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Abstract

The paper focus on the analysis and compuring of the

projective structure and motion using geometric invarianis.
This work relates current approaches in the geometric al-
gebra framework as a result the approach gains geomer-
ric transparency and elegance. The papers presents experi-
ments regarding projective reconstruction of shape and mo-

tion using both simulated and real images.

1 Introduction

In this paper we present a geometric approach for the
omputation of shape and motion using invariant theory
" in the geometric algebra framework. In the last years re-
 searchers have developed methods to compute projective in-
variants using n uncalibrated cameras [4, 3, 3, 1]. Projective
reconstruction has been done using the projective depth [7],
the kinematic depth [8], projective invariants [5] and factor-
1zation methods [9, 6, 10]. Since the projective factorization
methods require the scalar factor of projective depth, the use
projective invariants to compute these scalars can help to
ltialize the projective reconstruction of shape and motion.
g0 this paper we present a method to compute the projec-
Slive depth using projective invariants depending of the tri-
ocal tensor. With these projective depth we can initialize
‘_he Projective reconstruction of structure and motion. The
Paper presents experiments for projective reconstruction of
3'13-9«': and motion using both and simulated and real images.
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Computing Projective Invariant of Points
Using Two Uncalibrated Cameras

A 3D projective invariant can be formed from a set of six

points as follows

_ X XaXa X, (X X5 Xz X
KGR e G

In [3] it is shown that the bracket of these 4 points (in R*)

Inv

(1)

can be equated as

51334 — [Xngng] = [AUBUA{MIMB{L"M;‘ (2)

Expanding the bracket in equation (2) by expressing the in-
tersection points in terms of the A’s and B's (A = ;A
and B} = 3;;B;) and defining a matrix F such that

‘-L::.'j = [AOBUAtB;] (3)

and the vectors 234 (@1234,1, @1234,2, @1224,3) and
Bi23a = (Br234,1,P1234,2, B1234,3) We can write Sypgq =

(QT1234F51234)(O‘T-tSZﬁFJquzs)
(@T 1245 F Ba45) (T 3426 F B3426)

is therefore seen to be an invariant using two cameras. Note

(4)

Inv =

that equation (4) is invariant whatever values of the 44 com-
ponents of the vectors A;, B;, X; etc. are chosen. A confu-
sion arises if we attempt to express the Inv of Eq. (4) in
terms of what we actually observe, i.e. the 3D image co-
ordinates and the fundamental matrix calculated from these

image coordinates. In order to avoid that it is necessary to




transfer the computations of Eq. (4) carried out in R to 3D.
Let us explain now this procedure.
If we define I by

Frr = (Ag-va)(Brva) Fre, (5)

. : > : Al
then it follows using the relationships a; = 1—'315”- and
ira

_ Bl

.1'3,'3' = -B E‘J that

o FruBia = (AL 7a) (B4 (6)

Voix Fricir.

If F is estimated by some method then an F defined as in
equation (5) will also act as a fundamental matrix in R*.
Now let us look again at the invariant Inv. According to

the above, we can write the invariant as

(6T 1234 Fe1234) (07 as2s Feasas )Pr23a Pasae
(87 1245 F€1245) (0" 3426 F€3426 ) 1245 Paazs |

where d"pqrs (A:-_‘qr.q - "(4}(B! qrs ’Y-l)-
fore that the ratio of the terms 8° Fe which resembles the

(7

Invs =

We see there-

expression for the invariant in R*, but uses only the ob-
served coordinates and the estimated fundamental matrix,
will not be an invariant. Instead, we need to include the

factors 234 etc., which do not cancel. [t is relatively

easy to show [3] that these factors can be formed as fol-
lows. Since aj, ay and a},;, are collinear we can write
@las = pi2asay + (1 — pi23a)az. Then, by expressing
Al 534 as the intersection of the line joining A} and A; with
the plane through Ag, Az, A} we can use the projective split

and equale terms to give

L1245 (pt3428 — 1)

(Al2sq 7a)(Alszs 74) _
!I-tszzs(mzs-t —1)

r ' {8)
(AMEG "HJ(Ands "Y4)

The values of u are readily obtainable from the images.
The factors By, -
baas = A1234bj+(1—A1234)b] etc., the overall expression

4 are found in a similar way so that if

for the invariant becomes

(67 1234 Fe12a4) (07 asze F€asae) p12as (23426 — 1)
(87 1245 Fe1245) (87 3426 F€3426) Pras2e (1231 — 1)
A1245(A34ze — 1)

Aaso6(Ai2as — 1)

I';:

Inv; = Iz (9)

Concluding given the coordinates of a set of 6 corre-
sponding points in the two image planes (where these 6
points are projections from arbitrary world points but with
the assumption that they are not coplanar) we can form 3D
projective invariants provided we have some estimate of F'.

See [1] for a more detailed discussion on this issue.

Iapc =
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3 Projective Invariant of Points Using Three
Un—calibrated Cameras :

The technique used to form the 3D projective invariangg |
for two views can be straightforwardly extended to giye
expressions for invariants of three views. Consider foyr 3
world points, {X1,Xz2,X3,X4} (or two lines X; AX; anq ¥
X3 AXy) projected into three camera planes where we use
the same notation as in section 2. As before, we can write "
Xl AXy = (AU /\LAlg} Vv (B{)/\LBlz) and X3 f\Xq = g
(Ao AL?34) V (CoAL%34). Once again, we can combine
the above expressions to give an equation for the 4-vector 3
XiAXaAX3AX, +

X1 AX2AX3AKy
= [{J\QALAIQ} v (BUI\LBU

Al(AaAL? 34) V (CoALC 3y)) 2

= (AoAA1234) A[(BoALZ 12) V (Co AL 34)]. (10) B

Writing the lines L, and L, in terms of the line coordi- |
B LP and L = 1§, ;LY. Tthas g

been shown in section two that the components of the trilin- '-'.

nates we have LY, =1

ear tensor (which plays the role of the fundamental matrix

for 3 views), can be written in geometric algebra as

Tise = (AoAA)A[(BoALY) V(CoALE)]  (11)

so that equation (10) reduces to

X1 AX2AX3AXy = Tijeanazail®r2 0%k (12) §

The invariant Invs can then be expressed as

45,p)
(Torseei2as,olB 12 +1% 45, s W Teuvaaszs e1P 26,ulC34,0
(

(T;; k01234418 12,1344 )(Tennpaasoe,m 1P 26, 1€

Invy =

noting that the factoring must be done so that the same line
factorizations occur in both the numerator and denominator #
— as discussed in section 2. We therefore have an expres- 3
sion for invariants in three views which is a direct extension 3
of the invariants for 2 views. When we form the above in- §
variant from observed quantities we note, as before, Lhat’
some correction factors will be necessary — equation (13) 3
is given above in terms of R* quantities. Fortunately thisg
is quite straightforward. Regardmg the results of secu
2 we can simply consider the a's terms in equation (13
as not observable quantities, conversely the line terms liké3
!12 JI 34 & are indeed observed quantities. As a result, théj
expression has to be modified using partially the coefficient;
computed in section 3 and for the unique four combmauoﬂ! ;
of three cameras their invariant equations read '

(T‘-?fcalzu,-‘1312,j1034.k)(T,§,‘?fcr¢525 m1B26,n1C s, p) '

(TABC 245,918 12,0 1€ 45,4 ) (T4 5 € 03426,015 2, ul€34,0)

p1245 (p3g2e — 1)

Invape = Iasc ,
masze (1234 — 1)




t ilar expressions for Iagp, Icap, Iscp. We noticed
3 frst two have the same scalar coefficient and it could be

]_hal
~pegle
; “sua} space and the invariants based in the bilinearity both

cted. However to match with the invariant in the 3D

:e—c-;-uil'e this coefficient. Extensive simulations with Maple

confirmed that the use of this kind of coefficients in the four

I
Az = Zs (15)

L1

[ 0 0 -

Rizz  taz X

= O f O - 1
0 1 X
L0 01 1J

- jective mapping is further expressed in terms of a f, rota-
 tion and translation components. Let us attach the world

= coordinates at the view center of the camera, the resultant

X

F 000 Xl
Mz o= |0 Ff 00 * | =Px. (16)

X3

0010
1
We can then compute straightforward

X=Xs. an

Using this result we can say that the projective depth a ful-
fills the following reiation

af = A= X;. (18)

The way how we compute the projective depth o of a 3—
D point appears simple using invariant theory. For that we
select a basis system taking four 3—-D points in general po-
sition X'}, X5, X3, X5, as the four point X4 the optical
center of camera at the new position, and as unknown 3-D

point the point X 5. This is depicted in Figure 1.

For that we select as projective basis in P points in gen-
eral position Xy, X», X3, X; as X, the view center of
the moving camera and as the point to be reconstructed X 5.
Since we use the mapped points, we consider as the four
point the epipole or mapping of the current view center and
the mapped sixth point as the point with unknown depth.
The other mapped basis points remain constant during the

procedure.

Figure 1. Computing the projective depths of
n cameras

The tensor based invariant expression for computing the
third coordinate or projective depth of a point X ; regarding
a reference 1—camera reads

ABC B C
N = [T Zs (T4~ ana1s,il®23,50% 5.)
g =1 =—=— = .
We  (T33Ca216,41%23,+1%16,)
ABC B, |C
(Tranp @2416,m!” 24,n1% 16,p) proaisiinars

’ (19)
(Ttﬁfcﬂzus,:fsu.ufcls,u} H2315H2416

In this way we can successively compute the projective
depths A;; of the j—points referred to the i—camera. The A;;
will be used in next section for the 3-D reconstruction using
the join image concept and the SVD method.

Since this kind of invariant can be also expressed in
terms of the quadrifocal tensor [2], we can compute the pro-
Jective depth based on four cameras.



5 Shape and Motion

The orthographic and paraperspective factorization
method for structure and motion using the affine camera
model was developed by Tomasi, Kanade and Poelman
[9, 6]. This method works for cameras viewing small and
distance scenes, thus all scale factors of projective depth
Ai;=1. For the case of perspective images the scale factors
Aij
set of consistency reconstruction equations of the so called

are unknown. According Triggs [10] all A;; satisfy a

join tmage and they can be computed using the epipolar
constraint.

In the previous section we presented a procedure for the
computing of A;; using an invariant based on the trifocal
tensor. Since this kind of invariant can be also expressed
using the quadrifocal tensor [2] we could also compute the
projective depths via an invariant involving the quadrifocal

lensor.
5.1 The join image

The joint image J is nothing else as the intersections
of optical rays and planes at the points or lines in the 3D
projective space. The interrelated geometry can be linearly
expressed by the fundamental tensor, tri focal and quadrifo-

cal tensors.

Figure 2. The geometry of the join image

In order to take into account the interrelated geometry,
the projective reconstruction procedure should put together
all the data of the individual images in a geometrically co-

herent manner. The way to do that is considering the obser-
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vations of the points X ; regarding each i—camera
Mjey= BX; (0)

as the i-row of a matrix of rank 4. For m cameras and p }

points the 3mxn matrix 7 of the joint image is given by

(1) .

Az AT AlnTin \
ATy AaTa Ao Tan
A3 AnTa A3nZTan
AmiTmi  Am2Tm2 Aiire L i /

For the affine reconstruction procedure the matrix is of rank
3. The matrix 7 of the joint image is amenable to a singular

value decomposition for finding the shape and motion.

5.2 The SVD method

The application of SVD to T gives

v.T

nxr (22)

L-;r.":m ®n — Uﬁm xrsr “r

where the columns of matrix V.2 _ and /3, » are orthonor-
3

nxr
mal base for the input (co-kernel) and output (range) spaces
of 7. In order to get a decomposition in motion and shape
of the projected point structure, Sy x» can be absorbed into

both matrices VX _and Uz, - as follows

nxr

1

\-731"’“("1 = (U:ierSr%xr)(Srjx rI"r;rxr) -
(PTPTEL.. B e (X1 X2 X3 X Jaxn.  (2B)

This way to divide S;y, is not unique. Since the rank of
J is 4 we should take for S,y the first four biggest sin-
gular values. The matrices P; correspond to the projective .‘5.
mappings or “motion” from the projective space to the indi-
vidual images and the point structure or “shape” is given by :

the X ;. We test our approach using a simulations program §

written in Maple. Using the method of section 5 firstly we 3§

computed the projective depth of the points of a wire house
observed with 9 cameras and then using the SVD projec-
tive reconstruction method we gained the shape and motion.
The reconstructed house after the Euclidean readjustment

for the presentation is shown in Figure 4.
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Figure 3. a) One of the three images, b) recon-
structed incomplete house using 3 images c)
extending the join image d) completing in the
3-D space

We notice that the reconstruction keeps quite well the

original form of the model. The next section will show
how using geometric expressions in terms of the operators
of algebra of incidence V (meet) and A (join) and particu-
lar tensor based invariants we can improve the shape of the

reconstructed model.

53 Completion of the 3-D shape using geometric
invariants

The projective structure can be improved in two ways:
completing points on the images, expanding the join im-
age and and then call the SVD procedure or after the re-
construction complete points like occluded points in the 3D
space. Both approaches can use on the one hand geometric
inference rules based on symmetries or concrete knowledge
- about the scene. Using three real views of a similar model
house with its most right lower corner missing, see Figure
5.b, we compute in each image the virtual image point of
this 3-D point. Then we reconstruct the scene as shown in
Figure 5.c. As opposite using geometric incidence opera-
Bons we completed the house employing the space points
as depicted in Figure 5.d. We can see that creating points
in the images yields a better reconstruction of the occluded
point. Note that in the reconstructed image we ransformed
the projective shape to an Euclidean one for the presenta-
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Figure 4. Reconstructed house using a)
noise—free observations and b) noisy cbser-
vations

tion of the results. We use also lines connecting the recon-
structed points only for make visible the house form.

Similarly we proceeded using 9 images, as presented
in in Figure 6.a—d. We can see that the resulting recon-
structed point is almost similar in both procedures. As a
result we can draw the following conclusion: when we have
few views we should extend the join image using virtual
image points and in the case of several images we should
extend the point structure in the 3-D space.

6 Conclusions

This paper focus on the application of projective invari-
ants based on the trifocal tensor. We developed a method
to compute the projective depth using this kind of invari-
ants, With these projective depth we can initialize the pro-
jective reconstruction of structure and motion. The papers
presents experiments regarding projective reconstruction of
shape and motion using both simulated and real images.
This work relates current approaches in the geometric al-
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Figure 5. a) One of the three images, b) recon-
structed incomplete house using 3 images c)
extending the join image d) completing in the
3-D space

gebra [ramework, as a result the approach gains in geomet-

rically transparency and elegance. However the authors be-

lieve that more work have to be done in order to improve -

the computational algorithms so that the use of projective
invariants will be more and more attractive for real time sys-
tems with noisy data.

Acknowledgments Eduardo Bayro Corrochano was
by the SO-201 of

Forschungsgemeinschaft.

supported project the Deutsche

References

[1] Bayro-Corrochano, E. and Lasenby, J. 1998. Geometric
techniques for the computation of projective invariants us-
ing n uncalibrated cameras. In Proceedings of the Indian
Conference on Computer Vision and Image Processing, New

delhi, India, 21-23 December, pp. 95-100.

[2] Bayro-Corrochano, E. and Lasenby, J. 1999. Analysis and
the computation of projective invariants using n uncalibrated

cameras. Submitted to the Journal of the Royal Society.

[3] Lasenby, J., Bayro-Corrochano, E., A.N. Lasenby and Som-
mer, G. 1996. A new methodology for computing invariants
in computer vision. Proceedings of the Internarional Con-
ference on Pattern Recognition (ICPR'96), Vienna, August

1996., Vol.1, pp334-338.

296

i -
" .

Figure 6. a) One of the nine images, b) recon-
structed incomplete house using 9 images c)
extending the join image d) completing in the
3-D space

[4] Carlsson, S. 1994, The Double Algebra: and effective tool
for computing invariants in computer vision. Applications of
Invariance in Computer Vision, Lecture Notes in Computer
Science 825; Proceedings of 2nd-joint Europe-US workshop,
Azores, October 1993. Eds. Mundy, Zisserman and Forsyth.

Springer-Verlag.

Csurka G. and Faugeras O. 1998. Compuling three dimen-
sional project invanants from a pair of images using the
Grassmann-Cayley algebra  Journal of /mage and Vision

Computing, 16, pp. 3-12.

(6

Poelman C.J. and Kanade T. 1994. A paraperspective fac-
torization method for shape and motion recovery. In J-O.
Eklundh, editor, European Conference on Computer Vision,
Stockholm, pp. 97-108.

[7]1 Shashua, A. 1994. Projective structure from uncalibrated £&

images: structure from motion and recognition PAMI, 16(8), 4
778:790, August.

[B] Sparr Gunnar. 1994. Kinetic depth. In J-O. Eklundh, editor, §

European Conference on Computer Vision, Stockholm.

[9] Tomasi C. and Kanade T. 1992. Shape and motion from
age streams under orthography: a factorization method. Int.

J. Computer Vision, 9(2), pp. 137-154. s &

[10]
In proceedings of /CCV'95, MIT.



