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Abstract. Geometric algebra is an universal mathematical language
which provides very comprehensive techniques for analyzing the com-
plex geometric situations occurring in artificial Perception Action Cycle
systems. In the geometric algebra framework such a system is both easier
to analyze and to control in real time computations. This paper describes
the application of rotors and motors for tasks involving the algebra of the
3D kinematics. Using purely geometric derivations and the constraints
for point and line correspondences in n-views projective invariants are
computed and the projective depth is discussed in terms of the general-
ized cross-ratio.

Categories: Clifford algebra; geometric algebra; robotics; hand-eye calibra-
tion; computer vision; projective invariants; projective depth.

1 Introduction

Biological and artificial intelligent systems show particular behaviour according
to their situation and environment. They exist in a manifold structure where
the time 1s distinguished as an axis rotated orthogonally from any spatial axis.
Survival depends on the system’s interrelated perceptive and active capabilities.
This observable dependency can be delimited in a cycle of success. Within a
Perception Action Cycle (PAC) a system interacts with its environment via vi-
sual and non-visual sensors for learning or accomplishing its task. Since each
component of PAC systems requires different mathematical techniques, the con-
struction of artificial PAC systems demands the fusion of the fields of signal
theory, computer vision, robotics and neural computing in a framework with a
powerful representation capability and a strong geometric basis. Currently, dif-
ferent mathematical systems are routinely employed for each part of the cycle.
Each of these systems is limited in its applicability to one part of the cycle, mak-
ing communication between different processes very difficult. Clearly, our ability
to control the PAC would be considerably enhanced if a single mathematical
language were employed throughout. In this paper the authors propose to use
geometric algebra to analyze and construct algorithms for each phase of the PAC
[29]. Geometric algebra is a coordinate-free approach to geometry based on the
algebras of Grassmann [13] and Clifford [9]. Some preliminary applications of
geometric algebra in the field of computer vision, robotics, neural computing
and low level signal processing have already been given [1, 21, 3, 19, 2, 4]. For a
more complete introduction see [14] and for other brief summaries see [16, 1, 3].



The next section will give the basics for the modelling of a work space for
the projective space in terms of geometric algebra. The geometric algebra for
the 3D kinematics is explained in section three. As two typical cases of robotics
the motion of a multi-link and the hand-eye calibration are presented in Section
four. The discussion of interesting issues of computer vision like the computation
of projective invariants using n-views is presented in Section 7 and the recovery
of projective depth is analyzed in Section 8. Finally, in the conclusion section
the relevance of the geometric algebra framework for artificial PAC systems is
discussed.

2 The 4D geometric algebra for the projective space

In a geometric algebra G, , » we identify p and ¢ as the dimensions of the maxi-
mal subspaces with positive and negative signatures, respectively (the signature
of a vector a is positive, negative or zero according as a? > 0, < 0, = 0). It is
important for real applications to regard the signature of the modeled space to
facilitate the computations. In the case of G340 we are adopting the standard
Euclidean signature for the ordinary space, £, this forces to adopt the same sig-
nature for the 4-dimensional space G 3,0 which we associate with the projective
space P3. This is spanned with the following basis

Lo e 2 YY1 Y1Y2, YA, Y42, Y43 (o i (1)
3 3 3 3 3 3 3 ) 3 \ ,
scalar 4 yectors 6 bivectors 4 pseudovectors pseudoscalar

where v§ = +1, 2 = —1 for k=1,2,3. The pseudoscalar is i = v1927374 with

= (’71’72’7374)(’71’72’73’74) = —(’73’74)(’73’74) =-—1. (2)

The fourth basis vector v4 can be seen also as selected direction or projective
split [3] in 4D. The basis element 74 helps to associate multivectors of the 4D
space with multivectors of the 3D space. The role and use of the projective split
for a variety of problems involving the algebra of incidence can be found in [3].

3 The 4D geometric algebra for 3D kinematics

One alternative to model the work space for the robotic field could simply the
geometric algebra Gz oo of the 3D space. Since general displacements are non-
linear transformations it would be more beneficial if we compute in a higher
dimensional space. That is why the authors chose the special 4D algebra of the
motors g;foyl as an efficient framework for 3D kinematics.

3.1 Motors

Clifford introduced the biquaternions with the name motors which is the abbre-
viation of “moment and vector”[10] for the algebra of 3D kinematics. Motors are



dual numbers with the necessary condition of i = 0. They can be found in a
special even geometric algebra g;joyl which here will be called the algebra of the
motors. For detailed discussion of the role of dual, double and complex numbers
in geometric algebra see [2]. Actually the algebra of the motors is a subalgebra
of Gs o 1 for the 4D space with a similar basis presented in (1) with the difference
that y2=1 for k=1,2,3 and v7=0 and that the pseudoscalar i = y1y27y37y4 squares
to zero.

The important role that the motors play as a linear transformation is that
they can absorb the translation component of a rigid motion. Let us explain
this in more detail. Since in R® the simple translation is a nonlinear transfor-
mation the general displacement will be too. Unfortunately the displacement in
R? can not be represented as a 3x3 matrix transformation. The way how we
can go around is embedding R3 in the R* space. In this 4D space the general
displacements will take place in the hyperplane X,=1. For example the mo-
tion of any point p can be now expressed compactly using a 4x4 homogeneous

0160

Recall that a general displacement can be also expressed in terms of dual matrix,

transformation matrix, i.e.

1.e.

[RT t] = R+ itl.R (4)
01

where R is a rotation matrix and [t], the tensorial notation of the antisymmetric
matrix representing the translation. We will show below that this transforma-
tion is equivalent to a motor, see equation (9) . Note that the homogeneous
coordinates are similar to the ones used in the geometric algebra of the projec-
tive space G 3,0, however if we want to compute using motors, which requires
that the pseudoscalar squares to zero, we are compelled to switch to the motor
algebra or g;oyl.

The algebra of the motors has the basis

L 7278, 371, M Y2, Va1, Y402, V4T3 i (5)
scalar 6 bivectors pseudoscalar

where i* = 0. A motor M, in general is
M;=mM (6)

where m = a + tb is a dual number for dilation and M is a unit motor. From
now on all equations referring motors use the unit motor M. A basic geometric



interpretation of a unit motor M can be given using the sum of two non-coplanar
lines expressed in terms of dual bivector basis, i.e.

M=X1X:4+X3X4=(X1-Xo+X1AX2)+ (X3 X4+ X3AnX4)
= (ao + a1y27ys + a2ysy1 + asy1y2) + i(bo + b1v2ys + baysy1 + bsysy2)
— R+ iR/, (7)

This tells that a motor can be seen also as a dual rotor or dual quaternion. Let
us now analyze the motor equation (7). If the lines are non-coplanar the motor
represents a general displacement or rigid motion and it is exact equivalent to
a screw [10], else being coplanar they build a new line which can be seen as a
degenerated motor. Thus, 1t is also convenient if the translation i1s expressed as
a sort of a rotor which might be called translator

14 t
T:65t221—|—i§, (8)
where t = t1y27y3 + t2y3y1 + t3v172. The motor in terms of a translator reads
t t
M:R+iR’:R+i§R:(1+i§)R:TR. (9)

The translator can be seen simply as the representation of a rotation plane
displaced from the reference origin by ¢ and with the same orientation of the
vector t. The vector ¢ can be also expressed in terms of the rotors using

- -
R'R = (§R)R (10)
therefore
t=2R'R (11)
where the multiplication is a geometric product.
The norm of a motor M 1is defined as follows
t t

. .. to - t
|M|= MM =TRRT = (1 +ig)RR(1 —ig)=1+ig—ig =1, (12)

where M is the conjugate motor and 1 1s the identity. The combination of two
rigid motions can be expressed using two motors. The resultant motor describes
the overall displacement, namely

M.=M,M,= (R, +iR,)(R,+iR,) = R. +iR.. (13)

Note that pure rotations combine multiplicatively and the dual parts, containing
the translation components, combine additively.



3.2 Representing points, lines and planes in 4D

The special algebra of motors g;foyl has a bivector basis which in 4D span the
line space. Thus let us start with the line using this bivector basis. Assume
two pOiIltS X1 = (Xll,X12,X13, 1) and X2 = (le,Xzz,ng, 1) lylng on the
hyperplane X4 = 1 and belonging to this line. The line can be defined simply as
an outer product of these points, i.e.

lg = X1AX5 = (X12X23 — X13X22)y2vs + (X13X21 — X11 Xog)y3m + .. +
(X11 X292 — X10Xo1) vy + (Xo1 — Xq1)yayr + - +
(X22 — X12)7ay2 + (X253 — X13)7a7s. (14)

Since this equation consists only of bivectors, it can be expressed straightforward
in terms of the bivector basis, namely

Lo = (Ly3y5 + L y3y1 + LP2y199) + (L yay1 + L¥y4y2 + L¥v473)
= (LPy273 + L2 yam + LPv199) + i(L* 9233 + L y3m + LP9192).(15)

Note that this is equivalent to the line expression using Plucker coordinates. The
real part can be seen as the line direction denoted as a vector n and the dual
part as the moment which is nothing else as the cross product between n and
any vector g touching the line, i.e.

lg=n+inxq)=n+im, (16)

where n X g = —inAq. This line representation using dual numbers is easier to
understand and to manipulate algebraically and it is fully equivalent to the one
in terms of Pliucker coordinates.

For the case of the point representation, embedding a 3D point expressed as
a vector @ on the hyperplane X4 = 1, the point ¢ equation in g;joyl reads

q = 14+x1vay1+oayayatasvays = 1+i(x1v2ys+22ysy1+o3y1y2) = 1+ix. (17)

Now, resorting to the duality principle we use the dual of the scalar i.e the
pseudoscalar times d and the dual of the bivector basis to write straightforwardly
the plane equation, i.e

& =n17273 + Nayzy1 F n3Yive +id =n 4+ id (18)

where n stands for the normal of the plane and d for the distance of the plane
to the origin.

4 Modelling the 3D Motion of Points, Lines and Planes

In this section we will present the modelling of the 3D motion of basic geo-
metric entities using rotors and motors. We will see below in the case of the



hand-eye calibration that is preferable to use motors for computing the rotation
and translation of an unknown rigid motion simultaneously. Because using the
rotor approach we compute the translation decoupled of the rotation increasing
therefore the inaccuracy. Let us now consider the modelling of the motion of
points, lines and planes in both R3 and R*.

In G350 a line can be described in terms of any couple of points lying on the
line, i.e. & = 0p, + p,. The motion equation of the line is then the same as for
the point equation(20). In the algebra of the motors g;joyl we expressed the line
as equation (16) and proceed as follows

l,=mng+im, = MI,M = Rny R+ i(Rn,R + RnyR+ Rm,R)  (19)
The 3D motion of a point & in G3 g,0 has the equation
@' = ReR+t. (20)

In case of the algebra of the motors g;foyl we use the point representation of
equation (17)

M(1+iz)M = TR(l + iz)RT = 1 + i(RzR + 1). (21)

The expression M = RT was found independently by the authors and it is
similar to the one presented by W. Blaschke [5]. Yet in general all our motor
equations explain directly that motor expressions consist of the successive action
of rotors and translators. Now, when dealing with the motion of planes as it is
shown below again we apply from the right M . This is because the plane is the
dual of the point. Since the algebra of the motors has a bivector basis which span
the line space and if we use this basis for representing points (geometrically of
a lower dimension) and for planes (one dimension higher) we require M instead
of simply M as a sort of compensation for this asymmetry.

For the plane in G300 we use a multivector representation of the formula
of Hesse, i.e. H = d + n. Note that this multivector consists of a scalar and a
vector. Any point lying on this plane fulfills @ -1 — d=0. Using this we can now
write the motion of the plane

H' =(RzR+1t)-(RnR) + (RnR). (22)

Since (RazR)(RnR) = z-n, this becomes H' = #-n+ RnR + t~(RnR) which
can be finally written as

H' =RHR+ (RHR) - t. (23)

The motion of a plane in g;foyl can be seen as the motion of the dual of the point,
thus using the expression of equation (18) the motion equation of the plane is

M(n +id)M = TR(n + id)RT = RnR + i(d + (RnR) - 1). (24)



4.1 Application 1: movement of a robot arm

Let us consider a complicated robot mechanism in terms of a system of linked n-
bars. This calls for an optimization approach to find out its configuration during
a smooth movement. Let us analyze the problem first in 3D space and then in
the 4D space.

In 3D using the geometric algebra G3 o o we define reference-frames attached
to each turnable join. Any connected two bars, the j —th bar and the j + 1-bar,
are referred simple by the relative position of the j — th join with the j — 1-th
join and the next bar moved by its own join. This can be simply expressed by

®jp1 = Rj_1@j 1 R+ RjajR; = Rj_yxj 1 Rj_ +R;R; 1z R R; (25)

where R; is the rotor applied to the reference frame attached to the j-join
and «’ is the translation from reference frame j — 1 to reference frame j which
corresponds simply to the length of the j-bar. The equation for the position of
end effector considering the whole mechanism reads

€T :lelRl —|—R2:13’2R2—|—R3:13§)R3—|— +Rnw;LRn (26)

Now for the 4D space we will use the algebra of the motors g;oyl. In the 4D
the equation (25) reads

@iy = RiT;R; 1w R; \T;R;, (27)

where az}_l = (1+ix;_1) and w}+1 = (14izj41) referred to their own coordinate
systems. Assuming that all the robot bars are of the same length @, then T =
(14+ix)=T2 =T3 = ...=T,. Equation (26) for the whole mechanism in 4D
1s now

33/ = Rn_l...T3R2T2R133/1R1T2R2T3...j’?ﬂ_l. (28)

n

Comparing the 4D and 3D expressions, the formers are linear and more simple.
This can be exploited when computing any robot arm motion, i.e. we can for
a particular motion simplify the equation (28) by canceling some redundant or
conjugate translators and rotors. This happens for instance when some degree
of freedom of the robot arm joins remains for this particular motion invariant.
Recall that the rotors and translators are bivectors and you can commute and
associate them without acting the sign.

4.2 Application 2: Motors for hand-eye calibration as a case of
motion of lines

The well known hand-eye equation firstly formulated by Shiu and Ahmad [27]
and Tsai and Lenz [28] reads
AX = XB (29)



where A = A Az_l and B = B1B2_1 express the elimination of the transforma-
tion hand-base to world. Here matrices are represented in bold. The geometry
of the hand-eye system is depicted in Figure 1. From the expression (29) the fol-
lowing matrix equation and a vector equation can be derived RaoRx = RxRp
and (Rs — I)tx = Rxtp — t4. Most of the approaches estimate first the rota-
tion matrix decoupled from the translation. The problem requires at least two
motions with rotations having not parallel axes [28]. Horaud and Dornaika [18]
showed the instability of the computation of the A; matrices given the projec-
tive matrices M; = CA; = (CR4,Ct,,). Let us assume that the matrix of the
intrinsic parameters C remains constant during motions and that one extrinsic
calibration Az is known. Introducing N; = CR 4, and n; = Ct 4, and replacing
X=A3Y, we get now as the hand-eye unknown Y. Thus the equation (29) can
be reformulated as Az_lAlY = YB. Now if A2_1A1 1s written as a function of
the projection parameters it is possible to get an expression fully independent
of the intrinsic parameters C, i.e.

A, = N;'N; N5 (ny —nz)] _ [R t]

o7 1 10T 1 (30)

Taking into consideration the selected matrices and relations, this result allows

Fig. 1. Abstraction of the hand-eye system.

anyway to consider the formulation of the hand-eye problem again with the
standard equation (29) which can be solved in terms of motors as

MyMy =MxMp (31)

where M4 = A+ iA'", Mg =B+ iB and Mx = R+ iR'. According to the
congruence theorem of Chen [7] in this kind of problem the rotation angle and
pitch of M 4 and M g remain invariant through out all the hand movements.
Thus the consideration of this information can be neglected. It suffices to regard
the rotation axis of the involved motors, i.e. the previous equation is reduced



as the motion of the line axis of the hand towards the line axis of the camera.
For that we can use the equation (19) for the computation of the real and dual
components of I 4, 1.e.

l4=a+iad = RbR+i(RbR + RV R+ R'bR). (32)

After some simple manipulations according the relation RR/ + R'R =0 we get
the following matrix
a—b [a+b]x 0351 Osx3 R _0 (33)
a—b[a+blya-blat+bl.||R]|
where the matrix - we will call S -is a 6 x 8 matrix and the vector of unknowns
(RT, R/T) is 8-dimensional. More technical details about the foundations and

implementation of this approach can be found in [12, 2].

5 Projective Invariants

In the last two decades invariant theory captured also the attention of the com-
puter vision community. This interest in invariants results from their usefulness
in tasks like reconstruction, object recognition and hand-eye calibration. These
are some examples of a much wider spectrum of invariants arising in a PAC sys-
tem. In this section we will show the power of geometric algebra by computing a
well known invariant which results when we consider six 3D points P;, i = 1,..,6
in general position, represented by vectors {x;, X;} in E3 and R* respectively.

5.1 Projective invariants using 2 uncalibrated cameras
3D projective invariants can be formed from these points; and an example of

such an invariant is

[X 1 X5 X 5X,4][X4X5 X5 X ]
[X1 X0 X, X5][ XX X5 Xq]

Inv = (34)
It will be highly desirable to compute the brackets [X;X;X;X;] simply in terms
of image coordinates of points P;, P;, Py, Fi, in order to compute this invari-
ant straightforwardly. Carlsson [6] discussed the computation of such invariants
from a pair of images in terms of the image coordinates and the fundamental
matrix, F'| using the dual algebra. Subsequent work by Csurka and Faugeras
[11] discussed corrections to Carlsson’s expressions by including a series of scale
factors. In contrast using geometric algebra we benefit of the duality principle
and the projective split which allows us to simplify enormously the algebraic ma-
nipulation of the equations. Consider the scalar Sys34 formed from the bracket
of 4 points

S1a34 = [X1 X0 X3X 4] = (XAXAXAX ) [ = (XAX)A(X3AX ) 7L (35)



The quantities (X; A X5) and (X3 A X4) represent the line joining points Pj
and P,, and Ps and P,. Let us represent the optical centres of both cameras
by ag and by and their image planes by {ai,as,as} and {b;, by, bs}. Let the
projection of points { P;} through the centres of projection onto the image planes
be given by the vectors {a.} and {b;} which are ordinary vectors in E3. The
representations of these vectors in R* will be A;, B;, A} B...., etc.
In [3] it is shown that the bracket of these 4 points (in R*) can be equated
as
Sizza = [X1X2X3X4] = [AgBo A’ 5348034 (36)

This is achieved by the process of splitting up the bracket into two parts, X; AXs
and X3 A X4 and then expressing each of these lines (bivectors) as the meet of
two planes (trivectors). During this algebraic computation, since we are working
in R*, we are effectively ignoring any scale factors due to the arbitrary choices of
the 74 components. Thus, when we take ratios of brackets to form our invariants
we must ensure that, if we want to express the brackets in the form of equation
(36), the same decomposition of X; A X; must occur in the numerator and
denominator so that these arbitrary factors cancel. In the case of Inv, we have

{(XGAX ) A (X3AX ) ™ H(XaAX ) A (XA X ) 7t

Inv = — —- (37)
{(XIAX) A (XuAX ) ™ H{(XsAX DA (X AX ) Ha

Expanding the bracket in equation(36) by expressing the intersection points
in terms of the A’s and B’s (A} = «;;A; and B} = 3;;B;) and defining a matrix
F such that

Iy = [AOBOAZ»Bj] (38)
and vectors arja3q = (Oé1234,1, 1234,2, Oé1234,3) and 31234 = (51234,1, 51234,2, 51234,3)

it is easy to see that we can write Sy334 = aT12341~7B1234 [6]. The ratio

(aT12341~*—'ﬁ1234) (aT45261~734526)

Inv = — —~
(@ 1245 F B1o45) (@ 3426 F By6)

(39)

is therefore seen to be an invariant. Note that equation (39) is invariant what-
ever values of the v4 components of the vectors A;, B; X, etc. are chosen. A
confusion arises if we attempt to express the Inv of Eq. (39) in terms of what
we actually observe, i.e. the 3D image coordinates and the fundamental matrix
calculated from these image coordinates. To avoid that it is necessary to transfer
the computations of Eq. (39) carried out in R* to 3D. Let us explain now this
procedure.

A point P; will be projected onto a point in image plane 1, say af, which can
be written as

a, = ay + \i(ax — ay) + pi(as — ay) = d1a1 + dnas + dizas (40)



so that 2?21 di; = 1. Similarly, we have b, = ¢;1by + €i2by + €3bs (so that
3 _ € =1). Using the projective split we can now write the «;;’s and f;,’s in
j=1€ij g J i
terms of the d;;’s and ¢;;’s:

Aivas 5 _Bim
. 1) 17 B]"}/4

g5 = €5 (41)
The ‘fundamental’ matrix F is such that aTil:"Bi =0, if a; and B3; are the
vectors of coefficients of the points in planes 1 and 2 produced by the same world
point P;. Now, given more than eight pairs of corresponding observed points in
the two planes, (d;,€;), ¢ = 1,..,8, we can form an ‘observed’ fundamental

matrix F' such that
o' Fe; = 0. (42)

This F' can be found by some method such as the Longuet-Higgins 8-point
algorithm [23] or, more correctly, by some method which gives an F' which has
the true structure [24]. Therefore, if we define F' by

Fry = (Ag7a) (B ya) Fr (43)
then it follows from equations (41) that
i Frfin = (AL-ya) (B ya)dik Frieir. (44)

If F is estimated then an F defined as in equation (43) will also act as a funda-
mental matrix in R*.

Now let us look again at the invariant Inv. According to the above, we can
write the invariant as

(5T1234F€1234) (5T4526F64526)¢1234¢4526

Inv = T T
(6" 1245 F €1245)(0" 3426 F€3426) P124503426

(45)

where ¢pgrs = (A;qrsfm)(B;q”fm). We see therefore that the ratio of the 87 Fe
terms which resembles the expression for the invariant in R*, but uses only
the observed coordinates and the estimated fundamental matrix, will not be an
invariant. Instead, we need to include the factors ¢1234 etc., which do not cancel.
It is relatively easy to show [20] that these factors can be formed as follows. Since
ay, aly and al,5, are collinear we can write af,3, = p1234af + (1 — p1234)as.
Then, by expressing A5, as the intersection of the line joining A} and A%, with
the plane through Ag, A%, A}, we can projective split and equate terms to give

(A/1234'74)(A£1526'74) — N1245(ﬂ3426 - 1)
(Azgo5-7a) (Aloas-va)  Haszs(piaza — 1)

(46)

The values of u are readily obtainable from the images. The factors B;;qrs"ﬁl are
found in a similar way so that if b],3, = A123ab) + (1 — A1234)b5 ete., the overall



expression for the invariant becomes

(5T1234F€1234)(5T4526F€4526) H1245(f3a26 — 1) A1245(Az426 — 1)

Inv = .
(5T1245F€1245)(5T3426F€3426) pasas(p123a — 1) Aapae(A1234 — 1)

. (47)

Thus, to summarize, given the coordinates of a set of 6 corresponding points
in the two image planes (where these 6 points are projections from arbitrary
world points but with the assumption that they are not coplanar) we can form
3D projective invariants provided we have some estimate of F'. A more detailed
discussion on this issue you can find in [22].

6 Projective Structure Using n Uncalibrated Cameras

In this section we present the application of cross-ratio [20] for computing the
projective depth discovered by Sashua [26]. This can be easily calculated using the
cross-ratio of projected points lying on an epipolar line of any of the n cameras.
This relation remains constant also for the ratio of the segments of an optical
ray delimited by a tetrahedron or reference frame as is depicted in the Figure 2.

Fig. 2. Invariant projective depth using n uncalibrated cameras.
6.1 Homomorphic transformations

Consider a world point P and 4 other distinct points F;,¢ = 1,2, 3,4 defining
a tetrahedron. Let IIg = P AP3AP,4 and IIs = Py AP2AP3 and assume P
does not lie on either of these two planes — see figure 2. Let R; and S; be the
intersections of the line joining the optical centre of the ¢th camera with point
P with the planes Ilg and IIg, e.g. Ry = IIg V (AgAP). Let R} and S} be
the projections of the points R; and S; onto the nth image planes — e.g. R? =
(BoAR1)V (B1AB2AB3) ete. Note that RZ: and SZ: are simply the projections of the
world point P onto the ith image plane, e.g. R% =Sl = (AgAP)V (A1AANAG).
Let us call the ¢th image plane ;.



In order to compute a cross-ratio which will be defined later, we must be
able to calculate the image coordinates of R}, S!. We can do this by finding
the homomorphic transformations or homographies relating projected points in
one image plane to the projected points in another. Consider the homography
between image planes ¢; and t; due to the plane I[Is. If the projections of
P, P,, P35 onto 9; and 1; are {PZ} and {Pi}, for k = 1,2,3, then the linear
function LS] representing this transformation must satisfy

[3(PL) =P fork=123. (48)
Here we are working in R so that the non-linear projective transformations in
&? (plane to plane) become linear — the above linear-function representation is
outlined in [21]. Similarly, the corresponding homography due to the plane ITg
1s represented by the linear function iﬁ given by

JiPL) =P fork=134. (49)

If four point correspondences from each plane are known then these linear func-
tions can be recovered up to a scale factor by simple linear techniques. Since
the homographies must map the epipole in one image plane onto the epipole in
the other, we can choose the epipoles as the fourth point if these are known;
ii (Eﬂ) = Eij etc.
6.2 Computing the projective depth
The fundamental projective invariant in 1D is the cross-ratio. We can form a
cross-ratio from the collinear points P, Ry, S1, Ag, namely

(RiANA) LY (PAS)I!

= . 50
g (PAAQ) ;Y (RyAS) I (50)

The cross-ratio p will be invariant when projected onto any other image plane.
Consider this cross-ratio in the image plane of the second camera;
(RIAE;) T (PPAS) IS

p= = =, (51)
(P?AE2) ;1 (RIASH !

S

R . . .
12,i12, then we can write this ratio as

If we know the linear functions i

_ (iﬁ(Pl)AElz)El (PzAifz(Pl))L;1
(P?AE2) 151 (ﬁz(Pl)Aﬁz(Pl))gl’

and the general form for the ¢-camera and j-camera
((iﬁ(Pi)/\Eij)Iz_l) ( (Pj/\ifj(Pi))Iz_l

P = ; _ 7 iy —

(BIAE )5 NP AL (P

). (53)



The term in the right bracket is termed projective depth in [26]. If we have a
number of views available then, in this framework, a more robust estimate of k
would be given by

o ly (PIALL (PO
n S U A T

i#§) \Lij

(54)

where n is the number of estimates used.

Finally according with & the reconstruction of 3D coordinates of points is
straightforward [26]. Considering the relations P 2 Ry + kS; and that of the
fifth point (mapped onto the focal center Ag) Py = Ry + &’Sy (scaled so that
k’=1), it can be seen that the depth k is actually an invariant up to uniform
scale. Using this & we can reconstruct for each five points in general position
(three lying on I7; and three lying on II5) the 3D coordinates of a point P;.

7 Conclusions
This paper presented the Clifford algebra in its geometric interpretation as a
common language for the treatment of problems of robotics and computer vision.
The authors focused in the geometry of 3D and 4D spaces which are necessary
for the representation and manipulation of basic geometric entities required in
those areas. In the first field we analyze the 3D and 4D modelling of motion in
complicated mechanisms and in the hand-eye calibration problem. A 3D motion
or general displacement is a nonlinear transformation, but linear if it is repre-
sented in 4D. This motivates us to use the 4D geometric algebra to solve in a
linear manner problems involving 3D motions. An very interesting example is the
hand-eye calibration. This requires a nonlinear solution strategy if it is treated in
3D. However when the 3D representation is extended to the 4D space using the
motor algebra the problem of computing of the unknown motion becomes linear.
In the second part of the paper it is shown how geometric algebra can be used
for the algebra of incidence useful in the projective space. For intersections of
planes, lines etc. and for the discussion of projective transformations we find that
we do not need to invoke the standard concepts or machinery of classical pro-
Jjective geometry, all that is needed is the idea of the projective split relating the
quantities in R* to quantities in our 3D world and the algebra of incidence. The
case of computing invariants using n uncalibrated cameras is analyzed. Here the
duality principle and projective split help to reduce the complexity of the com-
putation. Finally using the cross-ratio of points lying in the epipolar lines of n
cameras the projective reconstruction is addressed. The authors believe that the
geometric algebra approach opens a new way to deal with problems in computer
vision and differs with the standard approaches substantially due to its powerful
algebraic and geometric properties.

Since PAC systems require different mathematical techniques for visual and
motor signal processing, the construction of PAC systems demands of a frame-
work where should be possible the fusion of the fields of signal theory, computer



vision, robotics and neural computing. It have been seen by the problems treated
in this paper that geometric algebra indeed has a powerful representation capa-
bility and a strong geometric basis. That is why the authors believe that it is a
competitive language to provide a unified approach for the design and implemen-
tation of real time PAC systems. At last it is easy to identify that the disparate
mathematical techniques used nowadays in PAC are simply special cases of the
wider class of mathematics provided by geometric algebra.
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