Chapter 10

Projective Reconstruction of
Shape and Motion Using
Invariant Theory

Eduardo Bayro Corrochano and Vladimir Banarer

10.1 Introduction

In this chapter we present a geometric approach for the computation of
shape and motion using projective invariants in the geometric algebra
framework [6, 7].

In the last years researchers have developed diverse methods to compute
projective invariants using n uncalibrated cameras [1, 2, 4, 8]. Different
approaches for projective reconstruction have utilized the projective depth
(13, 14], projective invariants [4] and factorization methods [11, 15, 16].
The factorization methods require the projective depth. The contribution
of this paper is the application of projective invariants depending on the
fundamental matrix or trifocal tensor to compute the projective depths.
Using these projective depths we initialize the projective reconstruction
procedure to compute shape and motion. We also illustrate the application
of algebra of incidence for the development of geometric inference rules to
complete the 3D data. The experimental part shows projective reconstruc-
tion of shape and motion using both simulated and real images.

The organization of the chapter is as follows: section two explains the
generation and computation of projective invariants using two and three
uncalibrated cameras. We test their performance using both simulated and
real images. Section three presents the computation of the projective depth
using projective invariants in terms of the trifocal tensor. The treatment
of projective reconstruction and the role of the algebra of incidence to
complete the 3—D shape is given in section four. The conclusion part follows.
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10.2 3-D Projective Invariants from Multiple Views

This section presents the point and line projective invariants computable
by means of n uncalibrated cameras. We begin with the generation of geo-
metric invariants using the Pliicker—-Grassmann quadratic relation. We give
a geometric interpretation of the cross—ratio in the 3-D space and in the
image plane. We compute then projective invariants using two and three
cameras.

10.2.1 Generation of geometric projective invariants

We choose for the visual projective space P3 the geometric algebra G 3
and for the image or projective plane P? the geometric algebra G3.0,0- Any
3D point is written in G; 30 as X,, = X711 + Yov2 + Znys + Wpys and its
projected image point in Gz 0,0 as ®, = T,01 + Yn02 + 2,03, where z, =
Xn/Why Yn = Y /Wh, 2o = Z,/W,. The 3-D projective basis consists of
four basis points and a fifth one for normalization: X; = [1,0,0,0]7, X, =
[0,1,0,0]7, X3 = [0,0,1,0], X4 =[0,0,0,1]T, X5 = [1,1,1,1]7 and the
2-D projective basis comprises three basis points and one for normalization:
x, = [1,0,0]7, x5 = [0,1,0]7, 3 = [0,0,1]7, &4 = [1,1,1]7. Using them we
can express in terms of brackets the 3D projective coordinates X,,, Y, Z,
for any 3D point, as well as its 2D projected coordinates z,,, yn

Xn  [234n][1235] Y, _ [134n][1235] Z,  [124n][1235] 5 i
W,  [2345][123n]° W,  [1345][123n]° W,  [1245][123n] (2.1)
Tn _ [23n][124]  y. _ [13n][124] (2.2)
wn 234][12n]" w, [134][12n] |

These equations are projective invariants relations and they can be used
for example, to compute the position of a moving camera.

The projective structure and its projection on the 2-D image is related
according to the following geometric constraint

0 wsYs —ysZs (ys —ws)Ws

wsXs 0 —x5Z5 (x5— ws)Ws
0 weYs —YeZe (T5— ws)Ws
0 weYs —YeZe (Y6 —ws)Ws X5!
we Xe 0 —x6Z¢ (z6 — we)Ws Yo =0 93
0 wrYr —yrZ: (y7 —wr)We Zit N 2:3)
wr X7 0 —z72Z7 (27 — w7)W5 Wo—l

where X, Yy, Zg Wy are the coordinates of the view point. Since the matrix
1s of rank < 4, any determinant of four rows becomes a zero. Considering
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(Xs, Ys, Z5 W5s) ='(1,1,1,1) as a normalizing point and taking the deter-
minant formed by the first four rows of equation (2.3) we get the geometric
constraint equation involving six points pointed out by Quan [12]

(wsye — Tsye) XeZe + (z5ys — Tswb) XeWe + (zswe — Ysw6) XeYe +

+(ysze — wsx6)YeZe + (Yswe — ys526)YsWe +

+('w5x5 — wsys)ZGWG = ) (2.4)

Carlsson [3] showed that the equation (2.4) can be also derived using the
Pliicker—Grassmann relations. This can be computed as the Laplace ez-

pansion of the 4x8 rectangular matrix involving the same six points as
above

(X1, X3, X3, Xa, X5, X5, Xs, X7] = [X0, X1, X2, Xa]  (25)
(X 4, X3, Xo, X7] — [ X0, X1, X2, X4][Xs, X5, X6, X7] +

H[X o, X1, X2, X35][X3, X4, X6, X7] — [Xo, X1, X2, X
(X3, Xa, X5, X7] + [Xo, X1, X2, X7][X3, X4, X5, X6] = 0.

Using four functions like equation (2.5) in terms of the permutations of six
points as indicated by their sub—indices in the table below

(X | X1 | X2 | X3 | Xa| X5 | X6 | X7

oty | O
[ I Nl I R e
Wlw|w|w
S
SO

1
1
1
1

o|lo|lo )| O
W N

we get an expression where the brackets that have two identical points
vanish

[0152][1345] — [0153](1245] + [0154][1235] = O,
(0216][2346] — [0236][1246] + [0246][1236] = O,
(0315][2345] + [0325][1345] + [0345][1235] = 0,

(0416][2346] + [0426][1346] — [0436][1246] = 0. (2.6)

It is easy to show that the brackets of image points can be written in the
form [x;z;xK] = wiw;wi[K][XoX:X ;X k] , where [K] is the matrix of
the intrinsic parameters [10]. Now if we express in equations (2.6) all the
brackets which have the point X in terms of the brackets of image points
and organize all the bracket products as a 4x4 matrix we get the singular
matrix

0 [125][1345] [135
[216][2346] 0 (236
(315](2345] [325][1345] 0 [345][1235]
416][2346]  [426][1346] [436][1246] 0.

[1245] [145](1235]
[1246] [246][1236]
[

——

(2.7)
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Here the scalars w;w;wg[K] of each matrix entry cancel each other. Now
after taking the determinat of this matrix and rearrange the terms conve-
niently, we obtain the following useful bracket polynomial

[125][346] [ 1236] [1246] [1345] 2345 -

[126](345) [1235] [1245] [1346] [2346) +

[135][246] [1236| [1245] [1346] [2345] —

1136][245)] [ 1235] [1246] "1345} [2346] +

[145][236] [1235] [1246] [1346| [2345] —

[146][235] [1236] [1245] [1345' 2346] =0, (2.8)

Surprisingly this bracket expression is exactly the shape constraint for six
points given by Quan [12]

1107 + tols + t3l3 + 1414 + i5]5 + tglg = 0, (29)

where i1 = [125][346)], iz = [126][345], ..., ig = [146][235] and
I, = [1236][1246][1345](2345], I> = [1235][1245][1346][2346], ...,
Is = [1236][1245][1345][2346] are the the relative linear invariants in P? and
P3 respectively. Using the shape constraint we are now ready to generate
invariants for different purpose.

Let us illustrate this with an example. As shown in the Figure 10.1 there
is a configuration of six points which indicates whether or not the end-
effector is grasping properly.

]P;.S

FIGURE 10.1. Grasping a box.

To test this situation we can use an invariant generated from the cons-
traint of equation (2.8). In this particular situation we recognize two planes:
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[1235]=0 and [2346]=0. Substituting these six points in equation (2.8) we
make some brackets vanish reducing the equation to

[125][346] [ 1236] | 1246] [1345 [2345} "

_[135][246] [1236] [1245] {1346} [2345} ~0 (2.10)

[125][346] [1246] {1345] — [135][246] [1245] [1346] =0 (2.11)

or

(X AXAX G AX )T H (X AKZAX AKX ) I
(X1 AX2AX JAXG) [T H X1 AX AKX AX )]
(1 AxaAzs) I3 (xzAxanTe) 5

(x4 /\a:gA:cs)Ié”l(:cg/\aa/\:cﬁ)Ia_l'

Invy =

(2.12)

In this equation any bracket of P3 after the projective mapping fulfills

(X, /\Xg/\X4/\X5)I4_1 =
WiWoWiWs{(xz — T1)A(24 — 1)A (x5 — 1)} 3+, (2.13)
The constraint (2.8) makes always sure that the W;W,; W, W, constants are

canceled. Furthermore, we can interpret the invariant I'nv, the equivalent
of the , in P3 as ratios of volumes and in P? as rations of triangle areas

Vi245Vi: Aqa5A:
Iy — 2124571346 _ 21254346 (2.14)

VioaeVizas  Ai13zsAaqe

In other words, we can also see this invariant in P as the relation of 4-
vectors or volumes built by points lying on a quadric which projected in
P? represents an invariant build by areas of triangles encircled by conics.

For example utilizing this invariant we can check whether or not the
grasper is holding the box correctly. Note that using the observed 3-D
points in the image we can compute this invariant and see if the relation
of the triangle areas corresponds with the appropriate relation for firm
grasping, i.e. if the grasper is away the invariant has a different value from
the required value when the points X, X5 of the grasper are near to the
objects points X3, X3.

10.2.2  Projective invariants using two views

Let us consider a 3-D projective invariant derived from the equation (2.8)

(X XX 53Xy [XaX5 X2 X6

. 2.15
XXX X5 [Xa X4 X5Xe] E15)

Invsg =
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The computation of the bracket

[1234] = (X3 AXoAXAX DI = (X AX)A(X3AX ) I

of four points from R*, mapped to the cameras with the optical centers
A and Bg, suggests to use the binocular model based on incidence algebra
as introduced in chapter 7. Defining the lines

Li; = Xi1AXp = (AoALL) V (BoALE,
Lzs = X3AXy=(AoALL)V (BoALE)

where lines L;f; and Lg are mappings of the line L;; to the two image
planes, results in the following expression for the bracket

[1234] [ADBD 234B1234] (216)

Here A’ 5, and Bl,,, are the points of intersection of the lines L{, and
L34 or Ly, and L3y, respectively. These points, lving in the image planes
can be expanded using the mappings of three points X;, say X;, X5, X3, to
the image planes, i.e. A; and B;, j = 1,2, 3, as projective basis, as follows

!
1234 = @12341A1 + 12342A2 + 1234 3A3
!
1234 = P1234,1B1 + B12342B2 + F1234,3B3.

Then equation (15.73) from chapter 15 follows
[1234] = Z 1101234,iB1234,; = 1534 F B1osa, (2.17)
,j=1

where F is the fundamental matrix given in terms of the projective ba-

: = 4 P =
518, embedded in R* and X1234 = (a1234}1,01234,2,a1234,3) and 61234 =
(B1234,1, B1234,2, B1234,3) are corresponding points.

The ratio

(QT1234F161234)(aT4526F54526)
(1245 F B1245) (T 3426 F B349¢)

is therefore seen to be an invariant using two cameras [2]. Note that equa-
tion (2.18) is invariant whatever values of the 4 components of the vectors
A;, B,;, X, etc. are chosen. A confusion arises if we attempt to express the
invariant of equation (2.18) in terms of what we actually observe, i.e. the
homogeneous Cartesian image coordinates a!s, bs and the fundamental

Invsp = (2.18)
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matrix F calculated from these image coordinates. In order to avoid that
it is necessary to transfer the computations of equation (2.18) carried out
in R* to R®. Let us explain now this procedure.

If we define F' by

Fry = (Ak-7a)(Bi-va) Fri (2.19)

then using the relationships a;; = %'—:‘aﬁ and B;; = B_i%bij it follows
it it

that
i FruBy = (A5 -va)(Bj-va)aikFribi. (2.20)

If F is estimated by some method, then an F defined as in equation (2.19)
will also act as a fundamental matriz or bilinear constraint in R*. Now let us
look again at the invariant Invgp. According to the above considerations,
we can write the invariant as

_ (aT1234Fbig3q)(a” 4526 F'bas26) P1234Pas26
I'n-‘v;;F = T T
(aT 1245 Fb1245) (a7 3426 F 3426 ) 91245 P3426

(2.21)

where ¢pgrs = (A’pqm -74)(B;,qm-fy4). Therefore we can see that the ratio
of the terms a? F'b which resembles the expression for the invariant in
R* but uses only the observed coordinates and the estimated fundamental
matrix will not be an invariant. Instead, we need to include the factors
¢1234 etc., which do not cancel. It is relatively easy to show (1] that these
factors can be formed as follows. Since a4, a} and a’,34 are collinear, we
can write @jo34 = pi123aal + (1 — pi23s)as. Then, by expressing Al ony
as the intersection of the line joining A} and Aj with the plane through
Ao, A}, Al, we can use the projective split and equate terms so that they
give

(Al534-74)(Alsze V4) _ M245 (p3a26 — 1)
(Abaos-7¥a)(Aloasva)  Masze(p1234 — 1)

(2.22)

Note that the values of p are readily obtainable from the images. The

factors BJ,,,..v4 are found in a similar way so that if b)o3q = A123aby+ (1 —

A1234)b5 etc., the overall expression for the invariant becomes

(afh34Fbi234) (@dso6Fbasas) |
(545 Fbi2as) (a3 06 Fbaaze)

1245 (13426 — 1) A1245(A3426 — 1)
pas26(H123s — 1) Adsae(A123a — 1)

I'ﬂ’ng

(2.23)

As conclusion, given the coordinates of a set of 6 corresponding points in
two image planes, where these 6 points are projections of arbitrary world
points in general position, we can form 3-D projective invariants provided
we have some estimate of F'.
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10.2.8 Projective invariant of points using three views

The technique used to form the 3—D projective invariants for two views can
be straightforwardly extended to give expressions for invariants of three
views. Considering four world points, X, X5, X3, X4, or two lines X; AXo
and X3AXy4, projected into three camera planes, we can write

X1AX, = (AgALL)V (BoALE
X3sAXs = (AoAL%,)V (CoALS,

Once again, we can combine the above expressions so that they give to give
an equation for the 4-vector X; AX;AX3A Xy,

XiNAXoAX3AX, = ((AQALIQ)V(BO/\L ))/\((Ao/\L )V(COAL34))
= (AoAAi1231) A((BoALD,) V (CoALS)). (2.24)

Writing the lines LY, and L§, in terms of the line coordinates we have

3
L= z 5 ;L7 and LY, = Zjl 15 LY

It has been shown in chapter 15 that the components of the trifocal
tensor (which plays the role of the fundamental matrix for 3 views), can
be written in geometric algebra as

Tijk = [(AoAA)A((BoALY) V (CoALY))] (2.25)

so that from equation (2.24) it can be derived:

[Xl/\X.z/\XS/\X4 - Z szka1234 1,l123l34k: T((11234,L132,L5€1)(226)
i,j.k=1

The invariant Inwvs can then be expressed as

T(C11234, L‘182: L%)T(azis%: Lg{)a LQCES)
T(o1245, LS, L%)T(a34261 L;i, L%

Invsgyr = (2.27)

Note that the factorization must be done so that the same line factori-
zations occur in both the numerator and denominator. Therefore we have
an expression for invariants in three views that is a direct extension of the
invariants for two views. Forming the above invariant from observed quan-
tities we note, as before, that some correction factors will be necessary —
equation (2.27) is given above in terms of R* quantities. Fortunately, this
is quite straightforward. Regarding the results of previous section, we can
simply consider the a’s terms in equation (2.27) as not observable quanti-
ties, conversely the line terms like LY, LS, are indeed observed quantities.
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As a result, the expression has to be modified using partially the coeffi-
cients computed in previous section and for the unique four combinations
of three cameras their invariant equations read

T(a1234; 15, 1$,)T (@526, 12 150) pi2as(psacs — 1)
T(a1245, 155, 155) T (@326, 154, 156) Has2e(t1234 — 1)

Invsr = (2.28)

10.2.4 Comparison of the projective invariants

Invariants using F Invariants using 1’

0.000 | 0.590 | 0.670 | 0.460 0.000 | 0.590 | 0.310 | 0.630

0 0.515 | 0.68 0 0.63 | 0.338
0.59 0 0.134 | 0.67
0.69 0.29

0.063 | 0.650 | 0.750 | 0.643 0.044 | 0.590 | 0.326 | 0.640

0.67 | 0.78 | 0.687 0 0.63 | 0.376
0.86 | 0.145 0.192 | 0.67
0.531 0.389

0.148 | 0.600 | 0.920 | 0.724 0.031 | 0.100 | 0.352 | 0.660

0.60 0.96 | 0.755 0.031 | 0.337 | 0.67
0.71 0.97 0.31 0.67
0.596 0.518

0.900 | 0.838 | 0.690 | 0.960 0.000 | 0.640 | 0.452 | 0.700

0.276 | 0.693 | 0.527 0.063 | 0.77 | 0.545
0.98 0.59 0.321 | 0.63
0.663 0.643

FIGURE 10.2. The distance matrices show the performance of the
invariants by increasing Gaussian noise o: 0.005, 0.015, 0.025 and 0.04.

This section shows simulations with synthetic data and computations
using real images. The simulation was implemented in Maple.

The computation of the bilinearity matrix F and the trilinearity focal
tensor 7' was done using a linear method. We believe that for the test
purposes these are good enough. Four different sets of six points S; =
{X:il,X{Q,Xﬁg,X{;;,Xis?Xis}, where i = 1, .., 4, were considered in the
simulation and the only three possible invariants were computed for each
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set {I1.i,124,13:}. Then, the invariants of each set were represented as 3—
D vectors (v; = [I14, I, 13.:]7). We computed four of these vectors that
corresponded to four different sets of six points using two images for the F
case and three images for the T case (first group of images); and for four
of these vectors corresponding to the same point sets we used another two
images for the F' case or another three images for the T" case (second group
of images). The comparison of the invariants was done using BEuclidean

distances of the vectors d(v;,v;) = (1 — ‘Ilv T ||) this method was
i A

used for the same reason by [5].

Since in d(v;,v;) we normalize the vectors v; and v;, the distance
d(v;,v;) for any of them does lies between 0 and 1 and it does not vary
when v; or v; is multiplied by a nonzero constant. The figure 10.2 shows
a comparison table where each (i, 7)-th entry represents the distance com-
puted using d(v;, v;) between the invariants of set S; of the points extracted
of the first group of images and the set .S; of the points yet using the second
group of images. In the ideal case, the diagonal of the distance matrices
should be zero, that means that the values of the computed invariants
remain constant regardless of which group of images they were used for.
The entries off the diagonal mean that we are comparing vectors composed
of different coordinates (v; = [I 1,@,12'2-,13,{}T), thus they are not parallel
and should be bigger than zero and if they are very different the value of
d(v;,v;) should be approximately 1. Now looking at the figure 10.2, we can
clearly see that the performance of the invariants based on trilinearities is
much better than that of those based on bilinearities, the diagonal values
in the T case are in general closer to zero than in the F' case and its entries
off the diagonal are in general bigger values than in the F' case.

FIGURE 10.3. Image sequence taken during navigation by the binoc-
ular head of a mobile robot. The upper row shows the left camera

images and the lower one shows the right camera ones.
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In the case of real images we use a sequence of images taken by a moving
robot equipped with a binocular head. The figure 10.3 shows three images
of the left eye in the upper row and below these of the right eye respectively.
We took image couples, one from the left and one from the right for the
invariants using F and two of one eye and one of the other for the invariant
using 7. From the image we took 38 points semi—automatically and we
selected now six sets of points. In each set the points are in general position.
Three invariants of each set were computed and the comparison tables were
obtained similarly to the previous experiment, see figure 10.4.

using F'
0.04 | 0.79 0.646 | 0.130 | 0.679 | 0.89
0.023 | 0.2535 | 0.278 | 0.268 | 0.89
0.0167 | 0.723 | 0.606 | 0.862
0.039 | 0.808 | 0.91
0.039 | 0.808
0.039

using 7
0.021 | 0.779 | 0.346 | 0.930 | 0.759 | 0.81
0.016 | 0.305 | 0.378 | 0.780 | 0.823
0.003 | 0.83 | 0.678 | 0.97
0.02 | 0.908 | 0.811
0.008 | 0.791
0.01

FIGURE 10.4. The distance matrices show the performance of the
computed invariants using bilinearities (top) and trilinearities (bot-

tom) for the image sequence.

This shows again that the approach to compute the invariants using tri-
linearities is much more robust than the one using bilinearities, as expected
from the theoretical point of view.

10.3 Projective Depth

In a geometric sense the projective depth can be seen as the relation between
the distance regarding the view center of a 3-D point X ; and the focal
distance f as depicted in figure 10.5.

Let us derive the projective depth from a projective mapping. According
to the pinhole model explained in chapter 15 the coordinates of a point in
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Perspective

Ap Projective

FIGURE 10.5. Geometric interpretation of the projective depth.

the image plane is the result of the projection of the 3-D point to the three
optical planes ¢4, ¢34, ¢%. They are spanned by a trivector basis i, ¥;, Yk
and the coefficients ¢;;. This projective mapping in a matrix representation
reads

= X

z 4 tin tiz tiz tig %

Az = y | =] ¢4 | X =| tar taz taz tos 7
3

L1 DA t31 t32 tsz ta4 1

(3.29)

= 0 0 0 1

where the projective scale factor is called A. Note that the projective ma-
pping is further expressed in terms of a f, rotation and translation compo-
nents. Let us attach the world coordinates to the view center of the camera.
The resultant projective mapping becomes

A\ = PX. (3.30)

I

O O
o O
R =E=
oo o

X

¥
Z
|

We can then compute straightforwardly

A= Z. (3.31)
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The way how we compute the projective depth (= A) of a 3-D point
appears simple using invariant theory, namely using equations (2.1). For
that we select a basis system taking four 3-D points in general position
X1, X2, X3, X5, the optical center of camera at the new position as the
four point X 4, and X as the 3-D point to be reconstructed. This has been
depicted in figure 10.6.

Since we use the mapped points, we consider the epipole (mapping of
the current view center) as the four point and the mapped sixth point as
the point with the unknown depth. The other mapped basis points remain
constant during the procedure.

T4

25 TMNU_.cooomeeeeenes °

Fr R .,': 2 o = I/O

XxE = By eBM
FIGURE 10.6. Computing the projective depths of n cameras.

According to equation (2.1), the tensor based expression for computing
the third coordinate or projective depth of a point X ; (= X¢) reads

N — ZJ— - T(C5124j, IIBQ, E%)T(alggg? lg, 15'5) 41245 1123 3.3
J (@1245, U179, Ugs) T (@235, lia, U3;)  Hi1245H1235

In this way we can successively compute the projective depths A;; of the
j—points referred to the i—camera. The \;; will be used in next section for
the 3—D reconstruction using the join image concept and the singular value
decomposition SVD method.

Since this kind of invariant can be also expressed in terms of the quadrifo-
cal tensor [9], we can compute the projective depth based on four cameras.

10.4 Shape and Motion

The orthographic and paraperspective factorization method for structure
and motion using the affine camera model was developed by Tomasi, Kanade
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and Poelman [11, 15]. This method works for cameras viewing small and
distance scenes, thus all scale factors of projective depth A;;=1. For the
case of perspective images the scale factors A;; are unknown. According to
Triggs [16] all \;; satisfy a set of consistency reconstruction equations of
the so—called join image. One way to compute \;; is by using the epipolar
constraint. If we use a matrix representation this is given by

FipAij®i; = €ix A ApjTrj (4.33)

which after an inner product gives the relation of projective depths for the
j-point between camera ¢ and k

- /\kj _ (eik/\mk_,-)Fik:Eij (4 34)
%7 i ||ewx Axk;||? '

Considering the i-camera as reference we can norm the Ag; for all k-
cameras and use A} ; instead. If that is not the case we can norm between
neighbor images in a chained relationship [16].

In the previous section we presented a better procedure for the computing
of \;; involving three cameras. The extension of the equation (4.34) in terms
of the trifocal or quadrifocal tensor is awkward and unpractical.

10.4.1 The join vmage

The join image J is nothing else than the intersections of optical rays and
planes at the points or lines in the 3-D projective space as depicted in
figure (10.7). The interrelated geometry can be linearly expressed by the
fundamental matrix and trifocal and quadrifocal tensors. The reader will
find more details about these linear constraints in chapter 7.

In order to take into account the interrelated geometry, the projective
reconstruction procedure should put together all the data of the indivi-
dual images in a geometrically coherent manner. The way to do that is by
considering the observations of the points X ; regarding each i—camera

XijTi; = P X (4.35)

as the i—row of a matrix of rank 4. For m cameras and n points the 3mxn
matrix J of the join image is given by

[ AMiz11 A®iz ATz - - - An®in
A21T21 Aoaoz  A23%23 . . . Aon®an
A31®31  A32®32 A33®iz - - - A3nTan

J = : ; : 2 8 . . (4.36)

\ )\mlmml ’\m2$m2 '\m3mm3 . e . /\mnmmn /
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FIGURE 10.7. The geometry of the join image.

For the affine reconstruction procedure the matrix is of rank 3. The matrix
J of the join image is amenable to a singular value decomposition for
finding the shape and motion [11, 15].

10.4.2 The SVD method
The application of SVD to J gives

jS-?an = U3m><TSf‘><TVnTXT1 (437)

where the columns of matrix V.2, and Us,,x, constitute the orthonormal
base for the input (co-kernel) and output (range) spaces of J. In order to
get a decomposition in motion and shape of the projected point structure,

S, can be absorbed into both matrices V.Z . and Uz, x, as follows

( B

Py \
1 1 Ps
Tsmxn = (USmerfxf-)(S«,?me?xr) = : (X1X2X3---Xn)4><r(4-38)

\ Pm )3mx4

This way to divide S,x, is not unique. Since the rank of 7 is 4 we should
take the first four biggest singular values for S,y,. The matrices F; co-
rrespond to the projective mappings or motion from the projective space
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to the individual images and the point structure or shape is given by X ;.
We test our approach using a simulations program written in Maple. Using
the method of section 10.3 firstly we computed the projective depth of the
points of a wire house observed with 9 cameras and then using the SVD
projective reconstruction method we gained the shape and motion. The
reconstructed house after the Euclidean readjustment for the presentation
is shown in figure 10.8.

GoNse@ORAR®

FIGURE 10.8. Reconstructed house using a) noise—free observations

and b) noisy observations.

We notice that the reconstruction keeps quite well the original form of
the model.

The next section will show how we can improve the shape of the re-
constructed model using geometric expressions in terms of the operators
of algebra of incidence V (meet) and A (join) and particular tensor based
invariants.
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10.4.8 Completion of the 8—D shape using

geometric nvariants

c) d)

FIGURE 10.9. a) One of the three images, b) reconstructed incomplete
house using 3 images c) extending the join image d) completing in the

3-D space.

The projective structure can be improved in two ways: by completing
points on the images, by expanding the join image and then by calling the
SVD procedure, or, after the reconstruction, by completing points in the 3—
D space like the occluded ones. Both approaches can use geometric inference
rules based on symmetries or concrete knowledge about the scene. Using
three real views of a similar model house with its most right lower corner
missing, see figure 10.9.b , we compute in each image the virtual image
point of this 3-D point. Then we reconstruct the scene as shown in figure
10.9.c. As opposite, using geometric incidence operations we completed the
house employing the space points as depicted in figure 10.9.d. We can see
that creating points in the images yields a better reconstruction of the
occluded point. Note that in the reconstructed image we transformed the
projective shape into an Euclidean one for the presentation of the results.
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FIGURE 10.10. a) One of the nine images, b) reconstructed incomplete
house using 9 images c) extending the join image d) completing in the

3—D space.

We used also lines connecting the reconstructed points only to make visible
the house form. Similarly we proceeded using 9 images, as presented in in
figure 10.10.a—d.

We can see that the resulting reconstructed point is almost similar in
both procedures. As a result we can draw the following conclusion: when
we have few views we should extend the join image using virtual image
points and in case of several images we should extend the point structure
in the 3-D space.

10.5 Conclusions

This chapter focused on the application of projective invariants based on
the trifocal tensor. We developed a method to compute the projective depth
using this kind of invariants. The resulting projective depths were then used
for the initialization of the projective reconstruction of shape and motion.
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Furthermore using incidence algebra rules we completed the reconstruction
for the case of occluded points.

The main contribution of this paper is that in our geometric method
we relate to and extend current approaches regarding projective invariants
and their application for reconstruction of shape and motion, as a result
the procedures gain geometric transparency and elegance. However, the
authors believe that more work have to be done in order to improve the
computational algorithms so that the use of projective invariants will be
more and more attractive for real systems involving noisy data.
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