
Geometric Neural NetworksEduardo Bayro-Corrochano and Sven BuchholzComputer Science Institute, Cognitive Systems GroupChristian Albrechts University, Kiel, Germanyemail: edb,sbh@informatik.uni-kiel.deAbstract. The representation of the external world in biological crea-tures appears to be de�ned in terms of geometry. This suggests thatresearchers should look for suitable mathematical systems with power-ful geometric and algebraic characteristics. In such mathematical con-text the design and implementation of neural networks will be certainlymore advantageous. This paper presents the generalization of feedfor-ward neural networks in the Cli�ord or geometric algebra framework.The e�ciency of the geometric neural nets indicate a step forward in thedesign of algorithms for multidimensional arti�cial learning.Categories: Cli�ord algebra; geometric algebra; feedforward neural net-works; hyper-complex neural networks; RBF geometric neural networks.1 IntroductionBiological creatures interact with their environment in order to survive. Thisactivity is triggered by di�erent needs which should be satis�ed. The most im-portant ones are nutrition and conservation. As soon a creature moves secure itsinternal activity may switch on higher cognition levels to satisfy other sophisti-cated needs, e.g. the joy during playing. If we are interested to build arti�cialintelligent systems which should autonomously perceive and act in their sur-roundings we should �rst of all ask how the machine should build its internalrepresentation of the world. Nowadays there is the believe that the brain mightbe seen as a geometric engine [14, 16]. A general hypothesis of the geometricinterpretation of the brain may relay on the assumption that the mapping be-tween the external world and the brain is certainly a result of the perception andaction activities within a time cycle. These activities controlled by the centralnervous system might be seen in the context of learning by experience as a basicway to build the internal geometric representation.In mathematical terms we can formalize the relations of the physical signalsof world objects with the creature ones by using extrinsic vectors coming fromthe world and intrinsic vectors which depict the internal representation. We canalso assume that the external world and the internal world have di�erent refer-ence coordinate systems. If we see the acquisition of knowledge as a distributedprocess it is imaginable that there exist various domains of representation with



di�erent vectorial basis and obeying di�erent metrics. How is it possible that na-ture through the evolution has acquired such tremendous representation powerfor dealing with such geometric vector representations. In a stimulating series ofarticles Pellionisz and Llin�as [16, 17] claim that the formalization of the geomet-rical representation seems to be the dual expression of extrinsic physical cues byintrinsic central nervous system vectors. They quoted that these vectorial rep-resentations related to reference frames intrinsic to the creature are co-variantfor perception analysis and contra-variant for action synthesis. These authorsexplain that the geometric mapping between these two vectorial spaces is imple-mented by a neural network which performs as a metric tensor [17]. The Cli�ordalgebra in the geometric interpretation of Hestenes [10] appears to be an alter-native to the tensor analysis employed since 1980 by Pellionisz and Llin�as for theperception action cycle theory. Since tensor calculus is co-variant, in other wordsit requires of transformation laws for getting coordinate-independent relations,Cli�ord or geometric algebra appears more attractive as it is not only essentiallya coordinate free or invariant system but also includes spinors which tensor the-ory does not. The computational e�ciency of geometric algebra has been shownin various challenging areas of mathematical physics [6]. Preliminary attemptsfor applying the geometric algebra in neural geometry have been already doneby Hestenes and in the �elds of computer vision, robotics and neural nets can befound in [11, 12, 3, 4, 2]. Analyzing other approaches for neural computation wesee that the mostly used is the matrix algebra. Geometric algebra and matrixalgebra both are associative algebras, yet geometric algebra captures the geomet-ric characteristics of the problem better independent of a coordinate referencesystem and o�ers also other computational mechanisms that matrix algebra hasnot, e.g. the geometric product using hypercomplex, double and dual entities.In this paper we will specify a geometric algebra Gn of the n-dimensional spaceby Gp;q, where p and q stand for the number of basis vectors which squares to 1and -1 respectively and ful�ll n=p+q. See [10, 2, 3] for a more complete intro-duction in geometric algebra . The next section reviews the computing principlesof feedforward neural networks underlining their most important characteristics.Section three deals with the extension of the multilayer perceptron (MLP) tocomplex and quaternionic MLPs. Section four presents the generalization of thefeedforward neural networks in the geometric algebra system. Section �ve de-scribes the generalized learning rule across di�erent geometric algebras. Sectionsix presents various comparative experiments of geometric neural networks withreal valued MLPs. The last section discusses the suitability of the geometricalgebra system for neural computing.



2 Real Valued Neural NetworksThe approximation of nonlinear mappings using neural networks is useful invarious areas of signal processing like pattern classi�cation, prediction, systemmodelling and identi�cation. This section reviews the fundamentals of standardreal valued feedforward architectures.Cybenko [5] used for the approximation of a given continuous function g(x)the superposition of weighted functions:y(x) = NXj=1wj�j(wTj x+ �j); (1)where �(:) is a continuous discriminatory function like a sigmoid, wj 2 R andx; �j;wj 2 Rn. The �nite sums of the form of Eq. (1) are dense in C0(In) ifjg(x) � y(x)j < " for a given " > 0 and all x 2 [0; 1]n. This is called a densitytheorem and is a fundamental concept in approximation theory and nonlinearsystem modelling [5, 13].A structure with k outputs yk having several layers using logistic functionsis known as the Multilayer Perceptron (MLP) [22]. The output of any neuron ofa hidden layer or of the output layer are represented in similar way,oj = fj( NiXi=1 wjixji + �j) yk = fk( NjXj=1wkjokj + �k); (2)where fj(�) is logistic and fk(�) is logistic or linear. Linear functions at theoutputs are often used for pattern classi�cation. In some tasks of pattern classi-�cation su�ces one hidden layer whereas in some tasks of automatic control itmay be required two hidden layers. Hornik [13] showed that standard multilayerfeedforward networks are able to approximate accurately any measurable func-tion to a desired degree. Thus they can be seen as universal approximators. Incase of a training failure we should rather attribute to an inadequate learning,incorrect number of hidden neurons or a poor deterministic relation betweeninput and output patterns.Poggio and Girosi [19] developed the Radial Basis Function (RBF) networkwhich consists of a superposition of weighted Gaussian functions as followsyj(x) = NXi=1 wjiGi�Di(x � ti)� (3)where yj is the j-output, wji 2 R, Gi is a Gaussian function, Di a N � Ndilatation diagonal matrix and x; ti 2 Rn. The vector ti is a translation vector.This architecture is supported by the regularization theory.



3 Complex MLP and Quaternionic MLPA MLP is extended in the complex domain when its weights, activation functionand outputs are complex valued. Yet, the selection of the activation function isa non-trivial matter. For example, the extension of the sigmoid function from Rto C, i.e. f(z) = 1(1 + e�z) (4)where z 2 C, is not allowed as this function is analytic and unbounded [7]. Sim-ilar is the case of tanh(z) and e�z2 . This kind of activation functions troublesthe convergence during training due to its singularities. The necessary conditionsthat a complex activation f(z) = a(x; y) + ib(x; y) has to ful�ll are: f (z) non-linear in x and y, partial derivatives ax, ay, bx and by exist (where axby 6� bxay)and f(z) is not entire. Accordingly Georgiou and Koutsougeras [7] proposedf (z) = zc+ 1r jzj (5)where c; r 2 R+. These authors extended the usual real back-propagation learn-ing rule for the Complex MLP (CMLP).Arena et al.[1] introduced the Quaternionic MLP (QMLP) which is an exten-sion of the CMLP. The weights, activations functions and outputs of this net arerepresented in terms of quaternions [8]. They choose the following non-analyticbounded functionf(q) = f(q0 + q1i + q2j + q3k)= ( 11 + e�q0 ) + ( 11 + e�q1 )i + ( 11 + e�q2 )j + ( 11 + e�q3 )k; (6)where f(�) is now the function for quaternions. These authors proved that super-positions of such functions approximate accurately any continuous quaternionicfunction de�ned in the unit polydisc of Cn. The extension of the training rulealong the lines of the CMLP was done straightforwardly [1].4 Geometric Algebra Neural NetworksReal, complex and quaternionic neural networks can be further generalized in theCli�ord or geometric algebra framework. The weights, the activation functionsand the outputs will be now represented using multivectors. In the real valuedneural networks of section 3, the vectors are multiplied with the weights usingthe scalar product. For geometric neural networks the scalar product will besubstituted by the Cli�ord or geometric product.



Fig. 1. McCulloch-Pitts Neuron and Geometric Neuron4.1 The activation functionThe activation function of Eq. (5) used for the CMLP was extended by Pearsonand Bisset [15] for a type of Cli�ord MLP for di�erent Cli�ord algebras includingthe quaternion algebra. In this paper we propose an activation function whicha�ects each multivector basis element. This function was introduced indepen-dently by the authors [2] and is in fact a generalization of the function of Arenaet al [1]. The function for a n-dimensional multivectorm readsf(m) = f(m0 +mi�i +mj�j +mk�k + :::+mij�i^�j + :::+mijk�i^�j^�k + :::+mn�1^�2^: : :^�n)= f(m0) + f(mi)�i + f(mj )�j + f(mk)�k + ::+ f(mij)�i^�j + :::+f(mijk)�i^�j^�k + :::+ f(mn)�1^�2^: : :^�n; (7)where f(�) is written in bold to be distinguished from the one used for a singleargument f(�). The values of f(�) can be of the type sigmoid or Gaussian.4.2 The geometric neuronThe McCulloch-Pitts neuron uses the scalar product of the input vector and itsweight vector [22]. The extension of this model to the geometric neuron requiresthe substitution of the scalar product with the Cli�ord or geometric product,i.e. wTx + � ) wx + � = w � x+w ^ x+ � (8)Figure 1 shows in detail the McCulloch-Pitts neuron and the geometric neuron.This �gure also depicts the way how the input pattern is formated in a speci�cgeometric algebra. The geometric neuron outputs a more rich kind of pattern,



let us illustrate this with an example in G3;0o = f(wx+ �)= f(s0 + s1�1 + s2�2 + s3�3 + s4�1�2 + s5�1�3 + s6�2�3 + s7�1�2�3)= f(s0) + f(s1)�1 + f(s2)�2 + f(s3)�3 + f(s4)�1�2 + :::+f(s5)�1�3 + f(s6)�2�3 + f(s7)�1�2�3; (9)where f is the activation function de�ned in Eq. (7) and si 2 R. Using theMcCulloch-Pitts neuron in the real valued neural networks the output is simplya scalar given by o = f( NXi wixi + �): (10)The geometric neuron outputs a signal with more geometric informationo = f(wx + �) = f (w �x +w ^ x + �) (11)which on the one hand has the scalar product like the McCulloch-Pitts neuron,i.e. f(w �x + �) = f(s0) � f( NXi wixi + �) (12)and on the other hand the outer product expressed byf(w^x+ � � �) = f(s1)�1 + f(s2)�2 + f(s3)�3 + f(s4)�1�2 + :::+f(s5)�1�3 + f(s6)�2�3 + f(s7)�1�2�3: (13)Note that the outer product supplies the scalar cross-products between the in-dividual components of the vector which are nothing else as the multivectorcomponents of higher grade like point or lines (vectors), planes (bivectors) andvolumes (trivectors). This characteristic will be used in section 7.2 for the im-plementation of the embedded geometric processing in the extended geometricneural networks. These kind of neural networks resemble to the higher orderneural networks, however the extended geometric neural networks use not onlyscalar products of higher order but all the necessary scalar cross-products forcarrying out a geometric cross-correlation. That is why a geometric neuron canbe seen as a sort of geometric correlator which for the interpolation o�ers incontrast to the McCulloch-Pitts neuron not only points but also higher grademultivector components like planes, volumes,...,hyper-volumes.4.3 Feedforward geometric neural networksFigure (2) depicts the standard neural and network structures for function ap-proximation in the geometric algebra framework. Here the inner vector product



Fig. 2. Geometric Network Structures for Approximation: (a) Cybenko's (b) GRBFnetwork (c) GMLPp;qhas been extended to the geometric product and the activation functions areaccording (7).The equation (1) of the Cybenko's model in geometric algebra readsy(x) = NXj=1wjf(wj � x+wj ^ x + �j): (14)The extension of the MLP is straightforward. The equations using the geometricproduct of the outputs of hidden and output layers readoj = fj( NiXi=1wji �xji +wji ^ xji + �j)yk = fk( NjXj=1wkj � okj +wkj ^ okj + �k) (15)In the radial basis function networks, the dilatation operation (via the diag-onal matrix Di) can be implemented by means of a geometric product with adilation Di = e� i�i2 [10], i.e.Di(x� ti))Di(x � ti) ~Di (16)



yk(x) = NXj=1wkjGj(Dj(xji � tj) ~Dj) (17)Note that in the case of the geometric RBF we are also using an activationfunction according the Eq. (7).5 Learning RuleThis section presents the multidimensional generalization of the gradient descentlearning rule in the geometric algebra framework. This rule can be used for theGeometric MLP (GMLP) and for tuning the weights of the Geometric RBF(GRBF). Previous learning rules for the real valued MLP, complex MLP [7] andthe quaternionic MLP [1] are simply especial cases of this extended rule.5.1 Generalized multi-dimensional back-propagation training ruleThe norm of a multivector x for the learning rule readsjxj = (xjx) 12 = �XA [x]2A� 12 : (18)The geometric neural network with n inputs and m outputs is supposed toapproximate the target mapping functionYt : (Gp;q)n ! (Gp;q)m; (19)where (Gp;q)n is the n-dimensional module over the geometric algebra Gp;q [15].The error at the output of the net is measured according the metricE = 12 Zx2X jjYw � Ytjj2; (20)where X is some compact subset of the Cli�ord module (Gp;q)n involving theproduct topology derived from equation (18) for the norm and Yw and Yt arethe learned and target mapping functions respectively. The back-propagationalgorithm [22] is a procedure for updating the weights and biases. This algorithmis a function of the negative derivative of the error function (Eq. (20)) withrespect to the weights and biases themselves. The computing of this procedureis straightforward and here we will only give the main results. The updatingequation for the multivector weights of any hidden j�layer iswij(t+ 1) = ��( NkXk �kj 
wkj)� F 0(netij)� 
 oi + �wij(t); (21)



for any k�output with a non-linear activation functionwjk(t+ 1) = ��(ykt � yka)� F 0(netjk)� 
 oj + �wjk(t); (22)and for any k�output with a linear activation function,wjk(t+ 1) = �(ykt � yka) 
 oj + �wjk(t); (23)where F is the activation function de�ned in equation (7), t is the update step, �and � are the learning rate and the momentum respectively, 
 de�ned for clear-ness is the Cli�ord or geometric product, � is a scalar component by componentproduct and (�) is a multivector antiinvolution (reversion or conjugation).In the case of the non-Euclidean geometric algebra G0;3 (�) corresponds to thesimple conjugation. Each neuron now consist of p+q units, each for a multivectorcomponent. The biases are also multivectors and are absorbed as usual in thesum of the activation signal called here netij. In the learning rules, Eqs. (21)-(23), the way how the geometric product and the antiinvolution are computedvaries according the geometric algebra being used [20]. As illustration we givethe conjugation required in the learning rule for the quaternion algebra or G0;2,where the index indicates the number of the basis vector, i.e. 0 for 1, 1 for �1,2 for �2 and 3 for�1�2. The conjugation reads: �x = x0 � x1�1 � x2�2 � x3�1�2,where x 2 G0;2.The reversion in case of non-Euclidean G0;3 is given by �x = x0 + x1�1 + x2�2 +x3�3 � x4�1�2 � x5�2�3 � x6�3�1 � x7i.5.2 Simpli�cation of the learning rule using the density theoremGiven X and Y as compact subsets belonging to (Gp;q)n and to (Gp;q)m respec-tively and considering Yt : X ! Y a continuous function, there are some coef-�cients w1; w2; w3; :::, wNj 2 R and some multivectors y1;y2;y3; :::;yNj 2 Gp;qand �1; �2; �3; :::; �Nj 2 Gp;q so that the following inequality 8� > 0 is validE(Yt;Yw) = sup�jYt(x) � NjXj=1wjf j( NiXi=1wix+ �i)jx 2X� < �; (24)where f j is the multivector activation function of Eq. (7). Here the approxima-tion given by S = NjXj=1wjfj( NiXi=1wix + �i) (25)is the subset of the class of functions C0(Gp;q) with the norm jYtj=supx2X jYt(x)j.Since equation (24) is true we can �nally say that S is dense in C0(Gp;q). Thedensity theorem presented here is the generalization of the one used for the



quaternionic MLP by Arena et al. [1]. Its complete prove will be published else-where.The density theorem shows that for the training of geometric feedforwardnetworks the weights of the output layer could be real values. Therefore thetraining of the output layer can be simpli�ed, i.e. the output weight multivectorscould be scalars of k-grade. This k-grade element of the multivector is selectedby convenience.5.3 Learning using the appropriate geometric algebrasThe main motivation to process signals in the geometric algebra framework isto have access to representations with a strong geometric character and to takeadvantage of the geometric product. An important question arises regarding thetype of geometric algebra we should use for a speci�c problem. For some appli-cation the modelling of the suitable space would be straightforward. However inother cases it would be somehow di�cult unless some a priori knowledge of theproblem is available. In case we do not have any clue we should then explorevarious network topologies in di�erent geometric algebras. This will require someorientation about the di�erent geometric algebras we could use. Since each geo-metric algebra is either isomorphic to a matrix algebra of R, C or H or simply aproduct of these algebras a great care has to be taken for choosing the algebras.Porteous [20] showed the isomorphismsGp+1;q = Rp+1;q �= Gq+1;p = Rq+1;p (26)and presented the following expressions for completing the universal table ofgeometric algebrasGp;q+4 = Rp;q+4 �= Rp;q 
R0;4 �= R0;4 �= H(2)Gp;q+8 = Rp;q+8 �= Rp;q 
R0;8 �= R0;8 �= R(16); (27)where 
 stands for the real tensor product of two algebras. The last equationis known as the periodicity theorem [20]. Examples of this table are R�= G0;0,R0;1 �= C �= G0;1, H �= G0;2 and R1;1 �= 2R �= G1;1, C(2) �= C 
 R(2)�= G3;0 �=G1;2 for the 3D space and H(2) �= G1;3 for the 4D space. The two later examplescorrespond to the geometric algebras mentioned in section 2.6 ExperimentsIn this section the GMLP using the geometric algebra Gp;q will be denotedas GMPLp;q. Firstly we test the component-wise activation function and theninvestigate new ways of geometric preprocessing embedded in the �rst networklayer. Finally we identify the key role of the geometric learning in 3D objectrecognition and prediction in chaotic processes.
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the XOR problem. Figure 3.b shows that geometric nets GMLP0;2 and GMLP2;0have a faster convergence rate than the MLP with 2- and 4- dimensional inputsand by far than the P-QMLP. Since the MLP(4) working even in 4D can notbeat the GMLP, it can be claimed that the better performance of the geometricneural network is not only due to the higher dimensional quaternionic inputsbut rather due to the algebraic advantages of the geometric neurons of the net.6.2 Embedded geometric preprocessingThis subsection shows experiments with geometric neural networks with an em-bedded geometric preprocessing in the �rst layer. This has been done in orderto capture the geometric cross-products of the input data much better. Thisproved to improve the convergence. In this paper these kind of nets will becalled EGMLPp;q. Figure 2 shows a geometric network with its extended �rstlayer. The function sinH is again employed to test the performance of the MLP,
Fig. 4. Geometric neural network with extended input layerGMLP0;2 and GMLP2;0. Here we use as �rst input xi and as second one the geo-metric product xixi+1 (second order) or xixi+1xi+2xi+3 (fourth order). Figure3 shows that the performance of the three networks improves. It is clear that theextension of the �rst layer of the geometric network helps. Since the MLP usesthe same type of inputs, its improvement relays also on this kind of geometricpreprocessing.6.3 Geometric RBF networks for 3D object recognitionIn this section we explore the potential of the geometric RBF (GRBF) net todeal with the geometric nature of the task in question. The net is supposed to
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points or lengths or angles. This results should encourage researchers to applythis kind of geometric RBF networks with higher order of geometric productsfor various tasks like recognition of objects and the recover of pose.6.4 Recognition of geometry in chaotic processesThis experiments shows that the geometric neural networks are well suited todistinguish the geometric information in a chaotic process.
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side of the looping. On contrast the geometric net from early stage captures thegeometric characteristics of the attractor so it can not fail if it has to predict inthe other side of the looping.7 ConclusionsThis paper started with basic re
ections regarding geometry in biological crea-tures. The complexity of the mapping between the external and the internalworld demands that the representation and calculus has to be carried out in acoordinate-free mathematical system with a strong algebraic and geometric char-acteristic. According the literature there are basically two mathematical systemsused in neural computing: the tensor algebra and the matrix algebra. This paperchooses the coordinate-free system of Cli�ord or geometric algebra. The authorsuse this general and powerful mathematical system for the analysis and designof multidimensional feedforward neural networks. The reader can see that real-,complex- and quaternionic{valued neural networks are simple particular cases ofthe geometric algebra multidimensional neural networks. This work shows thatthe component-wise activation function defeats the activation function used inthe complex neural nets [7] and in the hypercomplex nets by Pearson [15]. Incase of the XOR problem the MLP using a 2-D or 4-D coded inputs can notperform as well as the GMLPs. The authors show also how the embedded geo-metric processing in the �rst layer helps to capture the geometric correlation ofthe data. The algebraic character of the nets is due to the activation function ofthe geometric neurons and the operations through the layers. The GA algebra isa coordinate free approach for neural nets. This can be seen by the experimentwith GRBF net where the geometric products capture the geometric relations ofthe lines using the bivector between points liberating in this way the coordinatedependency existing in the point manifold. The ability of the geometric neuralnetworks to recognize the geometric characteristics during the dynamic evolu-tion of a chaotic process exempli�es the power of geometric neural learning forprediction.AcknowledgmentThis work was �nanced by the Deutsche Forschungsgemeinschaft project SO320-2-1Geometrische Algebra ein Repr�asentationsrahmen f�ur den Wahrnehmungs-Handlungs-Zyklus.References1. Arena P., Caponetto R., Fortuna L., Muscato G. and Xibilia M.G. 1996. Quater-nionic multilayer perceptrons for chaotic time series prediction. IEICE Trans.Fundamentals. Vol. E79-A. No. 10 October, pp. 1-6.2. Bayro-Corrochano E., Buchholz S., Sommer G. 1996. Selforganizing Cli�ord neu-ral network IEEE ICNN'96 Washington, DC, June, pp. 120-125.
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