
OBJECT MODELLING ANDCOLLISION AVOIDANCEUSING CLIFFORD ALGEBRAEduardo Bayro-Corrochano and Gerald SommerComputer Science Institute, Christian-Albrechts University, Kiel, Germany.edb,gs@informatik.uni-kiel.d400.deKeywords: Computer vision, invariance theory, cli�ord algebra, coordinate-free approach, geometric modelling, object modelling, object contact detection,collision avoidance. AbstractIn this paper the authors discuss a coordinate-free geometric approachusing invariants to object modelling in computer vision. The new tech-nique used to analyse the 3-dimensional transformations involved willbe that of Cli�ord algebra or geometric algebra. Object modelling andcollision avoidance has been heavily discussed in the literature, howeverthe Cli�ord algebra based method allows a more elegant reformulationwhich provides greater geometrical insight. In this paper the approachhelps greatly to identify and to formulate algebraic constraints useful forobject collision detection, grasping and collision avoidance.1 IntroductionGeometric algebra has already been successfully applied to many areas of math-ematical physics and engineering. The system adopts a coordinate-free approachand deals with rotations in n-dimensional space very easily. Therefore the au-thors believe that it has a good approach to o�er in the world of computer visionwhere the 3-dimensional geometry of any given problem is of fundamental im-portance.In this work the coordinate-free Cli�ord Algebra and invariants are usedfor object modelling. The essential di�erence between geometric algebra, thestandard vector, spinor or quaternion calculus lies in the way in which vectorsare multiplied together. The geometric product can be de�ned for any 2 multi-vectors of grade 0 (scalars), grade 1 (vectors), grade 2 (bivectors), etc... up tograde n. Projective geometry invariants were identi�ed using geometric algebra.Diverse geometric decision rules were developed useful for object collision detec-tion, grasping and path planning.The next section introduces to Cli�ord Algebra. The modelling of poly-hedral objects are treated in section 3. Geometric equations of object contact



situations are presented in section 4. This is followed by the illustrating applica-tions collision avoidance in section 5 and grasping in section 6. The last sectionis dedicated to the conclusions.2 An Outline of Cli�ord AlgebraCli�ord algebras are well-known to pure mathematicians. In this work it is usedan interpretation called geometric algebra [1] which is a coordinate-free approachto geometry. In geometric algebra the vectors are represented using multivectorsindependent of coordinate basis and in this format they are multiplied together.This is the essential di�erence with the standard vector calculus. This outlineis essentially based on the introduction to Cli�ord Algebra written by Hestenes[1] and Bayro-Corrochano and Lasemby [2].2.1 The Geometric Product and MultivectorsThe geometric or Cli�ord product of two vectors a and b is written ab andde�ned as ab = a�b+ a^b: (1)Where the outer or wedge product, ^, of two vectors forms a bivector which isinterpreted as a directed area. The geometric product ab is therefore the sum ofa scalar, a�b, and a bivector, a^b. In 3 dimensions the the trivector (a^b)^c isan oriented 3-dimensional volume obtained by sweeping the bivector a^b alongthe vector c.In a space of dimension n there are multivectors of grade 0 (scalars),grade 1 (vectors), grade 2 (bivectors), grade 3 (trivectors), etc... up to grade n.Any two such multivectors can be multiplied using the geometric product. Con-sider two multivectors Ar and Bs of grades r and s respectively. The geometricproduct of Ar and Bs can be written asArBs = hABir+s + hABir+s�2 + : : :+ hABijr�sj (2)where hMit is used to denote the t-grade part of multivector M, e.g. habi =habi0 + habi2 = a � b + a ^ b. In the following sections expressions of grade 0will be written ignoring their subindex, i.e. habi0 = habi = a � b.2.2 Geometric Algebra and Rotors in 3-D SpaceFor an n-dimensional space we can introduce an orthonormal basis of vectorsf�ig i = 1; :::; n, such that �i ��j = �ij . This leads to a basis for the entirealgebra:1; f�ig; f�i^�jg; f�i^�j^�kg; : : : ; �1^�2^: : :^�n (3)Note that we shall not use bold symbols for these basis vectors. The highestgrade element is called the pseudoscalar for the space. Any multivector can be



expressed in terms of this basis, and while it is often useful to do so, we stressthat the main strength of geometric algebra is the ability to carry out operationsin a basis-free manner. The basis for the 3-D space has 23 = 8 elements givenby: 1|{z}scalar; f�1; �2; �3g| {z }vectors ; f�1�2; �2�3; �3�1g| {z }bivectors ; f�1�2�3g � i| {z }trivector : (4)The reference vector frame f�1; �2; �3g corresponds to the 3-D scene space XYZcoordinate basis. The trivector or pseudoscalar �1�2�3 squares to �1 and com-mutes with all multivectors in the 3-D space. Therefore it is given the symbol i.Note that this is not the uninterpreted commutative scalar imaginary j used inquantum mechanics and engineering.By straightforward multiplication it can be easily seen that the threebivectors can also be written as�2�3 = i�1 = i; �1�3 = �i�2 = j; �1�2 = i�3 = k: (5)These simple bivectors are spinors, as they rotate vectors in their own plane by90�, e.g. (�1�2)�2 = �1, (�2�3)�2 = ��3 etc. Since (i�1)2 = �1, (�i�2)2 =�1, (i�3)2 = �1 and (i�1)(�i�2)(i�3) = i�1�2�3 = �1, the famous Hamiltonrelations i2 = j2 = k2 = ijk = �1 (6)are easily recovered. Interpreting the i; j;k as bivectors, it can be seen that theyindeed represent 90� rotations in orthogonal directions and will therefore providea system particularly suited for the representation of 3-D rotations. Now, usingnothing other than the above simple bivectors one can show that the quaternionalgebra of Hamilton is simply a subset of the geometric algebra of space. Ifa quaternion A is represented by [a0; a1; a2; a3], then there exists a one-to-onemapping between quaternions and rotors given byA = [a0; a1; a2; a3]$ a0 + a1(i�1) + a2(i�2) + a3(i�3) (7)In order to �nd out more about rotors in the geometric algebra we notethat any rotation can be represented by a pair of re
ections. It can be easilyshown that the result of re
ecting a vector a in the plane perpendicular to aunit vector n is a? � ak = �nan (8)where a? and ak respectively denote parts of a perpendicular and parallel to n.Thus, a re
ection of a in the plane perpendicular to n, followed by a re
ectionin the plane perpendicular to m results in a new vector�m(�nan)m = (mn)a(nm) = Ra~R: (9)The multivector R =mn is called a rotor. It contains only even-grade elementsand satis�es R~R = 1. The transformation a 7! Ra~R is a very general way ofhandling rotations of multivectors of any grade unlike the quaternion calculus. In3-D we use the term `rotor' for those even elements of the space that representrotations. Any rotor can be written in the form R = �eB=2, where B is abivector. In particular, in 3-D we write R = e(�i �2n) = cos �2 � in sin �2 which



represents a rotation of � radians anticlockwise about an axis parallel to the unitvector n. If b = R1a~R1 and c = R2b~R2, the rotors combine in a straightforwardmanner, i.e. c = Ra~R where R = R2R1.3 Polyhedral Object ModellingIn this section the analysis is restricted to the case of polyhedral objects whichcan appear in any position and can also be partially occluded. This approachcannot currently deal with objects which have many curved surfaces. Canny [3]used quaternions for object modelling. Quaternion algebra is a subset of Cli�ordAlgebra, hence, the Cli�ord algebra approach for object modelling generalizesand extends the scope of standard techniques to cope with more complicatedproblems.Suppose an object undergoes a displacement from position 1 to position2. Such a general displacement (D) will consist of a translation (T ) expressed bythe vector t and a rotation (R) represented by the angle � with respect to someaxis n described by the rotorR. In the analysis of this section the reference framef�1; �2; �3g is attached to the XYZ coordinate system at some chosen origin. Therotor R takes this frame to f�01; �02; �03g where �0i = R�i~R for i = 1; 2; 3. Let usrepresent the object points by position vectors relative to the origin.A point x1 maps to the new point x01 given by x01 = Rx1 ~R+t. An edgeof the object is speci�ed by a unit vector e indicating the edge direction and bya vertex lying on the edge. After a displacement the new edge is e0=R(T (e)) =R(e) = Re~R, since the edge is a property within the body and is thereforeuna�ected by the translation. Any point on the edge can be speci�ed by a vectorV1 = x1 + �v1, where � is a variable parameter and v1 is a vector connectingtwo points, x1 and x2, on the edge such that v1 = x1 � x2. After a generaldisplacement this goes to V01 = RV1~R+t. Now consider a polygon of N cornersas an object, the connecting vectors fvig satisfy: vn = v1+v2+::+v3+::+vn�1.This polygon can be speci�ed completely using these connecting vectors and oneof the vertices, Vn = xn + vn = xn + (v1 + v2 + :::+ vn�1). Therefore, aftera displacement the polygon is speci�ed by V0n = x0n + v0n, which can be writtenasV0n = Rxn ~R+ t+Rvn ~R = R(Vn)~R+ t = Rxn ~R+R(v1)~R+R(v2)~R+ :::+R(vn�1)~R + t(10)Collinear points represented as vectors on a planar surface can be de-tected using the constraint equation xn1^xn2^xn3 = 0, for any three suchpoints. Points on a plane are in a \general position" if three of them are notcollinear. The last equation can be used for selecting a set of points in somegeneral position.Now consider four points x1;x2;x3;x4 in general position on an object'splanar surface. The description of the planar surface can be based on terms ofits outward normal vector and its directed distance. For that, �rst let us com-pute the intersections of the gravity positions of the triangles 4x1x2x4 and4x2x3x4, namely r1 = 13(x1 + x2 + x4) and r2 = 13 (x2 + x3 + x4). Their unit



vectors are ur1 = r1jr1j and ur2 = r2jr2j . Then the unit vectors between the pointsx2 and r1 and x2 and r2 are computed using ux2 = x2jX2j as followsuy1 = ux2 � ur1 and uy2 = ux2 � ur2. The outward normal unit vector tothe planar surface will be n = uy1 ^ uy2. Considering any point x lying on thesurface, the directed distance to the planar surface is d = hnxi.In this way polyhedral faces can be individually speci�ed by an outwardnormal unit vector nF and the distance from the origin to the face dF for anypoint xF lying on the face. Alternatively a face can be speci�ed by the homoge-neous normal HF = dF + nF: (11)Note that this multivector consists of a scalar and a vector and can simplify theequation of the plane through the face. For example, any point x will be on theface if x � nF � dF = �hHF(1� x)i = 0: (12)The multivector HF transforms as follows under a general displacement D;HF0 = D(HF) = (RxF ~R+ t) � (RnF~R) + (RnF~R). Since (RxF ~R) � (RnF~R) =xF �nF, this becomes HF0 = xF �nF +RnF~R+ t � (RnF~R) which can then bewritten as HF0 = D(HF) = RHF ~R+ hRHF ~Rti: (13)We will use this characterization of the displaced face in what follows.4 Detection of Polyhedral ContactsRegarding particular situations, the equations of the previous section can beused for de�ning a set of geometric rules useful for polyhedral modelling, contactdetection, collision avoidance and path planning. Let us consider a moving object1 and a static object 2 as obstacle.Situation 1: A displaced object touches with its face F1 a vertex x2 of anobstacle. The vertex must lie on the face F1. The equation hH0F1(1� x2)i = 0has to be satis�ed. After replacing H0F1 = RHF1 ~R+hRHF1 ~Rti the equationfor the situation 1 is hRHF1 ~R(1� x2 + t)i = 0: (14)Situation 2: A displaced object touches with its vertex x1 a face F2 of anobstacle.This means hHF2(1 � x01)i = 0. Substituting x0 = RX1 ~R � ~t the equation forsituation 2 is hHF2(1�Rx1 ~R+ t)i = 0: (15)Situation 3: Contact occurs when an edge of a displaced object touches an edgeof an obstacle. If the edges intersect at a point, all points of both edges belongto the same plane. The edge directions and the vector joining x01 (on the edge



of the displaced object) and x2 (on the edge of the obstacle) are coplanar. If theedge vectors are coplanar they either intersect at some point or they are parallel.This condition is true if (x01 � x2)^e2^e01 = 0 { if the edges are parallel thenobviously we have e01^e2 = 0.Since we are working in 3-dimensions, (x01 � x2)^e2^x01 is a trivector andcan therefore be written as �i, where � is a scalar. Thus, �i = 0 is equivalentto saying that hi(i�)i = 0. The co-planarity condition can then be written ashi(x01� x2)^e2^x01i = 0 Since the quantity in the angled brackets is made up ofvector and trivector parts we can writehiRx1e1 ~Re2i+ hi(t� x2)Re1~Re2i = 0: (16)Situation 4: A line lies on a face when a face of an object is in contact withthe edge on an obstacle. This situation can be geometrically represented as:H01^e2=0. Substituting the expression for a displaced homogeneous normalH0Ffollows H01 ^ e2 = RHF1 ~R+ hRHF1 ~Rti ^ e2 = RHF1 ~R ^ e2 = 0: (17)Situation 5: An object's face approaches an obstacle's face. The orientationdi�erence between the faces can be detected using: H0F1 ^HF2 = (RHF1 ~R +hRHF1 ~Rti) ^HF2 = (RHF1 ~R ^HF2 + hRHF1 ~Rti ^HF2=0.H0F1 ^HF2 = RHF1 ~R ^HF2 = 0: (18)The distance between the two faces during the approach is: H0F1 � HF2 � 0.Replacing the expression for H0F1 followsRHF1 ~R+ hRHF1 ~Rti �HF2 � 0: (19)These equations can be used for collision avoidance and also for detection ofoverlapped polyhedral objects. Note that manipulations using the multivectorHF do not require a coordinate basis and therefore provide us with greater geo-metric insight and transparency. As a mode of illustration two simple examplesof applications will be given in the next sections.5 Collision AvoidanceThis section presents a collision avoidance approach for a mobile robot(object 1). The general equation for avoiding collisions considering intersectionof N volumes Volj can be simply formulated as:(Vol 01\Vol 02 )_(Vol 01\Vol 03 )_:::_(Vol 01\Vol 0N ) = 0 : (20)The movement is a displacement, hence the equation of the moving robot andany threaten object is C2VC3V :::VCN = 0 withCj : D(Vol1 )\D(Volj ) (21)



for j=2,3,...,N. Note that especially for non-polyhedral objects this equationonly can be written as a complicated and non-transparent expression in termsof the standard vector, spinor or quaternion calculus (see Canny [3]). Using thegeometric algebra approach the equation will be expressed in a clear and easierway as follows. Firstly, consider a couple of vectors a, b and a point x1 lying inthe back surface of the moving robot. Any point xj of an external object j lyingon a virtual internal surface of the object 1 can be detected using an extensionof the equation of situation 3 a trivector based condition for co-planarityh(a � p0j)((a + b)0 � p0j)(x01 � p0j � x0j)i = 0 (22)and a approach distance limit conditionjj((xcentera� p0j)� x0j)jj < dmax (23)where the distance to the touching point xj is p0j � h(Rjxj ~Rj� ~tj)� (R1x1 ~R1�~t1) �R1n1 ~R1i (here n1 corresponds to the unit vector of the orientation of themovement of object 1) and a0 = R1a ~R1 � ~t1, x01 = R1x1 ~R1 � ~t1, (a + b)0 =R1(a + b) ~R1 � ~t1, x0j = Rjxj ~Rj � ~tj for j=2,3,...,N (threatening objects).The ful�llment of this equation requires a control of the robot movement. Thiscan be formulated in terms of a trivector. Considering the control volume Vc ofthe trajectory of the robot within time t followsVc = x1(T )Zx1(t=0) a ^ b^ dx = TZ0 a ^ b ^ dxdt dt = TZ0 a ^ b^ x(1)(t)dt (24)Observe that the rate how the volume is swept is V (1 )c (t) = a^b^x(1)(t), wherex(1)(t) can be computed using an interpolation polynom utilizing the pointsx1;x2; :::;xm of the security distance for avoiding a collision with the obstacles.Now the trajectory volume has to allow smooth movements of the robot. Thatmeans the volume should have almost a constant cross shape everywhere. Thisrequires that the sweeping area should also be smoothly rotated. Then the controlequation is Vc(t) = TZ0 R(t)a ^b ~R(t)) ^ x(1)(t)dt (25)The robot has to move perpendicular to the obstacle's face. Using the normalsto the obstacle surfaces the required orientation angles can be derived and usinga interpolation polynom the rotor R(t) = e(�i �(t)2 n) can be computed. Note thatthis is an adaptive control of the trajectory volume. Whenever a threateningobstacle moves the interpolating polynoms will adapt the equation.



6 GraspingA simple example of a grasping application will now be given. The symbols usedare:^ for the geometric outer product, V for the Boolean AND operation and Wfor the Boolean OR operation. The example considers the positioning of a two�nger grasper in front of a static object. Consider two points g1 and g2 which arethe closest corners of the �nger tips and two points x1, x2 lying on the extremesof the object. These points lie on the adequate grasping surface de�ned duringthe previous object recognition process. A geometric rule for good grasping isthat three simple constraints have to be simultaneously ful�lled. This can bewritten as C1W C2W C3 � 0, where the conditions C1 for aperture, C2 for attitudeand C3 for alignment, are given byC1 : R(g1 � g2)~R� (x1 � x2) � 0C2 : hie12e21e14i_hie12e21e23i � 0 (26)C3 :  R(g1 + g2)~R+ 2t� (x1 + x2)2 !��R(g1 � g2)~R� � 0Here, x3 and x4 are points on the far side of the object, such that x1;x2;x3;x4are in a plane which is parallel to the 
oor. e12 = x1�(Rg2 ~R+t)jx1�(Rg2 ~R+t)j is the unitedge vector between the points x1 and g02, e21 = x2�(Rg1 ~R+t)jx2�(Rg1 ~R+t)j is the unit edgevector between the points x2 and g01 and e14 and e23 are respectively the unitedge vectors x1�x4jx1�x4j and x2�x3jx2�x3 j .7 ConclusionThe authors have shown that the use of geometric algebra helps greatlyto the identi�cation and the formulation of algebraic constraints useful for objectmodelling, collision avoidance and grasping. Instead of laborious matrix opera-tions, the geometric algebra based method o�ers stability and avoids redundantelements present in matrix calculus. Finally, the author believe that the refor-mulation of the problem in purely geometric terms give greater intuitive insightand will enable more complicated problems to be successfully addressed.References1. Hestenes D and Sobczyk G. Cli�ord Algebra to Geometric Calculus. AUni�ed Language for Mathematics and Physics. D Reidel Publishing Company,Dordrecht, Holland, 1984.2. Bayro-Corrochano EJ and Lasenby J. Object modelling and motion analysisusing Cli�ord Algebra. Europe-China workshop on Geometrical Modelling andInvariants for Computer Vision, Xi'an, China, pp. 143-149, 27-29 April 1995.3. Canny J. Collision detection for moving polyhedra. PAMI-8, No. 2, pp. 200-209, March 1986.This article was processed using the LaTEX macro package with LLNCS style


