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Abstract. The representation of the external world in biological crea-
tures appears to be defined in terms of geometry. This suggests that
researchers should look for suitable mathematical systems with power-
ful geometric and algebraic characteristics. In such mathematical con-
text the design and implementation of neural networks will be certainly
more advantageous. This paper presents the generalization of feedfor-
ward neural networks in the Clifford or geometric algebra framework.
The efficiency of the geometric neural nets indicate a step forward in the
design of algorithms for multidimensional artificial learning.

Categories: Clifford algebra; geometric algebra; feedforward neural net-
works; hyper-complex neural networks; RBF geometric neural networks.

1 Introduction

Biological creatures interact with their environment in order to survive. This
activity is triggered by different needs which should be satisfied. The most im-
portant ones are nutrition and conservation. As soon a creature moves secure 1ts
internal activity may switch on higher cognition levels to satisfy other sophisti-
cated needs, e.g. the joy during playing. If we are interested to build artificial
intelligent systems which should autonomously perceive and act in their sur-
roundings we should first of all ask how the machine should build its internal
representation of the world. Nowadays there is the believe that the brain might
be seen as a geometric engine [14, 16]. A general hypothesis of the geometric
interpretation of the brain may relay on the assumption that the mapping be-
tween the external world and the brain is certainly a result of the perception and
action activities within a time cycle. These activities controlled by the central
nervous system might be seen in the context of learning by experience as a basic
way to build the internal geometric representation.

In mathematical terms we can formalize the relations of the physical signals
of world objects with the creature ones by using extrinsic vectors coming from
the world and intrinsic vectors which depict the internal representation. We can
also assume that the external world and the internal world have different refer-
ence coordinate systems. If we see the acquisition of knowledge as a distributed
process it is imaginable that there exist various domains of representation with



different vectorial basis and obeying different metrics. How is it possible that na-
ture through the evolution has acquired such tremendous representation power
for dealing with such geometric vector representations. In a stimulating series of
articles Pellionisz and Llinas [16, 17] claim that the formalization of the geomet-
rical representation seems to be the dual expression of extrinsic physical cues by
intrinsic central nervous system vectors. They quoted that these vectorial rep-
resentations related to reference frames intrinsic to the creature are co-variant
for perception analysis and contra-variant for action synthesis. These authors
explain that the geometric mapping between these two vectorial spaces is imple-
mented by a neural network which performs as a metric tensor [17]. The Clifford
algebra in the geometric interpretation of Hestenes [10] appears to be an alter-
native to the tensor analysis employed since 1980 by Pellionisz and Llinas for the
perception action cycle theory. Since tensor calculus is co-variant, in other words
it requires of transformation laws for getting coordinate-independent relations,
Clifford or geometric algebra appears more attractive as it is not only essentially
a coordinate free or invariant system but also includes spinors which tensor the-
ory does not. The computational efficiency of geometric algebra has been shown
in various challenging areas of mathematical physics [6]. Preliminary attempts
for applying the geometric algebra in neural geometry have been already done
by Hestenes and in the fields of computer vision, robotics and neural nets can be
found in [11, 12, 3, 4, 2]. Analyzing other approaches for neural computation we
see that the mostly used is the matrix algebra. Geometric algebra and matrix
algebra both are associative algebras, yet geometric algebra captures the geomet-
ric characteristics of the problem better independent of a coordinate reference
system and offers also other computational mechanisms that matrix algebra has
not, e.g. the geometric product using hypercomplex, double and dual entities.

In this paper we will specify a geometric algebra G, of the n-dimensional space
by G, 4, where p and g stand for the number of basis vectors which squares to 1
and -1 respectively and fulfill n=p+q. See [10, 2, 3] for a more complete intro-
duction in geometric algebra . The next section reviews the computing principles
of feedforward neural networks underlining their most important characteristics.
Section three deals with the extension of the multilayer perceptron (MLP) to
complex and quaternionic MLPs. Section four presents the generalization of the
feedforward neural networks in the geometric algebra system. Section five de-
scribes the generalized learning rule across different geometric algebras. Section
six presents various comparative experiments of geometric neural networks with
real valued MLPs. The last section discusses the suitability of the geometric
algebra system for neural computing.



2 Real Valued Neural Networks

The approximation of nonlinear mappings using neural networks is useful in
various areas of signal processing like pattern classification, prediction, system
modelling and identification. This section reviews the fundamentals of standard
real valued feedforward architectures.

Cybenko [5] used for the approximation of a given continuous function g(x)
the superposition of weighted functions:

y(x) =Y wio(wlx+0;), (1)

j=1

where ¢(.) is a continuous discriminatory function like a sigmoid, w; € R and
x,0;,w; € R". The finite sums of the form of Eq. (1) are dense in C%(/,) if
lg(x) — y(x)| < & for a given € > 0 and all x € [0,1]". This is called a density
theorem and is a fundamental concept in approximation theory and nonlinear
system modelling [5, 13].

A structure with k outputs y having several layers using logistic functions
is known as the Multilayer Perceptron (MLP) [22]. The output of any neuron of
a hidden layer or of the output layer are represented in similar way,

N Ny
0; :fj(zwﬁl‘jri-@j) Yk :fk(zwijkj‘i'gk)a (2)
i=1 j=1

where f;(-) is logistic and fx(-) is logistic or linear. Linear functions at the
outputs are often used for pattern classification. In some tasks of pattern classi-
fication suffices one hidden layer whereas in some tasks of automatic control it
may be required two hidden layers. Hornik [13] showed that standard multilayer
feedforward networks are able to approximate accurately any measurable func-
tion to a desired degree. Thus they can be seen as universal approzimators. In
case of a training failure we should rather attribute to an inadequate learning,
incorrect number of hidden neurons or a poor deterministic relation between
input and output patterns.

Poggio and Girosi [19] developed the Radial Basis Function (RBF) network
which consists of a superposition of weighted Gaussian functions as follows

Yi (X) = Z wjiGi (Di (X — tz)) (3)

where y; is the j-output, w; € R, G; is a Gaussian function, D; a N x N
dilatation diagonal matrix and x,t; € R™. The vector t; is a translation vector.
This architecture is supported by the regularization theory.



3 Complex MLP and Quaternionic MLP

A MLP is extended in the complex domain when its weights, activation function
and outputs are complex valued. Yet, the selection of the activation function is
a non-trivial matter. For example, the extension of the sigmoid function from R

to C, 1.e. .
f(z) = 1% (4)

where z € C, is not allowed as this function is analytic and unbounded [7]. Sim-
ilar is the case of tanh(z) and e=%". This kind of activation functions troubles
the convergence during training due to its singularities. The necessary conditions
that a complex activation f(z) = a(z,y) + ib(z,y) has to fulfill are: f(z) non-
linear in # and y, partial derivatives a,, ay, b, and by exist (where azb, Z bray)
and f(z) is not entire. Accordingly Georgiou and Koutsougeras [7] proposed

flz)=—— (5)

c+ 1|z]
where ¢, 7 € RT. These authors extended the usual real back-propagation learn-
ing rule for the Complex MLP (CMLP).
Arena et al.[1] introduced the Quaternionic MLP (QMLP) which is an exten-
sion of the CMLP. The weights, activations functions and outputs of this net are

represented in terms of quaternions [8]. They choose the following non-analytic
bounded function

Fla) = flao+ a1t + q25 + q3k)

)i+ ( )i+ ( )k, (6)

1
14+e 0 14e-9 1469

where f(-) is now the function for quaternions. These authors proved that super-
positions of such functions approximate accurately any continuous quaternionic
function defined in the unit polydisc of C”. The extension of the training rule
along the lines of the CMLP was done straightforwardly [1].

4 Geometric Algebra Neural Networks

Real, complex and quaternionic neural networks can be further generalized in the
Clifford or geometric algebra framework. The weights, the activation functions
and the outputs will be now represented using multivectors. In the real valued
neural networks of section 3, the vectors are multiplied with the weights using
the scalar product. For geometric neural networks the scalar product will be
substituted by the Clifford or geometric product.
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Fig. 1. McCulloch-Pitts Neuron and Geometric Neuron

4.1 The activation function

The activation function of Eq. (5) used for the CMLP was extended by Pearson
and Bisset [15] for a type of Clifford MLP for different Clifford algebras including
the quaternion algebra. In this paper we propose an activation function which
affects each multivector basis element. This function was introduced indepen-
dently by the authors [2] and is in fact a generalization of the function of Arena
et al [1]. The function for a n-dimensional multivector m reads

fim) = f(mo+ mio; + mjo; + mgog + ...+ mi;oi Ao + ..+
M;ijp0; ATjATK + ...+ My o1 AT A . ATy)
= f(mo) + f(ms)os + f(my)o; + f(me)ok + ..+ f(mij)oi Ao + ...+
f(mije)oinoi Aok + ...+ f(my)o1 AgaA. . Aoy, (7)

where f(-) is written in bold to be distinguished from the one used for a single
argument f(-). The values of f(-) can be of the type sigmoid or Gaussian.

4.2 The geometric neuron

The McCulloch-Pitts neuron uses the scalar product of the input vector and its
weight vector [22]. The extension of this model to the geometric neuron requires
the substitution of the scalar product with the Clifford or geometric product,

1.e.
wlix+0 = wr+0=w-z+wAz+0 (8)

Figure 1 shows in detail the McCulloch-Pitts neuron and the geometric neuron.
This figure also depicts the way how the input pattern is formated in a specific
geometric algebra. The geometric neuron outputs a more rich kind of pattern,



let us illustrate this with an example in Gz o

o

flwa +6)
f(s0+ 5101 + 5209 + 5303 + 540102 + 850103 + $60203 + $7010203)
f(so) + f(s1)o1 + f(s2)o2 + f(s3)os + f(sa)o102+ ... +

f(ss)oros + f(ss)oa03+ f(s7)o10203, (9)

where f is the activation function defined in Eq. (7) and s; € R. Using the
McCulloch-Pitts neuron in the real valued neural networks the output is simply
a scalar given by

N
o=Ff(>_ wir;+0). (10)
The geometric neuron outputs a signal with more geometric information
o=fwe+0)=f(w-z+wAx+0) (11)

which on the one hand has the scalar product like the McCulloch-Pitts neuron,
le.

N
flw @ +0) = f(s0) = [ wii +6) (12)
and on the other hand the outer product expressed by

flwAhe + 0 —0) = f(s1)o1+ f(s2)oa + f(s3)os + f(sa)or02 + ... +
f(ss)oros + f(ss)oa0s+ f(s7)o10203. (13)

Note that the outer product supplies the scalar cross-products between the in-
dividual components of the vector which are nothing else as the multivector
components of higher grade like point or lines (vectors), planes (bivectors) and
volumes (trivectors). This characteristic will be used in section 7.2 for the im-
plementation of the embedded geometric processing in the extended geometric
neural networks. These kind of neural networks resemble to the higher order
neural networks, however the extended geometric neural networks use not only
scalar products of higher order but all the necessary scalar cross-products for
carrying out a geometric cross-correlation. That is why a geometric neuron can
be seen as a sort of geometric correlator which for the interpolation offers in
contrast to the McCulloch-Pitts neuron not only points but also higher grade
multivector components like planes, volumes,... hyper-volumes.

4.3 Feedforward geometric neural networks

Figure (2) depicts the standard neural and network structures for function ap-
proximation in the geometric algebra framework. Here the inner vector product
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has been extended to the geometric product and the activation functions are
according (7).
The equation (1) of the Cybenko’s model in geometric algebra reads

N
y(m):ijf(wj~w—|—wj/\w—|—0j). (14)
j=1

The extension of the MLP is straightforward. The equations using the geometric
product of the outputs of hidden and output layers read

N,
0j = f; (Y wji - wji + wji Awji +0))
=1
N
Y = F1(O_ wij - o) + wij Aok + ) (15)
j=1

In the radial basis function networks, the dilatation operation (via the diag-
onal matrix D;) can be implemented by means of a geometric product with a
dilation D; = e*% [10], i.e.

DZ'(X—tZ') :>Dz(33 —ti)Di (16)



Yi(®) = Zwijj(Dj(% —t;)D;) (17)

Note that in the case of the geometric RBF we are also using an activation
function according the Eq. (7).

5 Learning Rule

This section presents the multidimensional generalization of the gradient descent
learning rule in the geometric algebra framework. This rule can be used for the
Geometric MLP (GMLP) and for tuning the weights of the Geometric RBF
(GRBFT). Previous learning rules for the real valued MLP, complex MLP [7] and
the quaternionic MLP [1] are simply especial cases of this extended rule.

5.1 Generalized multi-dimensional back-propagation training rule

The norm of a multivector @ for the learning rule reads

o] = (|2)* = (Y _[=]3)

A

S5

(18)

The geometric neural network with n inputs and m outputs is supposed to
approximate the target mapping function

Vit (Gp,g)" = (Gp,g)™, (19)
where (G, 4)" is the n-dimensional module over the geometric algebra G, , [15].
The error at the output of the net is measured according the metric

1
E=c Yu = Vi, 20
5 e (20)

n

where X is some compact subset of the Clifford module (gpyq)
product topology derived from equation (18) for the norm and ), and Y; are

involving the

the learned and target mapping functions respectively. The back-propagation
algorithm [22] is a procedure for updating the weights and biases. This algorithm
is a function of the negative derivative of the error function (Eq. (20)) with
respect to the weights and biases themselves. The computing of this procedure
is straightforward and here we will only give the main results. The updating
equation for the multivector weights of any hidden j—layer is

wij(t+1) = ﬁ[(i 3kj © Wrj) © F'(net;;)] © 07 + awij(t), (21)



for any k—output with a non-linear activation function
wik(t +1) = n[(yp, — yi,) © F'(neti)] © 07 + aw;i(t), (22)

and for any k—output with a linear activation function,
wiik(t + 1) = 0y, — Yp,) @ 0j + aw;i(t), (23)

where F is the activation function defined in equation (7), ¢ is the update step, 7
and « are the learning rate and the momentum respectively, ® defined for clear-
ness is the Clifford or geometric product, ® is a scalar component by component

product and (-) is a multivector antiinvolution (reversion or conjugation).

In the case of the non-Euclidean geometric algebra Gy 3 U corresponds to the
simple conjugation. Each neuron now consist of p+q units, each for a multivector
component. The biases are also multivectors and are absorbed as usual in the
sum of the activation signal called here net;;. In the learning rules, Eqs. (21)-
(23), the way how the geometric product and the antiinvolution are computed
varies according the geometric algebra being used [20]. As illustration we give
the conjugation required in the learning rule for the quaternion algebra or Gy o,
where the index indicates the number of the basis vector, i.e. 0 for 1, 1 for oy,
2 for o5 and 3 foro0,. The conjugation reads: & = g — 101 — 209 — 30109,
where @ € Gp 5.

The reversion in case of non-Euclidean G 3 is given by & = zo + 2101 + z202 +
X303 — L4010 — L5003 — L0301 — L7l.

5.2 Simplification of the learning rule using the density theorem

Given X and Y as compact subsets belonging to (G, 4)” and to (G, 4)™ respec-
tively and considering Y, : X — Y a continuous function, there are some coef-
ficients wy, wa, w3, ..., wy, € R and some multivectors ¥y, Y5, y3, ..., Yn, € Gp.g
and 61,605,053, ...,0N, € G, 4 so that the following inequality Ve > 0 is valid

N N
E(Yr, V) = sup[|Vi(z) — ijfj(z wiz+0;)|z € X]| <, (24)
j=1 i=1
where f; is the multivector activation function of Eq. (7). Here the approxima-
tion given by
N N
S=> wif;(d wix+6;) (25)
j=1 i=1
is the subset of the class of functions C%(G, 4) with the norm |V, |=sup,, . x [Ve(2)|.

Since equation (24) is true we can finally say that S is dense in C°(G, ). The
density theorem presented here i1s the generalization of the one used for the



quaternionic MLP by Arena et al. [1]. Tts complete prove will be published else-
where.

The density theorem shows that for the training of geometric feedforward
networks the weights of the output layer could be real values. Therefore the
training of the output layer can be simplified, 1.e. the output weight multivectors
could be scalars of k-grade. This k-grade element of the multivector is selected
by convenience.

5.3 Learning using the appropriate geometric algebras

The main motivation to process signals in the geometric algebra framework is
to have access to representations with a strong geometric character and to take
advantage of the geometric product. An important question arises regarding the
type of geometric algebra we should use for a specific problem. For some appli-
cation the modelling of the suitable space would be straightforward. However in
other cases 1t would be somehow difficult unless some a priori knowledge of the
problem is available. In case we do not have any clue we should then explore
various network topologies in different geometric algebras. This will require some
orientation about the different geometric algebras we could use. Since each geo-
metric algebra is either isomorphic to a matrix algebra of R, C or A or simply a
product of these algebras a great care has to be taken for choosing the algebras.
Porteous [20] showed the isomorphisms

Gpt1,6 = Rpt1,0 EGgt1p = Rat1p (26)

and presented the following expressions for completing the universal table of
geometric algebras

Gpgta = Rpg+a 2Ry q @ Roa = Roa =H(2)
Gpgts = Rpg+8 2Ry q @ Ros = Ros = R(16), (27)

where ® stands for the real tensor product of two algebras. The last equation
is known as the periodicity theorem [20]. Examples of this table are R Gg g,
Ro1 ZC =Gy, H=Gorand Ry Z2R =G4, C(2) XCOR(2)E Gap =
G1 o for the 3D space and H(2) = Gy 3 for the 4D space. The two later examples
correspond to the geometric algebras mentioned in section 2.

6 Experiments

In this section the GMLP using the geometric algebra G, , will be denoted
as GMPL, ,. Firstly we test the component-wise activation function and then
investigate new ways of geometric preprocessing embedded in the first network
layer. Finally we identify the key role of the geometric learning in 3D object
recognition and prediction in chaotic processes.
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6.1 Inputs without any preprocessing

First the performance of the geometric net was tested using the sigmoid multi-
vector activation function (7) against the real valued one and the one of Person
(P-QMLP) [15]. The function to be approximated is sing=sin(q), where q € H.
All nets had the same 4-D input and 4-D output. The MLP uses 4 inputs and
the GMLPs one 4-D input. The MLP had 3 hidden nodes and the GMLPs 3
geometric hidden nodes. Figure 3.a shows the performance of MLP, GMLPy 1,
GMLP2 and the P-QMLP. In this figure the vertical axis indicates the total
error per epoch. We can see clearly that the GMLP; » and the GMLP, o have
a better performance than the P-QMLP. The reason is probably that during
learning the activation function of the P-QMLP suffers of the consequence a
zero division which slows down the convergence rate. In order to verify the gen-
eralization capability using different amount of hidden neurons after the training
the nets MLP, GMLPg » and GMLP; o were tested using 50 before unseen pat-
terns. For this evaluation the mean error was considered. Table 1 shows that
the GMLPs have almost a similar generalization capability using 4 hidden nodes
than the MLP, better using 3 and much better using just 2. The P-QMLP is not
considered due to its poor performance. These experiments show so far that the
complex neuron of the GMLPs process compactly the information better than
the real neuron of the MLP. That is because the GMLPs have more weights due
to their multivector valued nodes and presumably in this example the GMLPs
profit of the geometric product based processing.

4 3 2
MLP ||0.0827]0.5014(1.0145

GMLPy 2(|0.0971(0.1592|0.2243

GMLP, (|0.0882(0.1259(0.1974

Table 1. Mean error by different amount of hidden nodes.
A dramatic confirmation that the component-wise activation function (7)
works much better than the one of Pearson (P-QMLP) is observed when testing



the XOR problem. Figure 3.b shows that geometric nets GMLPg » and GMLP g
have a faster convergence rate than the MLP with 2- and 4- dimensional inputs
and by far than the P-QMLP. Since the MLP(4) working even in 4D can not
beat the GMLP, it can be claimed that the better performance of the geometric
neural network is not only due to the higher dimensional quaternionic inputs
but rather due to the algebraic advantages of the geometric neurons of the net.

6.2 Embedded geometric preprocessing

This subsection shows experiments with geometric neural networks with an em-
bedded geometric preprocessing in the first layer. This has been done in order
to capture the geometric cross-products of the input data much better. This
proved to improve the convergence. In this paper these kind of nets will be
called EGMLP, ,. Figure 2 shows a geometric network with its extended first
layer. The function sing is again employed to test the performance of the MLP,

extended input layer

gp = geometric product

1

n-order geometric product input

& neighbour distance < radius of the hypersphere around X,

Fig.4. Geometric neural network with extended input layer

GMLPg > and GMLP; o. Here we use as first input #; and as second one the geo-
metric product @;@;41 (second order) or @;®; 1@, 0@, 43 (fourth order). Figure
3 shows that the performance of the three networks improves. It is clear that the
extension of the first layer of the geometric network helps. Since the MLP uses
the same type of inputs, its improvement relays also on this kind of geometric
preprocessing.

6.3 Geometric RBF networks for 3D object recognition

In this section we explore the potential of the geometric RBF (GRBF) net to
deal with the geometric nature of the task in question. The net is supposed to
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recognize a wire—frame 3D object from any of its perspective views. The object
attributes are its N feature points, N-1 lengths and N-2 angles; see Figure 4a.
The nets are trained on several random views and should map any view of the
same object into a standard view. We trained real valued RBF neural networks
and GRBF nets using the embedded geometric processing.
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Fig.6. a) Wire frames
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b-c) Recognition error by RBF net using points or lines or

In Figure 4b-c we can see for two of the objects that the GRBFg > with
x;®;11 (second order embedded preprocessing depicted as mwv) in a range from
0 to 50 degrees performs the generalization better than a real valued RBF using



points or lengths or angles. This results should encourage researchers to apply
this kind of geometric RBF networks with higher order of geometric products
for various tasks like recognition of objects and the recover of pose.

6.4 Recognition of geometry in chaotic processes

This experiments shows that the geometric neural networks are well suited to
distinguish the geometric information in a chaotic process.
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Fig.7. a) Training error b) Prediction by GMLP; > and expected trend c) Prediction
by MLP and expected trend.

For that we used the well known Lorenz attractor (o=3, r=26.5 and b=1)
with the initial conditions [0,1,0] and sample rate 0.02 sec. A 3-12-3 MLP and a 1-
4-1 GMLPy 5 were trained in the interval [12, 17] sec. to perform a 8 7 step ahead
prediction. The next 750 samples unseen during training were used for the test.
The Figure 7.a show the error during training, note that the GMLPg » converges
faster than the MLP. Interesting i1s how they behave by the prediction. The
figures 7b-c shows that the GMLP, 5 predicts better than the MLP. Analyzing
the covariance parameters of the MLP [0.96815, 0.67420,0.95675] and of the
GMLPg 2 [0.9727, 0.93588, 0.95797] we can see that the MLP requires longer to
get the geometry involved in the second variable, that 1s why the convergence
1s slower. As a result of that the MLP loses control to predict well in the other



side of the looping. On contrast the geometric net from early stage captures the
geometric characteristics of the attractor so it can not fail if it has to predict in
the other side of the looping.

7 Conclusions

This paper started with basic reflections regarding geometry in biological crea-
tures. The complexity of the mapping between the external and the internal
world demands that the representation and calculus has to be carried out in a
coordinate-free mathematical system with a strong algebraic and geometric char-
acteristic. According the literature there are basically two mathematical systems
used in neural computing: the tensor algebra and the matrix algebra. This paper
chooses the coordinate-free system of Clifford or geometric algebra. The authors
use this general and powerful mathematical system for the analysis and design
of multidimensional feedforward neural networks. The reader can see that real-,
complex- and quaternionic—valued neural networks are simple particular cases of
the geometric algebra multidimensional neural networks. This work shows that
the component-wise activation function defeats the activation function used in
the complex neural nets [7] and in the hypercomplex nets by Pearson [15]. In
case of the XOR problem the MLP using a 2-D or 4-D coded inputs can not
perform as well as the GMLPs. The authors show also how the embedded geo-
metric processing in the first layer helps to capture the geometric correlation of
the data. The algebraic character of the nets is due to the activation function of
the geometric neurons and the operations through the layers. The GA algebra is
a coordinate free approach for neural nets. This can be seen by the experiment
with GRBF net where the geometric products capture the geometric relations of
the lines using the bivector between points liberating in this way the coordinate
dependency existing in the point manifold. The ability of the geometric neural
networks to recognize the geometric characteristics during the dynamic evolu-
tion of a chaotic process exemplifies the power of geometric neural learning for
prediction.
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