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The next section will give the basics for the modelling of a work space forthe projective space in terms of geometric algebra. The geometric algebra forthe 3D kinematics is explained in section three. As two typical cases of roboticsthe motion of a multi-link and the hand-eye calibration are presented in Sectionfour. The discussion of interesting issues of computer vision like the computationof projective invariants using n-views is presented in Section 7 and the recoveryof projective depth is analyzed in Section 8. Finally, in the conclusion sectionthe relevance of the geometric algebra framework for arti�cial PAC systems isdiscussed.2 The 4D geometric algebra for the projective spaceIn a geometric algebra Gp;q;r we identify p and q as the dimensions of the maxi-mal subspaces with positive and negative signatures, respectively (the signatureof a vector a is positive, negative or zero according as a2 > 0; < 0; = 0). It isimportant for real applications to regard the signature of the modeled space tofacilitate the computations. In the case of G3;0;0 we are adopting the standardEuclidean signature for the ordinary space, E3, this forces to adopt the same sig-nature for the 4-dimensional space G1;3;0 which we associate with the projectivespace P 3. This is spanned with the following basis1|{z}scalar; k|{z}4 vectors; 23; 31; 12; 41; 42; 43| {z }6 bivectors ; ik|{z}4 pseudovectors; i|{z}pseudoscalar (1)where 24 = +1; 2k = �1 for k=1,2,3. The pseudoscalar is i = 1234 withi2 = (1234)(1234) = �(34)(34) = �1: (2)The fourth basis vector 4 can be seen also as selected direction or projectivesplit [3] in 4D. The basis element 4 helps to associate multivectors of the 4Dspace with multivectors of the 3D space. The role and use of the projective splitfor a variety of problems involving the algebra of incidence can be found in [3].3 The 4D geometric algebra for 3D kinematicsOne alternative to model the work space for the robotic �eld could simply thegeometric algebra G3;0;0 of the 3D space. Since general displacements are non-linear transformations it would be more bene�cial if we compute in a higherdimensional space. That is why the authors chose the special 4D algebra of themotors G+3;0;1 as an e�cient framework for 3D kinematics.3.1 MotorsCli�ord introduced the biquaternions with the name motors which is the abbre-viation of \moment and vector"[10] for the algebra of 3D kinematics. Motors are



dual numbers with the necessary condition of i2 = 0. They can be found in aspecial even geometric algebra G+3;0;1 which here will be called the algebra of themotors. For detailed discussion of the role of dual, double and complex numbersin geometric algebra see [2]. Actually the algebra of the motors is a subalgebraof G3;0;1 for the 4D space with a similar basis presented in (1) with the di�erencethat 2k=1 for k=1,2,3 and 24=0 and that the pseudoscalar i = 1234 squaresto zero.The important role that the motors play as a linear transformation is thatthey can absorb the translation component of a rigid motion. Let us explainthis in more detail. Since in R3 the simple translation is a nonlinear transfor-mation the general displacement will be too. Unfortunately the displacement inR3 can not be represented as a 3x3 matrix transformation. The way how wecan go around is embedding R3 in the R4 space. In this 4D space the generaldisplacements will take place in the hyperplane X4=1. For example the mo-tion of any point p can be now expressed compactly using a 4x4 homogeneoustransformation matrix, i.e. �p01 � = �R t0T 1� �p1 � : (3)Recall that a general displacement can be also expressed in terms of dual matrix,i.e. �R t0T 1� � R+ i[t]xR (4)where R is a rotation matrix and [t]x the tensorial notation of the antisymmetricmatrix representing the translation. We will show below that this transforma-tion is equivalent to a motor, see equation (9) . Note that the homogeneouscoordinates are similar to the ones used in the geometric algebra of the projec-tive space G1;3;0, however if we want to compute using motors, which requiresthat the pseudoscalar squares to zero, we are compelled to switch to the motoralgebra or G+3;0;1.The algebra of the motors has the basis1|{z}scalar ; 23; 31; 12; 41; 42; 43| {z }6 bivectors ; i|{z}pseudoscalar (5)where i2 = 0. A motorM g in general isM g =mM (6)where m = a + ib is a dual number for dilation and M is a unit motor. Fromnow on all equations referring motors use the unit motorM . A basic geometric



interpretation of a unit motorM can be given using the sum of two non-coplanarlines expressed in terms of dual bivector basis, i.e.M = X1X2 +X3X4 = (X1 �X2 +X1^X2) + (X3 �X4 +X3^X4)= (a0 + a123 + a231 + a312) + i(b0 + b123 + b231 + b332)= R+ iR0; (7)This tells that a motor can be seen also as a dual rotor or dual quaternion. Letus now analyze the motor equation (7). If the lines are non-coplanar the motorrepresents a general displacement or rigid motion and it is exact equivalent toa screw [10], else being coplanar they build a new line which can be seen as adegenerated motor. Thus, it is also convenient if the translation is expressed asa sort of a rotor which might be called translatorT = e 12 ti = 1 + i t2 ; (8)where t = t123 + t231 + t312. The motor in terms of a translator readsM = R + iR0 = R + i t2R = (1 + i t2)R = TR: (9)The translator can be seen simply as the representation of a rotation planedisplaced from the reference origin by t and with the same orientation of thevector t. The vector t can be also expressed in terms of the rotors usingR0 ~R = ( t2R) ~R (10)therefore t = 2R0 ~R (11)where the multiplication is a geometric product.The norm of a motorM is de�ned as followsjM j =M ~M = TR ~R ~T = (1 + i t2)R ~R(1� i t2) = 1 + i t2 � i t2 = 1; (12)where ~M is the conjugate motor and 1 is the identity. The combination of tworigid motions can be expressed using two motors. The resultant motor describesthe overall displacement, namelyM c =MaM b = (Ra + iR0a)(Rb + iR0b) = Rc + iR0c: (13)Note that pure rotations combine multiplicatively and the dual parts, containingthe translation components, combine additively.



3.2 Representing points, lines and planes in 4DThe special algebra of motors G+3;0;1 has a bivector basis which in 4D span theline space. Thus let us start with the line using this bivector basis. Assumetwo points X1 = (X11; X12; X13; 1) and X2 = (X21; X22; X23; 1) lying on thehyperplane X4 = 1 and belonging to this line. The line can be de�ned simply asan outer product of these points, i.e.ld = X1^X2 = (X12X23 �X13X22)23 + (X13X21 �X11X23)31 + ::+(X11X22 �X12X21)12 + (X21 �X11)41 + ::+(X22 �X12)42 + (X23 �X13)43: (14)Since this equation consists only of bivectors, it can be expressed straightforwardin terms of the bivector basis, namelyld = (L2323 + L3131 + L1212) + (L4141 + L4242 + L4343)= (L2323 + L3131 + L1212) + i(L4123 + L4231 + L4312):(15)Note that this is equivalent to the line expression using Pl�ucker coordinates. Thereal part can be seen as the line direction denoted as a vector n and the dualpart as the moment which is nothing else as the cross product between n andany vector q touching the line, i.e.ld = n+ i(n� q) = n+ im; (16)where n� q = �in^q. This line representation using dual numbers is easier tounderstand and to manipulate algebraically and it is fully equivalent to the onein terms of Pl�ucker coordinates.For the case of the point representation, embedding a 3D point expressed asa vector x on the hyperplane X4 = 1, the point q equation in G+3;0;1 readsq = 1+x141+x242+x343 = 1+i(x123+x231+x312) = 1+ix: (17)Now, resorting to the duality principle we use the dual of the scalar i.e thepseudoscalar times d and the dual of the bivector basis to write straightforwardlythe plane equation, i.e� = n123 + n231 + n312 + id = n+ id (18)where n stands for the normal of the plane and d for the distance of the planeto the origin.4 Modelling the 3D Motion of Points, Lines and PlanesIn this section we will present the modelling of the 3D motion of basic geo-metric entities using rotors and motors. We will see below in the case of the



hand-eye calibration that is preferable to use motors for computing the rotationand translation of an unknown rigid motion simultaneously. Because using therotor approach we compute the translation decoupled of the rotation increasingtherefore the inaccuracy. Let us now consider the modelling of the motion ofpoints, lines and planes in both R3 and R4.In G3;0;0 a line can be described in terms of any couple of points lying on theline, i.e. x = �p1 + p2. The motion equation of the line is then the same as forthe point equation(20). In the algebra of the motors G+3;0;1 we expressed the lineas equation (16) and proceed as followsla = na + ima =Mlb ~M = Rnb ~R + i(Rnb ~R0 +R0nb ~R +Rmb ~R) (19)The 3D motion of a point x in G3;0;0 has the equationx0 = Rx ~R + t: (20)In case of the algebra of the motors G+3;0;1 we use the point representation ofequation (17)M (1 + ix) ~M = TR(1 + ix) ~RT = 1 + i(Rx ~R + t): (21)The expression ~M = ~RT was found independently by the authors and it issimilar to the one presented by W. Blaschke [5]. Yet in general all our motorequations explain directly that motor expressions consist of the successive actionof rotors and translators. Now, when dealing with the motion of planes as it isshown below again we apply from the right ~M . This is because the plane is thedual of the point. Since the algebra of the motors has a bivector basis which spanthe line space and if we use this basis for representing points (geometrically ofa lower dimension) and for planes (one dimension higher) we require ~M insteadof simply ~M as a sort of compensation for this asymmetry.For the plane in G3;0;0 we use a multivector representation of the formulaof Hesse, i.e. H = d + n. Note that this multivector consists of a scalar and avector. Any point lying on this plane ful�lls x�n� d=0. Using this we can nowwrite the motion of the planeH0 = (Rx ~R + t)�(Rn ~R) + (Rn ~R): (22)Since (Rx ~R)�(Rn ~R) = x�n, this becomes H 0 = x�n+Rn ~R+ t�(Rn ~R) whichcan be �nally written as H 0 = RH ~R + (RH ~R) � t: (23)The motion of a plane in G+3;0;1 can be seen as the motion of the dual of the point,thus using the expression of equation (18) the motion equation of the plane isM (n+ id) ~M = TR(n+ id) ~RT = Rn ~R+ i(d+ (Rn ~R) � t): (24)



4.1 Application 1: movement of a robot armLet us consider a complicated robot mechanism in terms of a system of linked n-bars. This calls for an optimization approach to �nd out its con�guration duringa smooth movement. Let us analyze the problem �rst in 3D space and then inthe 4D space.In 3D using the geometric algebra G3;0;0 we de�ne reference-frames attachedto each turnable join. Any connected two bars, the j � th bar and the j +1-bar,are referred simple by the relative position of the j � th join with the j � 1-thjoin and the next bar moved by its own join. This can be simply expressed byxj+1 = Rj�1xj�1 ~Rj�1+Rjx0j ~Rj = Rj�1xj�1 ~Rj�1+RjRj�1xj ~Rj�1 ~Rj (25)where Rj is the rotor applied to the reference frame attached to the j-joinand x0 is the translation from reference frame j � 1 to reference frame j whichcorresponds simply to the length of the j-bar. The equation for the position ofend e�ector considering the whole mechanism readsx = R1x1 ~R1 +R2x02 ~R2 +R3x03 ~R3 + :::+Rnx0n ~Rn: (26)Now for the 4D space we will use the algebra of the motors G+3;0;1. In the 4Dthe equation (25) readsx0j+1 = RjT jRj�1x0j�1 ~Rj�1T j ~Rj ; (27)where x0j�1 = (1+ixj�1) and x0j+1 = (1+ixj+1) referred to their own coordinatesystems. Assuming that all the robot bars are of the same length x, then T 1 =(1 + ix) = T 2 = T 3 = ::: = T n. Equation (26) for the whole mechanism in 4Dis now x0n = Rn�1:::T 3R2T 2R1x01 ~R1T 2 ~R2T 3:::~Rn�1: (28)Comparing the 4D and 3D expressions, the formers are linear and more simple.This can be exploited when computing any robot arm motion, i.e. we can fora particular motion simplify the equation (28) by canceling some redundant orconjugate translators and rotors. This happens for instance when some degreeof freedom of the robot arm joins remains for this particular motion invariant.Recall that the rotors and translators are bivectors and you can commute andassociate them without acting the sign.4.2 Application 2: Motors for hand-eye calibration as a case ofmotion of linesThe well known hand-eye equation �rstly formulated by Shiu and Ahmad [27]and Tsai and Lenz [28] reads AX = XB (29)



where A = A1A�12 and B = B1B�12 express the elimination of the transforma-tion hand-base to world. Here matrices are represented in bold. The geometryof the hand-eye system is depicted in Figure 1. From the expression (29) the fol-lowing matrix equation and a vector equation can be derived RARX = RXRBand (RA � I)tX = RXtB � tA. Most of the approaches estimate �rst the rota-tion matrix decoupled from the translation. The problem requires at least twomotions with rotations having not parallel axes [28]. Horaud and Dornaika [18]showed the instability of the computation of the Ai matrices given the projec-tive matrices Mi = CAi = (CRAiCtAi ). Let us assume that the matrix of theintrinsic parameters C remains constant during motions and that one extrinsiccalibration A2 is known. Introducing Ni = CRAi and ni = CtAi and replacingX=A2Y, we get now as the hand-eye unknown Y. Thus the equation (29) canbe reformulated as A�12 A1Y = YB. Now if A�12 A1 is written as a function ofthe projection parameters it is possible to get an expression fully independentof the intrinsic parameters C, i.e.A�12 A1 = �N�12 N1 N�12 (n1 � n2)0T 1 � = �R t0T 1� : (30)Taking into consideration the selected matrices and relations, this result allows
Fig. 1. Abstraction of the hand-eye system.anyway to consider the formulation of the hand-eye problem again with thestandard equation (29) which can be solved in terms of motors asMAMX =MXMB (31)where MA = A+ iA0, MB = B + iB0 and MX = R + iR0. According to thecongruence theorem of Chen [7] in this kind of problem the rotation angle andpitch of MA and MB remain invariant through out all the hand movements.Thus the consideration of this information can be neglected. It su�ces to regardthe rotation axis of the involved motors, i.e. the previous equation is reduced



as the motion of the line axis of the hand towards the line axis of the camera.For that we can use the equation (19) for the computation of the real and dualcomponents of lA, i.e.lA = a + ia0 = Rb ~R+ i(Rb ~R0 +Rb0 ~R+R0b ~R): (32)After some simple manipulations according the relation ~RR0 + ~R0R =0 we getthe following matrix� a� b [a+ b]� 03�1 03�3a0 � b0 [a0 + b0]� a� b [a+ b]� � � RR0 � = 0 (33)where the matrix - we will call S - is a 6� 8 matrix and the vector of unknowns(RT ;R0T ) is 8-dimensional. More technical details about the foundations andimplementation of this approach can be found in [12, 2].5 Projective InvariantsIn the last two decades invariant theory captured also the attention of the com-puter vision community. This interest in invariants results from their usefulnessin tasks like reconstruction, object recognition and hand-eye calibration. Theseare some examples of a much wider spectrum of invariants arising in a PAC sys-tem. In this section we will show the power of geometric algebra by computing awell known invariant which results when we consider six 3D points Pi, i = 1; ::; 6in general position, represented by vectors fxi;Xig in E3 and R4 respectively.5.1 Projective invariants using 2 uncalibrated cameras3D projective invariants can be formed from these points, and an example ofsuch an invariant is Inv = [X1X2X3X4][X4X5X2X6][X1X2X4X5][X3X4X2X6] : (34)It will be highly desirable to compute the brackets [XiXjXkXl] simply in termsof image coordinates of points Pi; Pj; Pk; Pl; in order to compute this invari-ant straightforwardly. Carlsson [6] discussed the computation of such invariantsfrom a pair of images in terms of the image coordinates and the fundamentalmatrix, F , using the dual algebra. Subsequent work by Csurka and Faugeras[11] discussed corrections to Carlsson's expressions by including a series of scalefactors. In contrast using geometric algebra we bene�t of the duality principleand the projective split which allows us to simplify enormously the algebraic ma-nipulation of the equations. Consider the scalar S1234 formed from the bracketof 4 pointsS1234 = [X1X2X3X4] = (X1̂ X2̂ X3̂ X4)I4�1 = (X1^X2)̂ (X3^X4)I4�1: (35)



The quantities (X1 ^ X2) and (X3 ^ X4) represent the line joining points P1and P2, and P3 and P4. Let us represent the optical centres of both camerasby a0 and b0 and their image planes by fa1;a2;a3g and fb1; b2; b3g. Let theprojection of points fPig through the centres of projection onto the image planesbe given by the vectors fa0ig and fb0ig which are ordinary vectors in E3. Therepresentations of these vectors in R4 will be Ai;Bi;A0i;B0i:::, etc.In [3] it is shown that the bracket of these 4 points (in R4) can be equatedas S1234 = [X1X2X3X4] � [A0B0A01234B01234]: (36)This is achieved by the process of splitting up the bracket into two parts, X1^X2and X3 ^X4 and then expressing each of these lines (bivectors) as the meet oftwo planes (trivectors). During this algebraic computation, since we are workingin R4, we are e�ectively ignoring any scale factors due to the arbitrary choices ofthe 4 components. Thus, when we take ratios of brackets to form our invariantswe must ensure that, if we want to express the brackets in the form of equation(36), the same decomposition of Xi ^ Xj must occur in the numerator anddenominator so that these arbitrary factors cancel. In the case of Inv, we haveInv = f(X1^X2)^(X3^X4)gI4�1f(X4^X5)^(X2^X6)gI4�1f(X1^X2)^(X4^X5)gI4�1f(X3^X4)^(X2^X6)gI4�1 : (37)Expanding the bracket in equation(36) by expressing the intersection pointsin terms of the A's and B's (A0i = �ijAj and B0i = �ijBj) and de�ning a matrix~F such that ~Fij = [A0B0AiBj ] (38)and vectors �1234 = (�1234;1; �1234;2; �1234;3) and �1234 = (�1234;1; �1234;2; �1234;3)it is easy to see that we can write S1234 = �T 1234 ~F�1234 [6]. The ratioInv = (�T 1234 ~F�1234)(�T 4526 ~F�4526)(�T 1245 ~F�1245)(�T 3426 ~F�3426) (39)is therefore seen to be an invariant. Note that equation (39) is invariant what-ever values of the 4 components of the vectors Ai;Bi;Xi etc. are chosen. Aconfusion arises if we attempt to express the Inv of Eq. (39) in terms of whatwe actually observe, i.e. the 3D image coordinates and the fundamental matrixcalculated from these image coordinates. To avoid that it is necessary to transferthe computations of Eq. (39) carried out in R4 to 3D. Let us explain now thisprocedure.A point Pi will be projected onto a point in image plane 1, say a0i, which canbe written asa0i = a1 + �i(a2 � a1) + �i(a3 � a1) = �i1a1 + �i2a2 + �i3a3 (40)



so that P3j=1 �ij = 1. Similarly, we have b0i = �i1b1 + �i2b2 + �i3b3 (so thatP3j=1 �ij = 1). Using the projective split we can now write the �ij's and �ij's interms of the �ij 's and �ij's:�ij = A0i �4Aj �4 �ij �ij = B0i �4Bj �4 �ij (41)The `fundamental' matrix ~F is such that �T i ~F�i = 0, if �i and �i are thevectors of coe�cients of the points in planes 1 and 2 produced by the same worldpoint Pi. Now, given more than eight pairs of corresponding observed points inthe two planes, (�i; �i); i = 1; ::; 8, we can form an `observed' fundamentalmatrix F such that �T iF�i = 0: (42)This F can be found by some method such as the Longuet-Higgins 8-pointalgorithm [23] or, more correctly, by some method which gives an F which hasthe true structure [24]. Therefore, if we de�ne ~F by~Fkl = (Ak �4)(Bl �4)Fkl (43)then it follows from equations (41) that�ik ~Fkl�il = (A0i �4)(B0i �4)�ikFkl�il: (44)If F is estimated then an ~F de�ned as in equation (43) will also act as a funda-mental matrix in R4.Now let us look again at the invariant Inv. According to the above, we canwrite the invariant asInv = (�T 1234F�1234)(�T 4526F�4526)�1234�4526(�T 1245F�1245)(�T 3426F�3426)�1245�3426 (45)where �pqrs = (A0pqrs�4)(B0pqrs�4). We see therefore that the ratio of the �TF�terms which resembles the expression for the invariant in R4, but uses onlythe observed coordinates and the estimated fundamental matrix, will not be aninvariant. Instead, we need to include the factors �1234 etc., which do not cancel.It is relatively easy to show [20] that these factors can be formed as follows. Sincea03, a04 and a01234 are collinear we can write a01234 = �1234a04 + (1 � �1234)a03.Then, by expressing A01234 as the intersection of the line joiningA01 and A02 withthe plane through A0;A03;A04 we can projective split and equate terms to give(A01234�4)(A04526�4)(A03426�4)(A01245�4) = �1245(�3426 � 1)�4526(�1234 � 1) : (46)The values of � are readily obtainable from the images. The factors B0pqrs�4 arefound in a similar way so that if b01234 = �1234b04+(1��1234)b03 etc., the overall



expression for the invariant becomesInv = (�T 1234F�1234)(�T 4526F�4526)(�T 1245F�1245)(�T 3426F�3426) �1245(�3426 � 1)�4526(�1234 � 1) :�1245(�3426 � 1)�4526(�1234 � 1) : (47)Thus, to summarize, given the coordinates of a set of 6 corresponding pointsin the two image planes (where these 6 points are projections from arbitraryworld points but with the assumption that they are not coplanar) we can form3D projective invariants provided we have some estimate of F . A more detaileddiscussion on this issue you can �nd in [22].6 Projective Structure Using n Uncalibrated CamerasIn this section we present the application of cross-ratio [20] for computing theprojective depth discovered by Sashua [26]. This can be easily calculated using thecross-ratio of projected points lying on an epipolar line of any of the n cameras.This relation remains constant also for the ratio of the segments of an opticalray delimited by a tetrahedron or reference frame as is depicted in the Figure 2.
Fig. 2. Invariant projective depth using n uncalibrated cameras.6.1 Homomorphic transformationsConsider a world point P and 4 other distinct points Pi; i = 1; 2; 3; 4 de�ninga tetrahedron. Let �R = P1^P3^P4 and �S = P1^P2^P3 and assume Pdoes not lie on either of these two planes { see �gure 2. Let Ri and Si be theintersections of the line joining the optical centre of the ith camera with pointP with the planes �R and �S , e.g. R1 = �R _ (A0^P). Let Rni and Sni bethe projections of the points Ri and Si onto the nth image planes { e.g. R21 =(B0̂ R1)_(B1̂ B2̂ B3) etc. Note that Rii and Sii are simply the projections of theworld point P onto the ith image plane, e.g. R11 = S11 = (A0^P)_ (A1^A2^A3).Let us call the ith image plane  i.



In order to compute a cross-ratio which will be de�ned later, we must beable to calculate the image coordinates of Rni ;Sni . We can do this by �ndingthe homomorphic transformations or homographies relating projected points inone image plane to the projected points in another. Consider the homographybetween image planes  i and  j due to the plane �S . If the projections ofP1;P2;P3 onto  i and  j are fPikg and fPjkg, for k = 1; 2; 3, then the linearfunction fSij representing this transformation must satisfyfSij(Pik) = Pjk for k = 1; 2; 3: (48)Here we are working in R3 so that the non-linear projective transformations inE2 (plane to plane) become linear { the above linear-function representation isoutlined in [21]. Similarly, the corresponding homography due to the plane �Ris represented by the linear function fRij given byfRij(Pik) = Pjk for k = 1; 3; 4: (49)If four point correspondences from each plane are known then these linear func-tions can be recovered up to a scale factor by simple linear techniques. Sincethe homographies must map the epipole in one image plane onto the epipole inthe other, we can choose the epipoles as the fourth point if these are known;fRij(Eji) = Eij etc.6.2 Computing the projective depthThe fundamental projective invariant in 1D is the cross-ratio. We can form across-ratio from the collinear points P;R1;S1;A0, namely� = (R1^A0)I�12(P^A0)I�12 (P^S1)I�12(R1^S1)I�12 : (50)The cross-ratio � will be invariant when projected onto any other image plane.Consider this cross-ratio in the image plane of the second camera;� = (R21^E12)I�12(P2^E12)I�12 (P2^S21)I�12(R21^S21)I�12 : (51)If we know the linear functions fS12; fR12, then we can write this ratio as� = (fR12(P1)^E12)I�12(P2^E12)I�12 (P2^fS12(P1))I�12(fR12(P1)^fS12(P1))I�12 ; (52)and the general form for the i-camera and j-camera� = � (fRij(Pi)^Eij)I�12(Pj^Eij)I�12 �� (Pj^fSij(Pi))I�12(fRij(Pi)^fSij(Pi))I�12 �: (53)



The term in the right bracket is termed projective depth in [26]. If we have anumber of views available then, in this framework, a more robust estimate of kwould be given by k = 1n X(i6=j) (Pj^fSij(Pi))I�12(fRij(Pi)^fRij(Pi))I�12 ; (54)where n is the number of estimates used.Finally according with k the reconstruction of 3D coordinates of points isstraightforward [26]. Considering the relations P �= R1 + kS1 and that of the�fth point (mapped onto the focal center A0) P0 �= R1 + k0S1 (scaled so thatk'=1), it can be seen that the depth k is actually an invariant up to uniformscale. Using this k we can reconstruct for each �ve points in general position(three lying on �1 and three lying on �2) the 3D coordinates of a point Pi.7 ConclusionsThis paper presented the Cli�ord algebra in its geometric interpretation as acommon language for the treatment of problems of robotics and computer vision.The authors focused in the geometry of 3D and 4D spaces which are necessaryfor the representation and manipulation of basic geometric entities required inthose areas. In the �rst �eld we analyze the 3D and 4D modelling of motion incomplicated mechanisms and in the hand-eye calibration problem. A 3D motionor general displacement is a nonlinear transformation, but linear if it is repre-sented in 4D. This motivates us to use the 4D geometric algebra to solve in alinear manner problems involving 3Dmotions. An very interesting example is thehand-eye calibration. This requires a nonlinear solution strategy if it is treated in3D. However when the 3D representation is extended to the 4D space using themotor algebra the problem of computing of the unknown motion becomes linear.In the second part of the paper it is shown how geometric algebra can be usedfor the algebra of incidence useful in the projective space. For intersections ofplanes, lines etc. and for the discussion of projective transformations we �nd thatwe do not need to invoke the standard concepts or machinery of classical pro-jective geometry, all that is needed is the idea of the projective split relating thequantities in R4 to quantities in our 3D world and the algebra of incidence.Thecase of computing invariants using n uncalibrated cameras is analyzed. Here theduality principle and projective split help to reduce the complexity of the com-putation. Finally using the cross-ratio of points lying in the epipolar lines of ncameras the projective reconstruction is addressed. The authors believe that thegeometric algebra approach opens a new way to deal with problems in computervision and di�ers with the standard approaches substantially due to its powerfulalgebraic and geometric properties.Since PAC systems require di�erent mathematical techniques for visual andmotor signal processing, the construction of PAC systems demands of a frame-work where should be possible the fusion of the �elds of signal theory, computer
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