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Abstract. A central task of computer vision is to automatically recognize objects in real-world scenes. The

parameters defining image and object spaces can vary due
position. It is therefore desirable to look for geometric

to lighting conditions, camera calibration and viewing
properties of the object which remain invariant under

such changes in the observation parameters. The study of such geometric invariance is a field of active research.
This paper presents the theory and computation of projective invariants formed from points and lines using the

geometric algebra framework. This work shows that geo
projective invariants using n views. The paper compares proj

metric algebra is a very elegant language for expressing
ective invariants involving two and three cameras using

simulated and real images. Illustrations of the application of such projective invariants in visual guided grasping,
camera self-localization and reconstruction of shape and motion complement the experimental part.
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1. Introduction

The concept of invariance has been of interest in many
areas of computer vision. The scope of geometric in-
variance was captured in the volume [25]. Invariance
has been widely used for object recognition, matching
and reconstruction [24, 28]. Indeed, the currently fash-
ionable topic of camera self-calibration can be cast in
terms of looking for entities which are invariant under
the class of similitudes. Thus, the study of invariants
remains one of fundamental interest in computer Vi-
sion. In this paper we will outline the use of geometric
algebra (GA) in establishing a framework in which in-
variants can be derived and calculated. An important
point to note here is that the same framework and ap-
proach can be used for extensions such as differential

invariants, Lie algebra approaches, etc., although only
projective invariants from points in 1, 2 and 3D will be
discussed here.

Geometric algebra is a coordinate-free approach to
geometry based on the algebras of Grassmann [10]
and Clifford [7]. The algebra is defined on a space
whose elements are called multivectors; a multivector
is a linear combination of objects of different type, e.g.
scalars and vectors. It has an associative and fully in-
vertible product called the geometric or Clifford prod-
uct. The existence of such a product and the calculus
associated with the geometric algebra give the system
tremendous power. Some preliminary applications of
geometric algebra in the field of computer vision have
already been given. [2, 16, 19]. and here we would
like to extend the discussion of geometric invariance
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given in [3, 17, 20, 21]. Geometric algebra provides
a very natural language for projective geometry and
has all the necessary equipment for the tasks which the
Grassmann-Cayley algebra is currently used for. The
Grassmann-Cayley or double algebra [1. 5] is as system
for computations with subspaces of finite-dimensional
vector spaces. While it expresses the ideas of projec-
tive geometry, such as the meet and join, very elegantly,
it lacks an inner (regressive) product (and indeed often
goes to great lengths to ‘create’ an inner product) and
some other key concepts which we will discuss later.

The paper explains the geometric meaning of in-
variants in terms of areas and volumes, and using the
projective split, it relates the projective invariants of
the 3D projective space to the invariants of the image
plane. This is the proper way to show that what is mea-
sured is not what it is projected; the paper clarifies this
issue. In our opinion, this matter was not satisfacto-
rily explained by Carlsson and Csurka [5, 9]. Another
contribution of the paper is to extend the computation
of the projective invariants for the cases of three and
four uncalibrated cameras. This has been done so far
only using two views [35, 9]. The use of the projective
split is crucial in this kind of computation and it is one
essential difference of the geometric, algebra approach
to the approaches based on Grassmann-Cayley or dou-
ble algebras [5, 9]. Unfortunately, using Grassmann-
Cayley or double algebras it is not possible to resort to
the projective split for various promising applications.
Another contribution of the paper is the extension of the
computation of the projective depth done by Triggs [31]
who used only two cameras; in this paper we present a
method of using invariants involving three uncalibrated
cameras. The geometric interpretation of the projec-
tive invariants as invariant relation of areas or volumes
appears very useful for tasks of object manipulation
or robot navigation where we can compute the invari-
ants using three uncalibrated cameras. In this regard
the paper extends the work of Rotwel et al [28]. and
Colios and Trahanias [8], who presented nicely how in-
variants using monocular vision can be helpful for 3D
object recognition, manipulation and robot navigation.
The same work can be done using our approach, with
the difference that now we can use invariants involving
three or four cameras. This is a much robuster method,
as our experimental part in Section 8 shows: the effi-
ciency of the projective invariants increases when more
camera views are involved.

The organization of the papers is as follows: section
two presents a brief introduction in geometric algebra,

section three outlines the projective geometry and the
protective split and section four algebra of incidence,
Section five explains the geometry of two and three un-
calibrated views. Sections six and seven are devoted
to the derivation of projective invariants using one, two
and three cameras respectively. Section eight com-
pares experimentally these projective invariants using
simulated and real images. Section nine presents th::
applications: visual guided grasping and camera self-
localization. Section ten shows the computing of pro-
jective depth and section eleven the computation of 3D
shape and motion. Finally, section twelve presents the
conclusions. In this paper vectors will be bold quan-
tities (except for basis vectors) and multivectors will
not be bold. Lower case is used to denote vectors in
3D Euclidean space and upper case to denote vectors
in 4D projective space.

2. Geometric Algebra: An Outline

The algebras of Clifford and Grassmann are well
known to pure mathematicians, but were long ago aban-
doned by physicists in favour of the vector algebra of
Gibbs—which is still most commonly used today. The
approach to Clifford algebra we adopt here was pio-
neered in the 1960’s by David Hestenes who has, since
then, worked on developing his version of Clifford
algebra—which will be referred to as geometric alge-
bra (GA)—into a unifying language for mathematics
and physics [14].

2.1. The Geometric Product and Multivectors

Let G, denote the geometric algebra of n-dimensions—
this is a graded linear space. As well as vector
addition and scalar multiplication we have a non-
commutative product which is associative and distribu-
tive over addition—this is the geometric or Clifford
product. A further distinguishing feature of the alge-
bra is that any vector squares to give a scalar. The
geometric product of two vectors @ and b is written ab
and can be expressed as a sum of its symmetric and
antisymmetric parts

ab=a-b+anrhb, (1)

where the inner product @ -b and the outer producta A b
are defined by

| |
a-bzi(ab—i—ba) af\b=§(ab-—ba}. (2)
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Since the associative geometric algebra is defined by
the anti-commutative bilinear form given by Eq. (1), it
comprises of symmetric and antisymmetric algebras.
The Grassmann-Cayley algebras are only antisymmet-
ric algebras of signature zero, as a result they do lack
of spinors, which are very useful, for example, to com-
pute of homograpries in 2D and 3D. Geometric al-
gebra has many algebraic advantages for other tasks
beyond the projective geometry. Grassmann-Cayley
algebra, double algebra or bracket algebra have not
the inner (regressive) product, thus they can no handle
projection to subspaces. In contrast, in geometric al-
gebra using the projective split we can reduce the com-
putational complexity by projecting to lower dimen-
sion spaces spanned by vector-, bivector or trivector
basis.

The inner product of two vectors is the standard
scalar or dot product and produces a scalar. The outer
or wedge product of two vectors is a new quantity we
call a bivector. We think of a bivector as a directed
area in the plane containing @ and b, formed by sweep-
ing @ along b—see Fig. la. Thus, b A a will have the
opposite orientation making the wedge product anti-
commutative as given in Eq. (2). The outer product is
immediately generalizable to higher dimensions—for
example, (anb) Ac, atrivector, is interpreted as the ori-
ented volume formed by sweeping the areaa A b along
vector c—see Fig. 1b. The outer product of k vectors
is a k-vector or k-blade, and such a quantity is said to
have grade k. A multivectoris made up of a linear com-
bination of objects of different grade, i.e. scalar plus
bivector etc. GA provides a means of manipulating
multivectors which allows us to keep track of different
grade objects simultaneously—much as one does with
complex number operations. For a general multivector
X, the notation (X) will mean take the scalar part of
X. The highest grade element in a space is called the
pseudoscalar. The unit pseudoscalar is denoted by /
and is crucial when discussing duality.

Figure [.  (a) The directed area, or bivector, a A b. (b) The oriented
volume, or trivector, @ A b A c.

We now end this introductory section by giving a
very brief review of the geometric algebra approach to
linear algebra. A more detailed review is found in [14].

Consider a linear function f which maps vectors
to vectors in the same space. We can extend f to
act linearly on multivectors via the outermorphism, f,
defining the action of f on blades by N

fla Adr A ---Aa,)
= fla) A fl@)n---A fla,). (3)

We use the term outermorphism because f preserves
the grade of any r-vector it acts on. We therefore know
that the pseudoscalar of the space must be mapped onto
some multiple of itself. The scale factor in this mapping
is the determinant of f:

f) =det(f)I. (4

This is much simpler than many definitions of the de-
terminant enabling one to establish most properties of
determinants with little effort.

2.2, Geometric Algebras for the Image Plane
and Projective Space

For the modeling of the image plane, we use the geo-
metric algebra of the 3D Euclidean space s o, which
has the standard Euclidean signature and is generated
by 2° = 8 multivector elements given by:

1 ,{o1,02, 03}, {0102, 0203, 030}, {10203} =1 .
—_—— \

g

scalar vectors bivectors trivector

()

Here, bivectors can be interpreted as oriented areas and
trivectors as oriented voumes. Note that we will not use
bold for these basis vectors. The highest grade element
is a trivector called the unit pseudoscalar. It can easily
be verified that the pseudoscalar I = 00,03 squares to
—1 and commutes with all multivectors (a multivector
is a general linear combination of any of the elements
in the algebra) in the 3D space. In a three-dimensionsal
space we can construct a trivectora A b A ¢, but no 4-
vectors exist, since there is no possibility of sweeping
the volume element @ ~ b A ¢ over a fourth dimension.

If we choose to map between projective space and
3D Euclidean space via the projective split, we are
forced to use the 4D geometric algebra G, 3 for P3
with Lorentzian metric.
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The G, 30 geometric algebra has as its vector basis
2 2
Y1, V2, V3, Vs, Where yy = +1and y° = —1 fork =
1,2, 3. This then generates the following multivector
basis:

| Y 275 Vavis Viva, VaYis VaYa, Vavs,

scalar 4 veciory 6 bivectors

lye . 1 : (6)
(= e et
4 triveciors Pseudoscalar

The pseudoscalar is I = yy2y374, with

I* = (myaysve) Vivavavs) = —(v3va) (vavs) = —1.
(7)

Note that we use the same symbol for pseudoscalars of
different geometric algebras, because it is understood
that the pseudoscalar changes its dimension and signa-
ture for g[.glg and I° for g|r3.0.

The fourth basis vector, ys, can also be seen as a
selected direction for the projective split [17] operation
in 4D. We will see shortly that by carrying out the
geometric product via y4, we can associate bivectors
of our 4D space with vectors of our 3D space. The role
and use of the projective split operation will be treated
in more detail in next sections.

3. Projective Geometry and the Projective Split

Since about the mid 1980°s most of the computer vision
literature discussing geometry and invariants has used
the language of projective geometry (see appendix of
[25]). As any point on a ray from the optical centre
of a camera will map to the same point in the cam-
era image plane it is easy to see why a 2D view of a
3D world might well be best expressed in projective
space. In classical projective geometry one defines a
3D space, P?, whose points are in 1 — 1 correspon-
dence with lines through the origin in a 4D space, R*.
Similarly, k-dimensional subspaces of P are identified
with (k + 1)-dimensional subspaces of R*. Such pro-
jective views can provide very elegant descriptions of
the geometry of incidence (intersections, unions etc.).
The projective space, P>, has no metric, the basis and
metric are introduced in the associated 4D space. In
this 4D space a coordinate description of a projective
point is conventionally brought about by using homo-
geneous coordinates. Here we will briefly outline how
projective geometry looks in the GA framework.

The basic projective geometry operations of meet
and join are easily expressible in terms of standard op-
erations within the geometric algebra. Firstly, to ip-
troduce the concepts of duality which are so important
in projective geometry, we define the dual A* of yp
r-vector A as

A*=AI"", (8)

In an n-dimensional geometric algebra one can define
the join J = A A B of an r-vector, A, and an s-vector,
B, by

J=AAnB if Aand B are linearly independent.
(9)

If A and B are not linearly independent the join is not
given simply by the wedge but by the subspace that
they span. J can be interpreted as a common dividend
of lowest grade and is defined up to a scale factor.
It is easy to see that if (r 4+ 5) > n then J will be
the pseudoscalar for the space. In what follows we
will use A for the join only when the blades A and B
are not linearly independent, otherwise we will use the

ordinary exterior product, A.
If A and B have a common factor (i.e. there exists a

k-vector C such that A = A'C and B = B'C for some
A’, B') then we can define the ‘intersection’ or meet of
A and B as A v B where [15]

(Av B)" = A* A B, (10)

That is, the dual of the meet is given by the join of
the duals (a familiar result from classical projective
geometry). The dual of (A v B) is understood to be
taken with respect to the join of A and B. In most cases
of practical interest this join will be the whole space
and the meet is therefore easily computed. A more
useful expression for the meet is as follows

AVB=(A*AB*)I=(A*AB* (')l =(A"- B)
(1)

We therefore have the very simple and readily com-
puted relationof Av B = (A*- B). The above concepts
are discussed further in [15].

Points in real 3D space will be represented by vectors
in £2, a 3D space with a Euclidean metric. As men-
tioned earlier, we find it useful to associate a pointin &”
with a line in a 4D space, R*. In these two distinct but
related spaces we define basis vectors: (yi. 72, 73 ¥4)
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in R*and (0, 03, 03) in €3, Weidentify R* and £ with
the GAs of 4 and 3 dimensions, G 3.0y and Gs 0.0y (here
Gip.gir) is a p+q+r-dimensional GA in which p, ¢ and
r basis vectors square to +1, —1 and O respectively).
We require that vectors, bivectors and trivectors in R*
will represent points, lines and planes in £3. Suppose
we choose 4 as a selected direction in R*, we can
then define a mapping which associates the bivectors
yive.i =1,2,3,in R* with the vectors 0, i = 1,2, 3,

in&”;

O] = Y1V 02 = V2V4» o3 = yays.  (12)

To preserve the Euclidean structure of the spatial vec-
tors {o; ] (i.e. frf = +1) we are forced to assume a non-
Euclidean metric for the basis vectorsin R*. We choose
touse y2 = +1, »; = —1,i = 1,2, 3. This process
of associating the higher and lower dimensional spaces
is an application of what Hestenes calls the projective
split.

Foravector X = X y1 + X212+ X355+ Xypy in R*
the projective split is obtained by taking the geometric
product of X and y4;

XA
X}f4=x'}/¢+X/\}/4=X4(l+ }’4)

4
Xa(1 +x). (13)

Ml

Note that x contains terms of the form y y4, v2v4. ¥3v4
or, via Eq. (12), terms in oy, 02, 03. We therefore asso-
ciated the vector x in £ with the bivector X A v/ X4
in R4,

If we start with a vector x =x0] + X202 + X303 In
&%, we can represent this in R* by the vector X =
X1y + X292 + X33 + X4y such that

XAy X i Xz & X3
X = = - — —
X2 X, Viva X, Yaya X, Viva
X X, X
= o+ o+ 0, (14)

X4 X4 X4

= X = % fori = 1, 2, 3. This process can therefore
be seen to be equivalent to using homogeneous coor-
dinates, X, for x. Thus, in this GA formulation we
postulate distinct spaces in which we represent ordi-
nary 3D quantities and their 4D projective counterparts,
together with a well-defined way of moving between
these spaces.

4. Algebra in Projective Space

Having introduced duality, defined the operations of
meet and join, and given the geometric approach to
linear algebra, we are now ready to carry out geometric
computations using the algebra of incidence.

Consider three non-collinear points, Py, P», P3, rep-
resented by vectors x|, x;,x3 in £ and by vectors
X, X5, X3 in R*. The line L;> joining points P; and
P, can be expressed in R* by the bivector

L|3=X|/\4 2. (15)

Any point P, represented in R* by X, on the line
through P, and P,, will satisfy the equation

XALp=XArX AX;=0. (16)

This is therefore the equation of the line in R*. In
general, such an equation is telling us that X belongs
to the subspace spanned by X, and X,—that is, that

X=X +u:Xs (17)

for some o, &;. In computer vision we can use this
equation as a geometric constraint to test whether a
point X lies on L 3.

The plane @53 passing through points Py, P, Ps is
expressed by the following trivector in R*:

D3 =X A Xy A X, (18)

In 3D space there are generally three types of intersec-
tions we wish to consider: the intersection of a line and
a plane, a plane and a plane, and a line and a line. To
compute these intersections, we will make use of the
following general formula [14], which gives the inner
product of an r-blade, A, =a; Aax A --- Aa,,and an
s-blade, B, =b; Aby A - A b (fors < r):

By -(aynax A -+ Aa,)
= €(ijr.. i) B (@ nap A o AGy)
j

aj+1 A -+ Aaj, (19)

In the equation, we sum over all the combinations
F=0r: v j,) such that no two jis are the same.
If j is an even permutation of (1, 2, 3, ..., r), then the
expression €(J; j2 ... j-) =41, and it is an odd permu-
tation if e (jy jo... j,) =—1.




136 Bayro-Corrochano and Banarer

4.1. Intersection of a Line and a Plane

In the space R*, consider the line A = X, A X, inter-
secting the plane ® = Y| A Y2 A Y3. We can com-
pute the intersection point using a meet operation, as
follows:

ANE=X;AX) N, AY21Y3)
—AND=A"- O (20)

Here, we have used Eq. (11), and we note that in this
case the join covers the entire space.

Note also that the pseudoscalar /; in G; 3 for R*
squares to —1, that it commutes with bivectors but an-
ticommutes with vectors and trivectors, and that its in-
verse is given by /7' = —I,. Therefore, we can claim
that

A" &= (AI"") . & =—(Al) - O. (21)
Now, using Eq. (20), we can expand the meet, such that

AN® = —(AD)-(Y) AY2 A Ys)
= —{(Al) - (Y2 A Y3)}Y,
+{(AD) - (Y3 A Y))}Y;

+ {(A]) - (Y1 A Y2)} Y. (22)

Noting that (A7) - (Y; AY ) is ascalar, we can evaluate
Eq. (22) by taking scalar parts. For example, (A7) -
(YonY3) = (I(X; AXp)(YaAY3) =1(X; AXp A
Y: A Y3). From the definition of the bracket given
earlier, we can see that if P = X, A X5 A Y3 A Y3,
then [P] = (X; A Xy A Yy AY3)I, . If we therefore
write [A; A, A; Ay] as a shorthand for the magnitude
of the pseudoscalar formed from the four vectors, then
we can readily see that the meet reduces to

AN® =[X;XpYY3]Y) + [X; X0 Y3Y,]Y,
+ X X,Y, Y,]Ys, (23)

thus giving the intersection point (vector in R*).

4.2.  Intersection of Two Planes

The line of intersection of two planes, ®| = X; A Xy A
X3 and ®; =Y, A Y3 A Y3, can be computed via the
meet of &, and P,

e, Ne =X, A XA X",) NY, AY A Y}}. (24)

As in the previous section, this expression can be ex-
panded as

O Ndy =t (Y, AY2AYs)
=—={(®1)- Y }(Y2 A Y5)
+{(P1]) - Yo} (Y3 A Y))
+{(®11) - Y3}(Y; AY2).

Once again, the join covers the entire space and so
the dual is easily formed. Following the arguments of
the previous section, we can show that (®,7) - Y, =
— [X;X5X3Y,], so that the meet is

¢ NP = [X1X5X53Y (Y2 AY3)
+ [Xi XoXaY2](Ys A YY)
+ X XoX5Y31(Y) A YY),  (29)

thus producing a line of intersection or bivector in R*.

4.3. Intersection of Two Lines

Two lines will intersect only if they are coplanar. This
means that their representations in R*, A = X; A X,
and B = Y| A Y;, will satisfy the equation

AAB=0. (26)

This fact suggests that the computation of the intersec-
tion should be carried out in the 2D Euclidean space
which has an associated 3D projective counterpart R’.
In this plane, the intersection point is given by
AﬂB:A*-B=—(A[3)-(Y| /\Yg)
=—{((AL) - Y)Yz — ((ALG) - Y2) Y1}
(27)

where /3 is the pseudoscalar for R3. Once again, we
evaluate ((Al;) - Y;) by taking scalar parts:

(AL) - Y; = (XiX2hY;) = LX X, Y,
==X XY (28)

The meet can therefore be written as
AN B =[X;X,Y,]Y; - [X;X,Y,]Y], (29)

where the bracket [A;A,A3] in R? is understood to
mean [A; A Ay A A;]!_('. This equation is often an
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impractical means of performing the intersection of
two lines. See [4] for a complete treatment of the inci-
dence relations between points, lines, and planes in the
n-affine plane.

5, Visual Geometry of Uncalibrated Cameras

[n this section we will analyze the constraints related
to the geometry of uncalibrated cameras. For two and
three views, the epipolar geometry is defined in terms of
pilinear and trilinear constraints. Since the constraints
are based on the coplanarity of lines, we will only be
able to define relationships expressed by a single tensor
for up to four cameras. For more than four cameras,
the constraints are linear combinations of bilinearities,
trilinearities, and quadrilinearities.

5.1.  Geometry of Two Views

In this and subsequent sections we will work in projec-
tive space R*, although a return to 3D Euclidean space
will be necessary when we discuss invariants in terms
of image coordinates; this will be done via the projec-
tive split. Figure 2 shows a world point X projecting
onto points A" and B’ in the two image planes ¢4 and
¢g, respectively.

The so-called epipoles Esg and Egs correspond to
the intersections of the line joining the optical centers
with the image planes. Since the points Ag, By, A’, B’
are coplanar, we can formulate the bilinear constraint

X1

By

Figure 2, Sketch of binocular projection of a world point.

by taking advantage of the fact that the outer product
of these four vectors must disappear. Thus,

A{}/\B(;/\AJK\BJ:O. (30)

Now, if weletA’ = «;A; and B’ = j8;B;, then equation
(30) can be written as

o Bi{Ao ABo AA; AB;} =0. 31)

Defining F;; = {AgABoAA; AB;}I~! = [ABoA;B)]
gives us

ﬁlj'(l'jﬁj — 0, (32)

which corresponds in R* to the well-known relation-
ship between the components of the fundamental ma-
trix [23] or the bilinear constraint in E*, F, and the
image coordinates [23]. This suggests that F can be
seen as a linear function mapping two vectors onto a
scalar:

F(A,B) = {[Ag ABgAAAB} !, (33)

so that Fi;‘ = F(A;, B;). Note that viewing the funda-
mental matrix as a linear function means that we have
a coordinate-independent description. Now, if we use
the projective split to associate our point A" = ;A; in
the image plane with its £ representation @’ = §;a;.
where a; = :": , it is not difficult to see that the coef-
ficients are expressed as follows:

Ar'}’._;

8;. (34)
Ay

o; =

Thus., we are able to relate our 4D fundamental matrix
F to an observed fundamental matrix F in the follow-
ing manner:

Fu = (Ax - y3)(B; - v3) Fuu, (35)
so that

aFup = (A - ya) (B - ya)ox Fuer,  (36)

' : By . -
whered’ = €;b;, withb; = g—*. F isthe standard fun-

damental matrix that we would form from observations.
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5.2. Geometry of Three Views

The so-called trilinear constraint captures the geo-
metric relationships existing between points and lines
in three camera views. Figure 3 shows three im-
age planes ¢4, ¢, and ¢c with bases {A;}, {B;}. and
{C;} and optical centers Ay, By, Cy. Intersections of
two world points X; with the planes occur at points
Al,B;, C/,i = 1,2. The line joining the world points
is L1 = X A X, and the projected lines are denoted
by Ly, L, and L.

We first define three planes:

(D:i = A{}/’\Aj /\AE,
CDEJ = Co/\C"] /\sz

CD;B ) BU Fa¥ B; TAN BJQ‘.
(37)
It is clear that L, can be formed by intersecting ®’;

and .

L= (D}; M CDL = (Byp A LFB) N (Cp A L’C) (38)

If Ly, = Ag A A and Ly, = Ag A A), then we can
easily see that L, and L, intersect with L, at X; and

X, respectively. We therefore have

LiAnLi;=0 and LaALyp=0, (39)
which can then be written as
(AgAAD) A{(BoALR)N(CoA L)) =0
fori=1,2. (40)

This suggests that we should define a linear function
T which maps a point and two lines onto a scalar as
follows:

T{_A", L};, L!C) = (Ag A A’] A

{(Bo A L) N (Cy A L)) (41)
Now, using the line bases of the planes B and C. we
can write
A=y, Ly =17LY L=IfLf. @)
If we define the components of a tensor as 7, =
T(Ai, L%, L{), and if A', L}y, and L. are all derived
from projections of the same two world points then

Figure 3. Mode! of the trinocular projection of the visual 3D space.

By
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Eq. (40) tells us that we can write

T is the trifocal tensor [12, 29] and Eq. (43) is the
wrilinear constraint. In [11, 29] this constraint was
arrived at by consideration of camera matrices; hare,
however, Eq. (43) is arrived at from purely geometric
considerations, namely, that two planes intersect in a
line, which in turn intersects with another line. To
see how we relate the three projected lines, we express
the line in image plane ¢, joining A| and A as the
intersection of the plane joining Ay to the world line
L > with the image plane ®4 = A AA; AN Aj:

L;ZAFl/\A;——‘(Ag/\Ln)ﬂ(DA. (44)

Considering L), as the meet of the planes &, v &
and using the expansions of L',, L, and L. given in
Eq. (42), we can rewrite this equation as

1LY = ((Ao AAY) /\ffffl(BU & L?)
N(CoALE)}) N @4 (45)

Using the expansion of the meet given in Eq. (25), we
have

IPLE = [(AonA)ALZIE{(BoA LY)
N(ConLg)}LE. (46)

which, when we equate coefficients, gives

ffq = ,‘jkffff. (47)
Thus, we obtain the familiar equation which relates the
projected lines in the three views.

6. 3-D Projective Invariants from Multiple Views

This section presents the point and line projective in-
variants computable by means of n uncalibrated cam-
eras. First we introduce the computation of the cross-
ratio in 2D and 3D using the projective split. The use of
the projective split, which is based in the inner product,
is an advantage of the geometric algebra framework,
this cannot be done using Grassmann-Cayley algebra
or double algebra. We also explain how we can gener-
ate geometric invariants using the Pliicker-Grassmann
quadratic relation. We give a geometric interpretation

of the cross-ratio in the 3-D space and in the image
plane. Finally, we compute projective invariants using
two and three cameras and applying the projective split.

6.1. 2D Generalization of the Cross-Ratio

When we consider points in a plane, we once move up
to a space with one higher dimension, which we shall
call R®. Letapoint P in the plane M be described by the
vector x in £2, where x = xo; + yos. In R’ this point
will be represented by X=Xy, + Yy + Zy;, where
x=X/Z and y = Y/Z. We can define a general projec-
tive transformation via a linear function f_ by mapping
vectors to vectors in R>, such that )

f,m) =aiyi+eann +ays
£,(r) = Bini + B2 + By
I,(r3) = 81 + S22+ 8ys. (48)

Now, consider three vectors (representing non-
collinear points) X;,i=1,2,3, in R?, and form the
trivector

S=X,AXonXs5=Mh15, (49)

where /3 =y, y3 is the pseudoscalar for R3. As be-
fore, under the projective transformation given by
[, S ransforms to S5, where

Sy = detf,S». (50)

Therefore, the ratio of any trivector is invariant under
f,- To project down into €2, assuming that Xiy; =
Z;(1 + x;) under the projective split, we then write

Sl = (XXX, 1Y)
= (le3y3XzX3V3V313_l)
= Z\Z2Z3((1 + x)(1 — x2) (1 +x3)p3157),
(51)

where the x; represent vectors in £, We can only get a
scalar term from the expression within the brackets by
calculating the product of a vector, two spatial vectors,
and 13_', 1.e.,

ﬂzfj'] = Z\Z, Z3{(x1x3 — x1X3 —sz.x)}’ﬂ;_l)
= Z,Z>Z3{(x2 — x1) A (x5 —x )} (52)
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Itis therefore clear that we must use multiples of the
ratios in our calculations, so that the arbitrary scalars
Z; cancel. In the case of four points in a plane, there
are only four possible combinations of Z; Z;Zy and it
18 not possible to cancel all the Z’s by multiplaying
two ratios of the form X; A X A Xy together. For five
coplanar points {X;}.i=1,....5. however, there are
several ways of achieving the desired cancellation. For
example,

Xs A Xy AX3) I (X5 A X5 A X)Ly
(Xs A XA X;)!_{J{Xj AXs A x_;)f;l )

Inv; =

According to Eq. (52), we can interpret this ratio in £2
as

(x5 — %) A s —x3) 17 (X5 —x3) A (x5 —x,) 1]

Invy = = : =
(ks —x1) A (x5 —x3) ;" (x5 —x3) A (x5 —x4)1;
Asgz A
= Asuls (53)
As;3Asy

where 3 A;j; is the area of the triangle defined by the
three vertices X;,X;,x;. This invariant is regarded as
the 2D generalization of the 1D cross-ratio.

6.2. 3D Generalization of the Cross-Ratio

For general points in £°, we have seen that we move
up one dimension to compute in the 4D space R*.
For this dimension, the point X=x0, + yoy +zo3 in
£ is written as X=Xy +Yy,+ Zys + Wy, where
x=XW,y=Y/W,z=2Z/W. As before, a nonlinear
projective transformation in &£ becomes a linear
transformation, described by the linear function s
in R*.

Let us consider 4-vectors in R* {X;},i = 1,....4
and form the equation of a 4-vector:

S_} =X, A Xon X5 A Xy = A3la, (54)

where 1, = y;y2y3y4 is the pseudoscalar for R*. As
before, S; transforms to S; under L

> =X AX] »\X;/\Xflzder__,g&_;. (55)

3

The ratio of any two 4-vectors is therefore invariant
under f and we must take multiples of these ratios to
ensure that the arbitrary scale factors W; cancel. With
five general points we see that there are five possibil-
ities for forming the combinations W,W, W, W, Itis

then a simple matter to show that one cannot conside;
multiples of ratios such that the W factors cance]. Itis,
however, possible to do this if we have six points. One
example of such an invariant might be

(X] T X] At Xj AX4];'4_](X4 A XS A X: A x{‘jf’l_l
XA AK AR X AXeAXy A XL

(56)

Invy =

Using the arguments of the previous sections, we can
now write:

XiAXa A X3 A X)L
=W Wa W3 Wy{(x, — X)) A

(03 —x1) A (g — 2} (57)

We can therefore see that the invariant Invsy is the 3D
equivalent of the 1D cross-ratio and consists of ratios
of volumes.

Vi234 Vasae

Invy = (38)

Vi245 Vaa26

where Vjji; is the volume of the solid formed by the
four vertices x;, C 7 0 T

Conventionally, all of these invariants are well
known, but we have outlined here a general process
which is straightforward and simple for generating pro-
Jective invariants in any dimension.

6.3.  Generation of Geometric Projective Invariants

We choose for the visual projective space P° the
geometric algebra G, 5 and for the image or pro-
Jective plane P? the geometric algebra Gs . Any
3D point is written in Giaoas X, =X,y + Y2+
Zy,ys+ W,y and its projected image point in G; ¢
8 Xp =Xp0) + Ya02 + 2,03, where x, = X,/W,, y, =
Yo/ Wa, 2, =Z,/W,. The 3-D projective basis con-
sists of four basis points and a fifth one for normal-
ization: X;=[1,0,0,01",X, = [0,1,0,0]",X; =

[0,0,1,0/". X, = [0,0,0,1)7, X5 = [1,1,1,1]7
and the 2-D projective basis comprises three basis
points and one for normalization: x;=[I,0.0]".

x2=[0,1,01",x3=[0,0,1]", x4 =[1, 1, 1]7. Using
them we can express in terms of brackets for any 3D
point its 3D projective coordinates X, Y, Z, and its
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2D projected coordinates x,,, y, as well

X, _ [234n)[1235]
W, — [2345][123n]
Zy  [124n][1235]

Y,  [134n][1235]
W, ~ [1345][123n]

— e (39)
W, — [1245][123n]

. 2

X [23810124]  y,  [13n](124] -

w,  [2341[120]"  w,  [134][12n]°
These equations are projective invariants relations and
they will be used to compute the position of a moving
camera in subsection 9.2,

The projective structure and its projection on the
2-D image is related according the following geometric
constraint

0 ws¥s —ysZs (ys —ws)Ws
wsXs 0 —xsZs (x5 — ws)Ws

0 we¥s —yeZs (x5 —ws)Ws

0 we¥s —y6Zs (y5— we)W,s ) o
weXe 0 —x6Zs (X6 — we)Ws Y —0

0 wi¥s —y7Z; (ym—wpWy | | Z5 ‘
wi¥y 0 —xZy (m—w)Wy | \ Wy

) (61)

where X, Yy, Zy, Wy are the coordinates of the view
point. Since the matrix is of rank < 4, any determi-
nant of four rows becomes a zero. Considering as a
normalizing point (Xs, Y5, Zs, Ws) = (1, 1,1,1) and
taking the determinant formed by the first four rows
of Eq. (61) we get the geometric constraint equation

involving six points which was pointed out by Quan
(27]

(wsye — x56)X6Zs + (Xsy6 — xswe) Xe W

T (xswe — yswe)X6Ys + (ysx6 — wsxs)YeZs

T VsWe — y5x6) Yo We + (wsxe — wsyg) ZgWe =0
(62)

Carlsson [6] showed that the Eq. (62) can be also de-
rived using the Pliicker-Grassmann relations. This can
be computed as the Laplace expansion of the 4 x §
fectangular matrix involving the same six points as

14]

above

(X1, X2, X3, X4, X5, Xs, X6, X7]
= [Xo, X1, X3, X3][Xy, Xs, X6, X7]
= [Xo0. X1, X5, X4](X;3, X5, Xs, X5]
+ [Xo, X, X2, X5][X;3, X4, X6, X7]
= [Xo, Xy, X5, X¢][X5, X4, X5, X7]
+Xo, X1, X2, X71[X3, X4, X5, Xs] = 0. (63)

Using four functions like Eq. (63) in terms of permu-
tations of eight points, we get an expression where the
brackets having two identical points vanish

[0152][1345] — [0153][1245] + [0154][1235] =0,
[0216][2346] — [0236][1246] + [0246][1236] = 0,
[0315][2345] + [0325][1345] + [0345][1235] = 0,
[0416][2346] + [0426][1346] — [0436][1246] = 0,
(64)

Here the points are indicated only with their sub-
indices. It is easy to show that the brackets of im-
age points can be written in the form [xix 2] =
w;wjwe[ K ][XoX; X;X,], where [K] is the matrix of the
intrinsic parameters [23]. Now if in Eq. (64) we ex-
press all the brackets which have the point X in terms
of the brackets of image points and organize all the

bracket products as a 4 x 4 matrix we get the singular
matrix

0 [125][1345)]
[216][2346] 0
[315][2345)]
[416][2346]

[135][1245]
[236)(1246]
(325][1345) 0

[426][1346]

[145][1235]
[246][1236]
[345](1235]
[436][1246] 0.

(65)
Note that the scalars w;w;wy[ K] in each matrix entry
cancell themselves. Now after taking the determinat of

these matrix and rearrange the terms convenient] Yy, we
obtain the following useful bracket polynom

[125][346][1236][1246][1345][2345]
— [126][345)[1235][1245][1346][2346]
+ [135][246](1236)[1245)[1346][2345]
— [136][245][1235][1246][1345][2346]
+[145](236][1235](1246][1346][2345] |
— [146][235](1236][1245][1345](2346] = 0. (66)
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Figure 4. Grasping a box.

Surprisingly this bracket expression is exactly the
shape constraint for six points given by Quan [27]

O+ il izl Figdy +isls +iglg =0, (67)

where the i} =[125][346], i, =[126][345], iz= ...
and and /, =[1236][1246][1345][2345], I, = ... are
the relative linear invariants in P? and P? respectively.
Using the shape constraint we are now ready to de-
rive invariants for different purpose. Let us illustrate
this with and example. According the Fig. 4 there is a
configuration of six points which indicates whether or
not the end-effector is grasping properly. To test this
situation we can use an invariant generated from the
constraint of Eq. (66). In this particular situation we
recognize two planes, thus [1235] = O and [2346] = 0.
Substituting these six points in Eq. (66) some brackets
vanish reducing the equation to

[125][346][1236][1246][1345][2345]
— [135][246][1236][1245][1346][2345] =0
[125](346](1246][1345]
— [135)[246][1245][1346] =0 (68)

or

Inv
X AXoAXeAXS) LT (X AXs AXg A X
X AXoAX AX) T X AXs A XA Xs) !

(x) Ax2 Ax5)13"(x3 A Xy /\xﬁ)[;]

(69)

(x; A Xx3 Ax5)13"(x3 AXy /\.'1'5)}'3_1

In this equation any bracket of P? after the projective
mapping fulfills
Xi A Xy AXyAXs)!
=W, PV;;"V,;W_«{(I; —x) A (g —x) A
(xs —x)) 15", (70)

The constraint (66) makes always sure that the
W; W; W, W, constants are canceled. Furthermore, ac-
cording Eqs. (53-58), we can interpret nicely the in-
variant nv, the equivalent of the 1-D cross-ratio, in P3
as ratios of volumes and in P? as rations of triangle
areas

_ ViaasVizas  AnasAsse

Inv = = .
ViaasVizas  AjzsAage

(71)

[n other words We can also see this invariant in p3
as the relation of 4-vectors or volumes build by points
lying on a quadric which projected in P? represents an
invariant build by areas of triangles encircled by conics.

For example utilizing this invariant we can check
whether or not the grasper is holding the box correctly,
see Fig. 4. Note that using the observed 3-D points
in the image we can compute this invariant and see
if the relation of the triangle areas corresponds with
the appropriate relation for firm grasping, i.e. if the
grasper is away the invariant has different value than
the invariant value if the points X, X5 of the grasper
as required are near to the objects points X5, X3.

7. 3D Projective Invariants from Multiple Views

In the previous section the projective invariant was ex-
plained within the context of homogeneous projective
coordinates derived from a single image. Since, in
general, objects in 3D space are observed from dif-
ferent positions, it would be convenient to be able to
extend the projective invariant in terms of the linear
constraints imposed by the geometry of two, three, or
more cameras.

7.1.  Projective Invariants Using Two Views

Let us consider a 3D projective invariant derived from
Eq. (66):

I X X0 XX X X5 X0 X6 ]
nyy =

3= . (2
X X0 X0 X5 X5 X X0 X ]

The computation of the bracket

[1234] = (X; AX2 A X3 A Xg) I,
= (X1 AX2) A (X5 A Xe))

of four points from R*, mapped onto camera-images
with optical centers Ay and By, suggests the use of
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4 binocular model based on incidence algebra tech-
niques, as discussed in [4]. Defining the lines

Lp=X| A X, = (An /\L'?l) V
L= X3/ Xy = (A(] A L&) Vv

(Bo A L)
(BU A L:?at)s

where lines L;.j‘,. and ij. are mappings of the line L;;
onto the two image planes, results in the expression

[1234] = [AoByA|34B1234]- (73)
Here, A’IM and B’1234 are the points of intersection of
the lines Lf, and L{, or L, and LY, , respectively. These
points, lying on the lmage planes, can be expanded
using the mappings of three points X;, say X, Xa, X3,
to the image planes. In other words, considering A ;
andB;, j = 1,2, 3, as projective bases, we can expand
the vectors

!

Az = a12341 Ay + @12342A2 + 01234 3A3
! 1

B34 = Bi234, 1B + Br1234.2B2 + B12343Bs.

Then, using Eq. (36), we can express

[1234] = Z Fgalﬂmﬁmw = ap wFBins, (14)

i,j=1

where F is the fundamental matrix given in terms of
the projective basis embedded in R*, and ayze =
(et1234,1, 001234,2, @1234,3) and B34 = (Bi23a1, Piasa2,
B1224 3) are corresponding points.

The ratio

(aly34 F Biass) (0526 F Busas)
(alyus F Biass) (0hy26 F Bisze)

is therefore seen to be an invariant using the views of
two cameras [5]. Note that Eq. (75) is invariant for
whichever values of the y; components of the vectors
A;, B, X;, etc., are chosen. If we attempt to express
the invariant of Eq. (75) in terms of what we actually
observe, we may be tempted to express the invariant
in terms of the homogeneous Cartesian image coordi-
nates as, b;s and the fundamental matrix F calculated
from these image coordinates. In order to avoid this,
it is necessary to transfer the computations of Eq. (75)
carried out in R* to R?. Thus,
if we define F by

Invsp = (75)

Fu = (Ak-v2)By - va) Fy (76)

\ . ; Al
and consider the relationships o, = T-%a;; and 3, =
= Ay ij

B ;
g b, we can claim
i ¥a

[ ¥ FuBy = (Al - ya)(B; - vadaix Fubi. (77)

If F is subsequently estimated by some method, then
F as defined in Eq. (76) will also act as a fundamental
matrix or bilinear constraint in R*. Now, let us look
again at the invariant Invzp. Aswe demonstrated ealier,
we can write the invariant as

(aly34 Fbi2sa) (alsyq Fbasoe ) dr23ahasas

(78)
(@],45 Fb12us) (ah406 Fb3s26) Pr245$3426

Im»’yr =

where @5 = (qu,s y4)(qu“ y4). Therefore, we
see that the ratio of the terms a’ Fb, which resem-
bles the expression for the invariant in R* but uses
only the observed coordinates and the estimated fun-
damental matrix, will not be an invariant. Instead, we
need to include the factors 214, etc., which do not
cancel. They are formed as follows (see [17, 19]):
Since @, @), and @,;, are collinear, we can write
@logy = M12348, + (1 — [i23a)ay. Then, by express-
ing A3, as the intersection of the line joining A and
Ay with the plane through Ao, A’, A}, we can use the
projective split and equate terms, so that

(A|134 V4)(A4:;';ﬁ “ Y4)
(A6 * ¥a) (All2ss - V4)

_ Ha2es(Haane — 1)
pasae(iss — 1)

(79)

Note that the values of p are readily obtainable from
the images. The factors B/, -y, are found in a similar

pgrs
way, so that if b),y, = A1234b} 4 (1 — Ai234)b5, ete., the

overall expression for the invariant becomes

(@]534 Fb1234) (@506 Fbasas)
(ajlrms Fblzd,s)(a;uef‘-buza).
H1245( 13426 — D245 (haaze — 1)
tasze(pi23a — Diasag(hizzs — 1)

Img,c =

(80)

In conclusion, given the coordinates of a set of six
corresponding points in two image planes, where these
six points are projections of arbitrary world points in
general position, we can form 3D projective invariants,
provided we have some estimate of F.
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7.2.  Projective Invariant of Points Using Three
Uncalibrated Cameras

The technique used to form the 3D projective invariants
for two views can be straightforwardly extended to give
expressions for invariants of three views. Considering
four world points X, Xz, X3, Xs or two lines X; A X3
and X3 A X4 projected onto three camera planes, we
can write

X| A X: o (A(} /N L|42) N
X3 AN X_; = (A{} A\ L;\t) N

(BU 4 Liqz]
(CU M L3C4)
Once again, we can combine the above expressions so
that they give an equation for the 4-vector X; A X3 A
Xi A Xy,
XiAnXonXsaXy = ((Ao A Lf'z) N (BU AN L‘lgz))
A ((Ao AL$) N (Co A L))
= (Ao AAjzs) A ((Bo ALY)

N (Cy A LS,)). (81)
Then, by rewriting the lines L% and L in terms
of the line coordinates, we get L, = Z;—: I LY

and LS, = Y 3_ 15 LS. As has been shown in
subsection 5.2, the componems of the trifocal tensor
(which takes the place of the fundamental matrix for

three views) can be written in geometric algebra as

(ConLf))],
(82)

Tije = [(Ao AA) A ((BoALT)N

so that by using Eq. (81) we can derive:

3
X AXonXsAaXy] = Z ﬂ;kalzy.shﬁg_ﬂ;&,;\
i, k=1

= T(ap]g‘L!q.L } [83}
The invariant Inv3 can then be expressed as

T (o34, LY, L5,) T (uasae, Ls, L)
Iﬂlﬂ';jr = =

= . (84)
T(eviass, Ly, LEs)T (usas, Ly, L)

Note that the factorization must be done so that the
same line factorizations occur in both the numerator
and denominator. We have thus developed an expres-
sion for invariants in three views that is a direct exten-
sion of the expression for invariants using two views.

In calculating the above invariant from observed quan-
tities, we note, as before, that some correction factops
will be necessary: Eq. (84) is given above in terms
of R* quantities. Fortunately, this correction is quite
straightforward. By extrapolating from the results of
the previous section, we simply consider the o's termsg
in Eq. (84) as unobservable quanut:es and conversely
the line terms. such as Lf?, L are indeed obsu\ed
quantities. As a result, the expression must be modi-
fied. by using to some extent the coefficients computed
in the previous section. Thus, for the unique four com-
binations of three cameras their invariant equations can
be expressed as

IHI'_';T
- T (a123a, 15, I5,) T (@ssze, B35, 15 ) 11245 (iaang — 1)
T (@245, 1%, 155) T (@326, 15, 156 ) teasoe (t123a — 1)

(85)
8. Experimental Analysis of Projective Invariants

In this section we present results for the formation of
3D projective invariants from two or three views on
both simulated and real data. The simulations (carried
out in Maple) involve generating four different sets,
S;i=1,...,4, of 6 points;

si = {X!, X5, X3, X, X, Xg}

within some spatial volume. The volume was a spher-
ical region whose dimensions were around a tenth of
the distance of the center of the volume from the cam-
era’s optical center. These sets of points are then
observed from four different viewpoints, so that the
four sets of image coordinates for set S; are given by
Sijp J=1,00,4

. i i i i i i
Sy = {le*szvxj}‘xj-’nxﬁvxj&}

For each set of 6 points the three linearly independent
invariants I', 12, I° are formed, where these are the
standard invariants given as follows

(X X0 X5X4 (X3 X5X, X6]

(X X0 X X5 ][ X3 X X0 X6 ]
> X Xo X5 X)X X5 X5 Xe]

I' =

/- = (86)
(X XX X5 11X X5 X0 X6 ]

E (X X0 X3 X6 [X6 X5 X2X4]
(X1 X0 X6 X51[X3X6X2Xy]
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Invariants using F

G | 0.690 | 0.870 | 0.460 || 0.063 | 0.650 | 0.750 | 0.643 || 0.148 | 0.600 | 0.920 | 0.724 0.900 | 0.838 | 0.660 | 0.960
0 0.516 | 0.68 0.67 0.78 | 0.687 0.60 0.06 | 0.755 0.276 | 0.603 | 0.527

0.50 0 0.88 0.145 0.71 0.97 0.98 0.50

0.69 0.531 0.500 0.663

Invariants using T

0 | 0.590 0.310 | 0.630 0.044 0.590 0.326 0.640 0.031 0.100 | 0.352 0.660 0.000 0.640 | 0.452 0.700
0 0.63 0.338 0 0.63 0.378 0.031 0.337 0.67 0.063 0.77 0.545

0.134 0.67 0.192 0.87 0.31 0.87 0.321 0.63

0.29 0.388 0.518 0.643

Figure 5. The distance matrices (using F upper row and using T lower row) show the performance of the invariants with increasing Gaussian

noise o (from left to right): 0.005, 0.013, 0.025 and 0.04.

These I's are formed using a) views 1 and 2, b) views
2and 3, ¢) views I, 2 and 3 and d) views 2, 3 and 4-in
a) and b) the fundamental matrix is calculated by linear
means and in ¢) and d) the trifocal tensor is derived also
from a simple linear algorithm. Although these simple
linear methods do not enforce the necessary constraints
on I and T, the resulting estimates were adequate for
the purposes of the experiments shown here.

These invariants of each set were represented as 3D
vectors, v; = [Iy;, L, [3_‘-]T. The comparison of the
invariants was done using ‘Euclidean distances” of the
vectors, d(v;, v;), where

] (87)

For any v; and v; the distance d(v;, v;) lies between 0
and 1 and it does not vary when v; or v; is multiplied
by & nonzero constant—this follows Hartley’s analysis
given in [13].

Figure 5 shows two sets of tables. The (i, j)th entry
in the top left-hand box shows the distance, d(v;, v;),
between invariants for set S; formed from views | and
2 and invariants for set §; formed from views 2 and
3, when Gaussian noise of o = 0.005 was added to the
image points. The next boxes show the same thing
for increasing o. The lower row shows the equivalent
for invariants formed from three views using the ex-
pression given in Section 3; here the (i, j)th entry in
the top right-hand box shows the distance, d(v;,v;),
between invariants for set S; formed from views
I-3, and invariants for set §; formed from views
2-4, Clearly, we would like the diagonal elements
lo be as close as possible to zero since the invariants
should be the same in all views in the zero noise case.
The off-diagonal elements give some indication of the
usefulness of the invariants in distinguishing between
sets of points (we would like these to be as close to 1
as possible). We can see that the performance of the

Rif—

vi--vj

il llv;l

d(V['._ VJ) = [1 =

invariants based on trilinearities is rather better than
those based on bilinearities.

In the case of real images we use a sequence of im-
ages taken by a moving robot equipped with a binocular
head. Figure 6 shows an example of images taken with
the left and right eyes. Image pairs, one from the left
sequence and one from the right sequence were taken to
form invariants using F. For the formation of invariants
using 7', two from the left and one from the right se-
quence were used. 38 points were semi-automatically
taken and 6 sets of 6 general points were selected. The
vector of invariants for each set was formed using both
F and 7 and the set of distances found are shown in
Fig. 7 We again see that computing the invariants from
3 views is more robust and useful than computing them
from 2 views—one would expect this from a theoretical
viewpoint.

9. Applications

This section present a practical use of projective invari-
ants using three views. The results will show that de-
spite certain noise sensitivity the projective invariants
they can be used for various tasks regardless camera
calibration and ignoring a home coordinate system.

9.1.  Visual Guided Grasping

Let us now apply simple geometric rules using meet or
join operations, invariants and points at infinity to the
task of grasping as depicted in Fig. 8(a). The grasp-
ing procedure uses only image points and it consists
basically of the following four steps.

9.1.1. Parallel Orienting. Let us assume that the
3D points of Fig. 8 are observed by three cameras
A, B, C. The mapped points in the three cameras are
(04,), (g4). (05,). {5} and {oc, ). (g, }. Inthe projec-
tive 3D space P the three points at infinity V,, V,, V,
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Figure 6. Image sequence taken during navigation by the binocular head of a mobile robot. The upper and lower rows shows the left and right

eye images respectively.

using F

0.04 | 0.79 0.646 | 0.130 | 0.679 | 0.88
0.023 | 0.2536 | 0.278 | 0.268 | 0.89
0.0167 | 0.723 | 0.606 | 0.862
0.030 | 0.808 | 0.91
0.030 | 0.808
0.030

using T

0.021 0.77¢ | 0.346 | 0.930 | 0.759 0.81
0.016 | 0.305 0.378 | 0.780 | 0.823
0.003 0.83 0.8678 0.97
0.02 0.908 | 0.811
0.008 | 0.791
0.01

Figure 7. The distance matrices show the performance of the computed invariants using bilinearities (left) and trilinearities (right) for the real

image sequence.

for the orthogonal corners of the object can be com-
puted as the meet of two parallel lines and similarly
in the images planes the vanishing points vy, vy, v, are
computed as the meet of the two projected parallel lines
as well

Ve = (0) AO3) v (Os A Og)
Viu = (a,h A ﬂh) v (Dié A Dih)’
V, = (0, AOs) v (0 AOg)

(88)
Vi, = (Ofl A OJS) vV (OJ': A Oiﬁ}'

V,,’- = (0, A04) Vv (02 A 03)

Vi, = (OJI A D.f4) Vv (of: A 0}'3)’

where j € {A, B, C}. The parallelism in the projective
space P? can be checked in two ways:

a) If the orthogonal edges of the grasper are parallel
with the edges of the object, then

(G, AnGg) AV, =0, (G, /\G())/\Vy ==();
(G A Gy A Vz =10 (89)

The conditions (89) using the points of a single
camera can be expressed as

[gflgfsvl'.‘] =0, [gi]gfgvj_,] =0,
=0.

[gflgizviz] (90)

b) If the perpendicular planes of the grasper and those
of the object are parallel, then

[G1Gg0,0;] =0, [G15G160503] = 0.
(G12G130304] = 0. (91)
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Figure 8. Grasping an object: a) Arbitrary position for grasping b) parailel orienting ¢) centering d) optimal grasping.

The conditions (91) can be expressed en terms
of image coordinates either using two cameras
(bilinear constraint) or three cameras (trifocal
tensor)

T —
xf.a'r.s'u“r".' Eix'-"l-'fﬂ“l-f?_ =0,
T —
X cisosey L% is,sis0s0n
T —
xj_l.'|1_§'|_:ra3<a4 EJII.\'|1K|}H]HJ - 0'.' (92}

]f_;'kxe'gl_.,-s.,,u: I.Fm.'a I"‘Hlf’l = 0’

?}jkxfms.'ur,us--ﬂ Ij.u,s.rmik”i”s =
nﬂ“r"n:m_wsru Js1amy3 “Kozeq = 0. (93)
If the trinocular geometry is known, it is always
more accurate to use Eq. (93).

9.1.2. Centering. After a first movement the grasper
should be parallel and centered in front of the object,
see Fig. 8(b). The center points of the grasper and
object can be computed as follows

C, = (0, AOg) Vv (02 A Os), o4)
C, = (G) AGyg) V (G A Gy).

We can then check whether the line crossing these cen-
ter points encounters the point at infinity V. which is

the intersecting point of the parallel lines O;, A O}, and
O;, A Oj,. For that we use the constraint: a point lies
on a line if it is true that

ConCe AV, =0. (95)

This equation computed using image points of a single
camera is given by

[c,-”ci-_r v;-:] = 0. (96)

9.1.3. Grasping. We can detect the grasping situation
when the plane of the grasper touches the plane of the
object. This can be checked using the coplanar plane
condition as follows

[C.,C0,0,] = 0. (97)

Since we want to use image points we can compute
this bracket straightforward either using two or three
cameras employing the bilinear or trilinear constraint
respectively
X F;ix; =0
X ecgoron * ¥ icgegorer

(98)
Tk, po ooy sy =0

If the epipolar or trinocular geometry is known, it is
always more accurate to use Eq. (98).
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9.1.4. Holding the Object. The final step is to held
the object correctly, see Fig. 8(d). This can be checked
using the invariant in terms of the trifocal tensor given
by Eq. (85). In this particular problem, the perfect con-
dition will be when the invariant has the approximated
value of % for the case when the grasper is a bit away
of the control point X;, X3 the invariant becomes the
values for example of g or %. Note that the invariant el-
egantly relates volumes indicating a particular relation-
ship between the points of the grasper and of the object.

9.2.  Camera Self-Localization

We will use now the Eq. (59) to compute the 3-D co-
ordinates of a moving uncalibrated camera. For that,
we select first as a projective basis five fixed points
in the 3-D space X, X, X3, X4, X5 and consider the
unknown point X; as the optical center of the moving
camera, see Fig. 9. Assuming that the camera does not
moves on a plane the projection of the optical center X
of the first camera position corresponds to the epipole
in any of the subsequent views. We can then compute
the moving optical center using two cameras,

7 T ;
. (523461"5234@) (5 1235F'€ 1233) 234542345 4123641236

(63345Fe23s5) (61236 F€1236 ) a3asA23a6 14123571235 .
(99)

or using three cameras
;T=.{E
£ Wﬁ

(T2 ar3a6,41 23,11 a6.) (TS 1235l 12155, ) 2385 11236

(TaBCaraas o231 as.,) (TAE oi236.,1 12, 36.0) 23461235

(100)

Similarly permuting the six points like Eq. (60) we
compute /[, IT and 1F, IT. The compensating coef.
icients for the invariants I, and I, vary due to the per-
muted points. We carried out simulations by increasino
noise. Figure 10 shows using two views or three \'iew:;
the deviation of the true optical center for three cop-
secutive positions of a moving camera. These curves
show that the trinocular computation renders more ac-
curate results as the binocular case. The Euclidean
coordinates of the optical centers are gained applying
the transformation which relates the projective basis to
its a priori known Euclidean basis.

10. Projective Depth

In a geometric sense projective depth can be defined as
the relation between the distance from the view-center
of a 3D point X; and the focal distance f, as depicted
in Fig. 11.

We can derive projective depth from a projective
mapping of 3D points. According to the pinhole model,
the coordinates of any point in the image plane are
obtained from the projection of the 3D point to the
three optical planes qu‘. qbi, qbi. They are spanned by
a trivector basis ¥;, ¥;, ¥ and the coefficients 7;. This
projective mapping in a matrix representation reads as

— i 'k’
X Pa Iy hia Lz hig y
= |y|=|6i |X=]|1ty 2 tr3 tn 7
R o3 31 13 133 13
r r r Iy X
fF 0 0 1n 2 s
rz1 T2 ra 1y Y
=10 f 0
r31 2 rs ol z
0 0 1
- 0o 0 0 1 I

(101)

Figure 9. Computing the center of views of 2 moving camera,
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Figure 10. Performance of the computing of any three center of
view using F (higher spikes) and T. Range of the additive noise 0 to
0.4 of pixel.

where the projective scale factor is called 2. Note that
the projective mapping is further expressed in terms
of a f, rotation, and translation components. Let us
attach the world coordinates to the view-center of the

Ag Projective

Figure 11. Geometric interpretation of projective depth.

camera. The resultant projective mapping becomes

o O

X
! e PX (102)
7 | = : 2

I
S O~
o« S
o o o

I
We can then straightforwardly compute
k=7, (103)

The method for computing the projective depth (=2)
of a 3D point appears simple using invariant theory.
namely, using Eq. (59). For this computation, we select
a basis system, taking four 3D points in general position
X, X, X3, Xs, and the optical center of camera at the
new position as the four point Xy, and X¢ as the 3D
point which has to be reconstructed. This process is
shown in Fig. 12.

Since we are using mapped points, we consider the
epipole (mapping of the current view-center) to be the
fourth point and the mapped sixth point to be the point
with unknown depth. The other mapped basis points
remain constant during the procedure.

According to Eq. (59), the tensor-based expression
for the computation of the third coordinate, or projec-
tive depth, of a point X ;(=Xs) is given by

Z;

W;

T(am.x‘vlfiz'IE})T(“IBSJJ%J%] H124514123

T(ﬂlusslﬁzsf%)T(ﬂizs_j,ffg‘fgj) FLi24j 41235
(104)

Aj =

In this way, we can successively compute the pro-
jective depths 4;; of the j-points relating to the i-
camera. We will use A; in Section 11, in which we

By e e e P de e
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L4

Xf =4

L
xf =B

Figure 12. Computing the projective depths of n cameras.

employ the join-image concept and singular value de-
composition (SVD) for singular value decomposition
3D reconstruction.

Since this type of invariant can also be expressed in
terms of the quadrifocal tensor [17], we are also able
to compute projective depth based on four cameras.

11. Shape and Motion

The orthographic and paraperspective factorization
method for shape and motion using the affine camera
model was developed by Tomasi, Kanade, and Poelman
[26, 30]. This method works for cameras viewing small
and distant scenes, and thus for all scale factors of pro-
jective depth 2;; = 1. In the case of perspective im-
ages, the scale factors %;; are unknown. According to
Triggs [31], all A;; satisfy a set of consistency recon-
struction equations of the so-called join-image. One
way to compute A;; is by using the epipolar constraint.
If we use a matrix representation, this is given by

Fixdijxij = €jg N AgjXij, (105)

which, after computing an inner product with e;; A Xy,
gives the relation of projective depths for the j-point
between camera i and k:

i hij (e A xyj) Fixij

= — = = (106)
A P T I

Considering the i-camera as a reference, we can nor-
malize X;; for all k-cameras and use k;\_)- instead. If that
is not the case, we can normalize between neighbor
images in a chained relationship [31].

In Section 10, we presented a better procedure for
the computing of 4;; involving three cameras. An

extension of Eq. (106), however, in terms of the trifoca
or quadrifocal tensor is awkward and unpractical.

11.1.  The Join-Image

The Join-image J is nothing more than the intersec
tions of optical rays and planes with points or lines i
3D projective space, as depicted in Fig. 13. The inter
related geometry can be linearly expressed by the fun
damental matrix and trifocal and quadrifocal tensors.

In order to take into account the interrelated geom
etry, the projective reconstruction procedure shoulc
bring together all the data of the individual images in ¢
geometrically coherent manner. We do this by consid
ering the points X; for each i-camera,

k,‘jx;j — P,‘X}" (107
as the i-row points of a matrix of rank 4. For m camera:

and n points, the 3m x n matrix 7 of the join-image it
given by

(»* NXpr ApXi ApXg; Ly \
Aa1X21  AaXay  A3Xxas A2n X2y
A31x3  Asxz Aixs A3aX 3,

\;\'mlxm] An2Xm2  Am3Xm3 ""‘-mu-r;m.'_

(108

For the ffine reconstruction procedure, the matrix is O
rank 3. The matrix J of the join-image is therefor
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Figure 13. Geometry of the join-image.

amenable to a singular value decomposition for the ture, S, can be absorbed into both matrices, VNT;,, and
computation of the shape and motion [26, 30]. Uspxr, as follows:
_ : b oyT
11.2.  The SVD Method Tamxn = (U3”'X’S””) (S”‘" Vi ”)
()
The application of SVD to [J gives P,

(109) Ps
= ’ (XIX2X3"'XHJ4XH’ (]IOJ

T
~.7:\mxn = UBm XJ‘err 1

nxr?*

where the columns of matrix V!, and Us,., consti-
tute the orthonormal base for the input (co-kernel) and
output (range) spaces of 7. In order to get a decompo-

sition in motion and shape of the projected point struc- \ P ) 3m x4

Figure 14, Reconstructed house using (u) noise-free observations and (b) noisy observations.
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Using this method to divide S« is not unique. Since
the rank of .7 is 4, we should use the first four biggest
singular values for S, ... The matrices P; correspond to
the projective mappings or motion from the projective
space to the individual images, and X; represents the
point structure or shape. We can test our approach by
using a simulation program written in Maple. Using the
method described in Section 10, We first compute the
projective depth of the points of a wire house observed
with nine cameras, and we then use SVD to obtain the
house’s shape and motion. The reconstructed house,
after the Euclidean readjustment for the presentation,
is shown in Fig. 14.

We note that the reconstruction preserves the original
form of the model quite well.

In the following section, we will show how to im-
prove the shape of the reconstructed model by using the
geometric expressions N (meet) and A (join) from the
algebra of incidence along with particular tensor-based
invariants.

11.3.  Completion of the 3D Shape Using
Geometric’Invariants

Projective structure can be improved in one of two
ways: (1) by adding points on the images, expanding
the join- image, and then applying the SVD procedure;
or (2) after the reconstruction is done, by computing
new or occluded 3D space points. Both approaches can
use, on the one hand, geometric inference rules based
on symmetries, or on the other, concrete knowledge
about the object. Using three real views of a similar
model house with its rightmost lower corner missing
(see Fig. 15(b)), we computed in each image the virtual
image point of this 3D point. Then we reconstructed
the scene, as shown in Fig. 15(c). We also tried using
geometric incidence operations to complete the house,
employing space points as depicted in Fig. 15(d). The
figures show that creating points in the images yields a
better reconstruction of the occluded point. Note that
in the reconstructed image we transformed the projec-
tive shape into a Euclidean one for the presentation of
the results. We also used lines to connect the recon-
structed points but only so as to make the form of the
house visible. Similarly, we used the same procedures
to reconstruct the house using nine images. The results
are presented in Fig. 16(a—d).

The figure shows that the resulting reconstructed
point is virtually the same in both cases, which allows
us to conclude that for a limited number of views the

Figure 135. 3D reconstruction using three images: () one of the
three images: (b) reconstructed incomplete house using three images:
(c) extending the join-image; (d) completing in the 3D space.
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Figure 16. 3D reconstruction using nine images: (a) one of the
nine images; (b) reconstructed incomplete house using nine images;
lc) extending the join-image: (d) completing in the 3D space.

Join- image procedure is preferable, but for the case of
several images, an extension of the point structure in
the 3D space is preferable.

12. Conclusions

This paper has presented a brief introduction to the
techniques of geometric algebra and shown how they
can be used in the algebra of incidence and in the for-
mation and computation of projective invariants from
n views. Analyzing problems using geometric algebra
provides the enormous advantage of working in a sys-
tem which has very powerful associated linear algebra
and calculus frameworks and which can be used for
most areas of computer vision.

This work focused on the study and application of
projective invariants computed using two and three
cameras. We conducted experiments using simulated
and real images to compare projective invariants using
two or three uncalibrated cameras. As applications we
design geometric rules for conducting a task of visual
guided grasping and We also presented the computation
of the view center of a moving camera. The authors
believe however that more work have to be done in
order to improve the computational algorithms so that
the use of projective invariants will be more and more
attractive for real systems involving noisy data.
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