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Abstract

In this paper the authors discuss a coordinate-free geometric approach
using invariants to object modelling in computer vision. The new tech-
nique used to analyse the 3-dimensional transformations involved will
be that of Clifford algebra or geometric algebra. Object modelling and
collision avoidance has been heavily discussed in the literature, however
the Clifford algebra based method allows a more elegant reformulation
which provides greater geometrical insight. In this paper the approach
helps greatly to identify and to formulate algebraic constraints useful for
object collision detection, grasping and collision avoidance.

1 Introduction

Geometric algebra has already been successfully applied to many areas of math-
ematical physics and engineering. The system adopts a coordinate-free approach
and deals with rotations in n-dimensional space very easily. Therefore the au-
thors believe that it has a good approach to offer in the world of computer vision
where the 3-dimensional geometry of any given problem is of fundamental im-
portance.

In this work the coordinate-free Clifford Algebra and invariants are used
for object modelling. The essential difference between geometric algebra, the
standard vector, spinor or quaternion calculus lies in the way in which vectors
are multiplied together. The geometric product can be defined for any 2 multi-
vectors of grade 0 (scalars), grade 1 (vectors), grade 2 (bivectors), etc... up to
grade n. Projective geometry invariants were identified using geometric algebra.
Diverse geometric decision rules were developed useful for object collision detec-
tion, grasping and path planning.

The next section introduces to Clifford Algebra. The modelling of poly-
hedral objects are treated in section 3. Geometric equations of object contact



situations are presented in section 4. This is followed by the illustrating applica-
tions collision avoidance in section 5 and grasping in section 6. The last section
is dedicated to the conclusions.

2 An Outline of Clifford Algebra

Clifford algebras are well-known to pure mathematicians. In this work it is used
an interpretation called geometric algebra [1] which is a coordinate-free approach
to geometry. In geometric algebra the vectors are represented using multivectors
independent of coordinate basis and in this format they are multiplied together.
This 1s the essential difference with the standard vector calculus. This outline
is essentially based on the introduction to Clifford Algebra written by Hestenes
[1] and Bayro-Corrochano and Lasemby [2].

2.1 The Geometric Product and Multivectors

The geometric or Clifford product of two vectors a and b is written ab and

defined as
ab = a-b + aAb. (1)

Where the outer or wedge product, A, of two vectors forms a bivector which is
interpreted as a directed area. The geometric product ab is therefore the sum of
a scalar, a-b, and a bivector, aAb. In 3 dimensions the the trivector (aAb)Ac is
an oriented 3-dimensional volume obtained by sweeping the bivector aAb along
the vector c.

In a space of dimension n there are multivectors of grade 0 (scalars),
grade 1 (vectors), grade 2 (bivectors), grade 3 (trivectors), etc... up to grade n.
Any two such multivectors can be multiplied using the geometric product. Con-
sider two multivectors A, and By of grades r and s respectively. The geometric
product of A, and Bg can be written as

A,B, = (AB),, +(AB), _,+...+ (AB),_, (2)

where (M) is used to denote the t-grade part of multivector M, e.g. (ab) =
(ab)o + {ab)z = a-b 4+ a A b. In the following sections expressions of grade 0
will be written ignoring their subindex, i.e. (ab)g = (ab) = a-b.

2.2 Geometric Algebra and Rotors in 3-D Space

For an n-dimensional space we can introduce an orthonormal basis of vectors
{o;} i = 1,...,n, such that ¢;-0; = &;. This leads to a basis for the entire
algebra:

1, doi}, A{oine;}, A{oinojnor}, ..., oc1AoaA.L Ao, (3)

Note that we shall not use bold symbols for these basis vectors. The highest
grade element is called the pseudoscalar for the space. Any multivector can be



expressed in terms of this basis, and while it is often useful to do so, we stress
that the main strength of geometric algebra is the ability to carry out operations
in a basis-free manner. The basis for the 3-D space has 23 = 8 elements given
by:

1 {o1,00,03}, {0102, 0203, 0301},{c10203} =1 . (4)

scalar vectors bivectors trivector

The reference vector frame {o1, 09, 03} corresponds to the 3-D scene space XYZ
coordinate basis. The trivector or pseudoscalar oy0s03 squares to —1 and com-
mutes with all multivectors in the 3-D space. Therefore it is given the symbol i.
Note that this is not the uninterpreted commutative scalar imaginary j used in
quantum mechanics and engineering.

By straightforward multiplication it can be easily seen that the three
bivectors can also be written as

0'20'3:i0'1 Ii, 0'10'3:—i0'2:j, 0'10'2:i0'3:k. (5)

These simple bivectors are spinors, as they rotate vectors in their own plane by

90°, e.g. (0102)02 = o1, (0203)02 = —o3 ete. Since (i01)2 = -1, (—ioz)z =
-1, (i03)2 = —1 and (io1)(—io2)(io3) = io1o203 = —1, the famous Hamilton
relations - - 5 ..

=3 =k =15k = -1 (6)

are easily recovered. Interpreting the ¢, 7, k as bivectors, it can be seen that they
indeed represent 90° rotations in orthogonal directions and will therefore provide
a system particularly suited for the representation of 3-D rotations. Now, using
nothing other than the above simple bivectors one can show that the quaternion
algebra of Hamilton is simply a subset of the geometric algebra of space. If
a quaternion A is represented by [ag, a1, as, as], then there exists a one-to-one
mapping between quaternions and rotors given by

A = [ag, a1, a2, a3] — ag + a1(io1) + as(ioz) + as(ios) (7)

In order to find out more about rotors in the geometric algebra we note
that any rotation can be represented by a pair of reflections. It can be easily
shown that the result of reflecting a vector a in the plane perpendicular to a
unit vector n is

a_ —a = —nan (8)
where a_ and a|| respectively denote parts of a perpendicular and parallel to n.
Thus, a reflection of a in the plane perpendicular to n, followed by a reflection
in the plane perpendicular to m results in a new vector

— m(—nan)m = (mn)a(nm) = RaR. (9)

The multivector R = mn is called a rotor. It contains only even-grade elements
and satisfies RR = 1. The transformation a — RaR is a very general way of
handling rotations of multivectors of any grade unlike the quaternion calculus. In
3-D we use the term ‘rotor’ for those even elements of the space that represent
rotations. Any rotor can be written in the form R = £eB/? where B is a

bivector. In particular, in 3-D we write R = (=72 = cos% —in sm% which



represents a rotation of ¢ radians anticlockwise about an axis parallel to the unit
vector n. If b = RyaR; and ¢ = R2bR, the rotors combine in a straightforward
manner, i.e. ¢ = RaR where R = R2Rj.

3 Polyhedral Object Modelling

In this section the analysis is restricted to the case of polyhedral objects which
can appear in any position and can also be partially occluded. This approach
cannot currently deal with objects which have many curved surfaces. Canny [3]
used quaternions for object modelling. Quaternion algebra is a subset of Clifford
Algebra, hence, the Clifford algebra approach for object modelling generalizes
and extends the scope of standard techniques to cope with more complicated
problems.

Suppose an object undergoes a displacement from position 1 to position
2. Such a general displacement (D) will consist of a translation (7) expressed by
the vector t and a rotation (R) represented by the angle # with respect to some
axis n described by the rotor R. In the analysis of this section the reference frame
{01, 09,03} is attached to the XYZ coordinate system at some chosen origin. The
rotor R takes this frame to {¢}, 0%, 04} where ¢} = Ro;R fori=1,2,3. Let us
represent the object points by position vectors relative to the origin.

A point x3 maps to the new point x} given by xj = Rx;R+t. An edge
of the object is specified by a unit vector e indicating the edge direction and by
a vertex lying on the edge. After a displacement the new edge is €’=R(7 (e)) =
R(e) = Ref{, since the edge is a property within the body and is therefore
unaffected by the translation. Any point on the edge can be specified by a vector
Vi1 = x1 4+ Avy, where A is a variable parameter and vj is a vector connecting
two points, x3 and xz, on the edge such that vi = x3 — x2. After a general
displacement this goes to Vi = RV;R +t. Now consider a polygon of N corners
as an object, the connecting vectors {v;i} satisfy: v, = vi+va+..+vs+..+v,_1.
This polygon can be specified completely using these connecting vectors and one
of the vertices, Vy = Xy + Vn = Xn + (v1 + v2 + ... + vn_1). Therefore, after
a displacement the polygon is specified by VI = x}, + v}, which can be written
as

V/ =RxuR+t+RvyR=R(Vy)R+t=Rx,R+R(vi)R+R(v2)R+ ... + R(vu_1)R(30Y

Collinear points represented as vectors on a planar surface can be de-
tected using the constraint equation xpj AXp2 Axpg = 0, for any three such
points. Points on a plane are in a “general position” if three of them are not
collinear. The last equation can be used for selecting a set of points in some
general position.

Now consider four points x1, X3, X3, X4 in general position on an object’s
planar surface. The description of the planar surface can be based on terms of
its outward normal vector and its directed distance. For that, first let us com-
pute the intersections of the gravity positions of the triangles Axj3xax4 and
Ax3Xx3X4, namely ry = %(X] + X2 +x4) and ry = %(Xz + x3 + X4). Their unit



vectors are up, = I;_il and u,, = I;_ZI Then the unit vectors between the points

x2 and ry and x2 and rz are computed using ux, = I;é—zzl as follows
Uy, = Uy, — Uy, and uy, = Uy, — Uy,. The outward normal unit vector to

the planar surface will be n = uy, A uy,. Considering any point x lying on the
surface, the directed distance to the planar surface is d = (nx).

In this way polyhedral faces can be individually specified by an outward
normal unit vector np and the distance from the origin to the face dp for any
point xg lying on the face. Alternatively a face can be specified by the homoge-
neous normal

Hp = dr + np. (11)

Note that this multivector consists of a scalar and a vector and can simplify the
equation of the plane through the face. For example, any point x will be on the
face if

X~nF—dFI—<HF(1—X)>IO. (12)

The multivector Hg transforms as follows under a general displacement D;
Hr' = D(Hr) = (RxpR + t) - (RnpR) 4+ (RnpR). Since (RxpR) - (RngR) =
XF - nf, this becomes Hp' = xp - np + RnpR + ¢t - (Rnpf{) which can then be
written as

Hr' = D(Hr) = RHrR + (RHpRt). (13)

We will use this characterization of the displaced face in what follows.

4 Detection of Polyhedral Contacts

Regarding particular situations, the equations of the previous section can be
used for defining a set of geometric rules useful for polyhedral modelling, contact
detection, collision avoidance and path planning. Let us consider a moving object
1 and a static object 2 as obstacle.

Situation 1: A displaced object touches with its face F; a vertex xs of an
obstacle. The vertex must lie on the face Fj. The equation (H’Fl(l —x2)) =0
has to be satisfied. After replacing ~ Hp, = RHp, R+ (RHp, Rt) the equation
for the situation 1 is

(RHp,R(1 — x3 +t)) = 0. (14)
Situation 2: A displaced object touches with its vertex x; a face Fs of an
obstacle. o
This means (Hy, (1 — x})) = 0. Substituting x’ = RX3R — t the equation for
situation 2 is

(Hg,(1 — Rx;R +t)) = 0. (15)

Situation 3: Contact occurs when an edge of a displaced object touches an edge
of an obstacle. If the edges intersect at a point, all points of both edges belong
to the same plane. The edge directions and the vector joining xj (on the edge



of the displaced object) and xz (on the edge of the obstacle) are coplanar. If the
edge vectors are coplanar they either intersect at some point or they are parallel.
This condition is true if (x}] — xz2)AezAe] =0 — if the edges are parallel then
obviously we have ej Aez = 0.

Since we are working in 3-dimensions, (x} — x2)Aea Ax] is a trivector and
can therefore be written as ai, where « is a scalar. Thus, ai = 0 is equivalent
to saying that (i(ée)) = 0. The co-planarity condition can then be written as
(i(x] — x2)AeaAx]) = 0 Since the quantity in the angled brackets is made up of
vector and trivector parts we can write

(iRxie;Res) + (i(t — x2)RezRes) = 0. (16)

Situation 4: A line lies on a face when a face of an object is in contact with
the edge on an obstacle. This situation can be geometrically represented as:
H Aez=0. Substituting the expression for a displaced homogeneous normal Hg
follows

H) Aez = RHp, R+ (RHp, Rt) Aes = RHp, R Aez = 0. (17)

Situation 5: An object’s face approaches an obstacle’s face. The orientation
difference between the faces can be detected using: Hp, A Hp, = (RHp, R +

(RHp,Rt)) AHp, = (RHp, R A Hp, + (RHp, Rt) A Hp,=0.

#, ANHp, = RHp, R A Hp, = 0. (18)

The distance between the two faces during the approach is: H’Fl — Hy, > 0.
Replacing the expression for H’Fl follows

RHr, R + (RHg,Rt) — Hg, > 0. (19)

These equations can be used for collision avoidance and also for detection of
overlapped polyhedral objects. Note that manipulations using the multivector
Hy do not require a coordinate basis and therefore provide us with greater geo-
metric insight and transparency. As a mode of illustration two simple examples
of applications will be given in the next sections.

5 Collision Avoidance

This section presents a collision avoidance approach for a mobile robot
(object 1). The general equation for avoiding collisions considering intersection
of N volumes Vol; can be simply formulated as:

(Voly(\Vol)\/ (Voly (Voly)\/..\/ (Voli (| Voliy) = 0. (20)

The movement is a displacement, hence the equation of the moving robot and
any threaten object is C2 AC3 A ... ACy = 0 with

Cj : D(Voly)(\P(Vol)) (21)



for j=2,3,....N. Note that especially for non-polyhedral objects this equation
only can be written as a complicated and non-transparent expression in terms
of the standard vector, spinor or quaternion calculus (see Canny [3]). Using the
geometric algebra approach the equation will be expressed in a clear and easier
way as follows. Firstly, consider a couple of vectors a, b and a point x; lying in
the back surface of the moving robot. Any point x; of an external object j lying
on a virtual internal surface of the object 1 can be detected using an extension
of the equation of situation 3 a trivector based condition for co-planarity

((a—py((a+b) —pj(x; —p;—x§) =0 (22)

and a approach distance limit condition

[((Xcentera — Pj) = X3)|| < dmax (23)

where the distance to the touching point xj is p3 ~ ((RijIij —t~j) —(R1x1 R,—
t~1) -Ring R~1) (here n; corresponds to the unit vector of the orientation of the
movement of object 1) and a’ = R,aR; — t1, x) = Rix; Ry — t1, (a+b) =
Ri(a+ b)R~1 —t1, x3 = RijIij — ti, for j=2,3,...,N (threatening objects).

The fulfillment of this equation requires a control of the robot movement. This
can be formulated in terms of a trivector. Considering the control volume V. of

the trajectory of the robot within time ¢ follows

x1(T) T p T
Ve = / a/\b/\dx:/a/\b/\d—);dt:/a/\b/\x(l)(t)dt (24)
x1(t=0) 0 0

Observe that the rate how the volume is swept is Vc(l)(t) = aAbAx(D(1), where
x(l)(t) can be computed using an interpolation polynom utilizing the points
X1,X32, ..., X, of the security distance for avoiding a collision with the obstacles.
Now the trajectory volume has to allow smooth movements of the robot. That
means the volume should have almost a constant cross shape everywhere. This
requires that the sweeping area should also be smoothly rotated. Then the control
equation 1is

V() = /R(t)aAbREt)) AxD(t)dt (25)

The robot has to move perpendicular to the obstacle’s face. Using the normals
to the obstacle surfaces the required orientation angles can be derived and using
a interpolation polynom the rotor R(#) = =150 can he computed. Note that
this is an adaptive control of the trajectory volume. Whenever a threatening

obstacle moves the interpolating polynoms will adapt the equation.



6 Grasping

A simple example of a grasping application will now be given. The symbols used
are: Afor the geometric outer product, A for the Boolean AND operation and \/
for the Boolean OR operation. The example considers the positioning of a two
finger grasper in front of a static object. Consider two points g1 and gz which are
the closest corners of the finger tips and two points x1, x2 lying on the extremes
of the object. These points lie on the adequate grasping surface defined during
the previous object recognition process. A geometric rule for good grasping is
that three simple constraints have to be simultaneously fulfilled. This can be
written as C; \/ C2 \/ C3 & 0, where the conditions C; for aperture, C; for attitude
and Cs for alignment, are given by

C;:R(g1—g2)R—(x1 —x2)=0
Co: (ie12e21e14) \/<i812821823> ~ 0 (26)

Cs: (R(gl + gz)R—|—22t — (a1 + Xz)) .(R(gl - gz)f{) ~ 0

Here, x3 and x4 are points on the far side of the object, such that x1,xs,x3,x4
x-(Rg,R+t)
Ix:-(Rg,R+t)]
x.—(Rg R+t)
1%~ (Rg, R+t)]
vector between the points x2 and g} and ej4 and es3 are respectively the unit

edge vectors |§1:§:| and |§z:§z|.

are in a plane which 1s parallel to the floor. e = is the unit

edge vector between the points x1 and g, e21 = 1s the unit edge

7 Conclusion

The authors have shown that the use of geometric algebra helps greatly
to the identification and the formulation of algebraic constraints useful for object
modelling, collision avoidance and grasping. Instead of laborious matrix opera-
tions, the geometric algebra based method offers stability and avoids redundant
elements present in matrix calculus. Finally, the author believe that the refor-
mulation of the problem in purely geometric terms give greater intuitive insight
and will enable more complicated problems to be successfully addressed.
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