

Inv2 = (25)



the notation used in [1] we can express each of these lines as an intersection of
planes:

Ly =103 (@ v ol) L, = 12 (@ v ob) (26)
/ /
Ly =[S0 (@3 vol) Ly =112 (04 v &P (27)

In this expression &4 = AgAAsAA3, @‘24 = AgAA3AA; etc., and the Is and I's
are the line coordinates (equivalent to the homogeneous line coordinates) defined

by,
ANAL =12L8 BIABL =1V LP (28)

where, L‘f‘ = AsNA3, L‘24 = AsAA; and L4 = A; AA; etc. We can now write
Ll/\Lz as

LiALy = IPUP A (0 v dPYN (D v OB} = Sijunl PUP 2 (29)
where we define the 4th rank tensor Sijim by
Sijem = {(@ VST )N (@} v D))} (30)

It can be shown that S has only 9 independent elements which are, of course,
the elements of F'. S relates pairs of intersecting lines in two images via the

following equation; /
Sijkml LT =0, (31)

where [#* are the line coordinates of the line joining points a and b in the first
image etc. Thus, according to equations (25) and (29), given two pairs of inter-
secting lines ((13)&(16) and (24)&(25)), we can form the following 3D projective

invariant:
(Sl ) 5,y 11 0T

Inv2 = 13713725725/ 1671677247247\ "
(Siquli lj lk G )(Snpkmli lj lk I )

(32)

We note that the above is equivalent to the determination of the invariant of 4

lines given in [2]: - (7 1o F 1) (1T 5 FL,)
Inv2 = ———— =m0 (33)

(l 14Fl14)(l 32Fl32)
where I;; = 1; xI; etc, with I; the homogeneous line coordinates. A fuller discus-
sion of the subject of 3D projective invariants from lines will be given elsewhere.

6 Experiments

Here we investigate the formation of the 3D projective invariants from sets of 6
matching image points — in particular we look at their stability in noisy envi-
ronments.

The simulated data was a set of 38 points taken from the vertices of a wire-
frame house and viewed from three different camera positions. From three sets
of 6 points (non coplanar) we form Invl for each set over views 1 & 2, 1 & 3
and 2 & 3. During the simulations the world points are projected onto the image
planes and then gaussian noise is added. Figure 1 shows results for the three sets
of points chosen. In figure 1, a), ¢), e) we plot the value of the invariant with
increasing noise. In a), c), and e) the invariant was formed using an F' calculated



via a linear least-squares method from a set of 30 matching points. Figure 1 b),
d) and f) show the same invariants formed this time by taking the noisy point
matches but the true value of F (i.e. that formed in the noiseless case). The true
values of the invariants for the three sets of lines were 0.655, 0.402 and 8.99.

For small values of the noise the invariants can be calculated accurately.
In greater noise large variations are possible for some invariants whereas other
invariants are relatively robust. Figure 1 indicates that uncertainties in the calcu-
lation of F' will significantly affect the invariant in some cases. It is also apparent
that the formation of this invariant is more accurate between some pairs of views
than between others. We should expect this since altering the view may mean
that the 6 points move closer to some unstable or degenerate configuration. In
summary it appears that the type of invariant described here may be useful for
data which is not noisy but that the degradation in the presence of significant
noise may render it ineffective for real images.
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Fig. 1. Plots showing the behaviour of the 3D invariant between three different pairs
of views with increasing noise. The solid, dashed and dotted lines show the invariant
formed between views 1 & 2, 1 & 3 and 2 & 3 respectively (denoted by «.1, a.2, a.3
etc. in the key). The x-axis shows the standard deviation of the gaussian noise used.
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Conclusions

This paper outlines a framework for projective geometry and the algebra of
incidence which is then used to discuss the formation of projective invariants.
Explicit expressions are given for one sort of 3D invariant using image points
and the behaviour of this invariant is investigated for a variety of simulated
scenarios. Such invariants may be useful in low noise, but in cases of greater
uncertainty there may be too many problems for the invariants to be useful over
a wide range of possible circumstances.
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