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This article presents the formulation of the robot manipulator kinematics in the
geometric algebra framework. In this algebraic system the three-dimensional Eu-
clidean motion of points, lines, and planes can be advantageously represented using
the algebra of motors. The computational complexity of the direct and indirect
kinematics and other problems concerning robot manipulators depend on their de-
grees of freedom as well as on their geometric characteristics. Our approach makes
possible a direct algebraic formulation of the problem in such a way that it reflects the
underlying geometric structure. This is achieved by switching where necessary 0 a
description of parts of the problem based on motor representations of points, lines,
and planes. This article presents the formulation and computation of closed-form
solutions of the direct and indirect kinematics of standard robot manipulators and a
simple example of a grasping task. The flexible method presented here is new, and it
widens the current standard point or line representation-based approaches for the
treatment of problems related to robot manipulators. @ 2000 John Wiley & Sons, Inc.
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1. INTRODUCTION

In the literature we find a variety of mathematical
approaches for solving problems in robotics which
we will review now briefly. Denavit and Harten-
berg! introduced the kinematic notation used most
for lower pair mechanisms based on matrix algebra,
Walker? used the epsilon algebra for the treatment
of the manipulator kinematics, Gu and Luh’ uti-
lized dual-matrices for computing the Jacobians
useful for kinematics and robot dynamics, and Pen-
nock and Yang® derived closed-form solutions for
the inverse kinematics problem for various types of
robot manipulators employing dual-matrices. The
dual form of the Jacobian for the analysis of multi-
links was used similarly by McCarthy.* Finally,
Funda and Paul® gave a detailed computational
analysis of the use of screw transformations in
robotics. These authors explained that since the dual
quaternion can represent the rotation and transla-
tion transformations simultaneously, it is more ef-
fective for dealing with the kinematics of robot
chains than the unit quaternion formalism. Using
dual quaternions Kim and Kumar’ computed a
closed-form solution of the inverse kinematics of a
6-degree of freedom robot manipulator in terms of
line transformations. Aspragathos and Dimitros®
confirmed once again that the uses of dual quater-
nion and Lie algebra in robotics were overseen so
far and that their use helps to reduce the number of
representation parameters.

In all these mathematical approaches the au-
thors take into account basically two key aspects:
the obvious use of dual numbers and the represen-
tation of the screw transformations in terms of ma-
trices or dual quaternions. In this article we are
concerned with the extension of the representation
capabilities of the dual numbers, considering partic-
ularly the case of using the motor algebra beside the
point and line representation to enable the modeling
of the motion of planes. This widens the possibili-
ties for the modeling of the motion of the basic
geometric objects, that are referred to frames at-
tached to the robot manipulator which, according to
the circumstances, simplifies the complexity of the
problem, preserving the underlying geometry. After
giving the modeling of prismatic and revolute
transformations of a robot manipulator using points,
lines, and planes, we solve the direct and inverse
kinematics of robot manipulators. Using the motion
of points, lines, and planes in terms of motors we
present constraints for a simple grasping task. The
article clearly shows the advantages of the use of

representations in motor algebra for solving prob-
lems related to robot manipulators.

The organization of the article is as follows:
section 2 gives an introduction to the geometric
algebra and section 3 to the motor algebra; section 4
is dedicated to the representation of points, lines,
and planes; section 5 involves the modeling of the
motion of points, lines, and planes; section 6 de-
scribes the prismatic and revolute transformations
of robot manipulators in the motor algebra frame-
work; section 7 deals with the computation of the
direct kinematics of robot manipulators; section 8 is
dedicated to the solution of the inverse kinematics
of one standard robot manipulator, and finally, sec-
tion 9 presents the conclusions.

In this article multivectors are presented in bold
italic type, scalars in italic, and matrices in bold.
Lower case letters denote vectors in & and upper
case letters denote bivectors in R*.

2. GEOMETRIC ALGEBRA

Clifford algebra is a coordinate-free approach to
geometry based on the algebras of Grassmann® and
Clifford." The approach to Clifford algebra we
adopt here was pioneered in the 1960s by David
Hestenes'! and later, with Garret Sobczyk, was de-
veloped into a unified language for mathematics
and physics.”*® Some preliminary applications of
geometric algebra to the field of computer vision
and neural computing have already been given.'*~!°

2.1. Basic Definitions

Let ¥, denote the geometric algebra of n-dimen-
sions. The geometric or Clifford product of two vec-
tors a and b is written ab and can be expressed as
a sum of its symmetric and antisymmetric parts

ab=a-b+aAb, (6))

where the inner product a-b and the outer product
a A b are defined by

a-b=3(ab+ba) (2)
anb=3(ab—ba) (3)
The inner product of two vectors is the standard
scalar or dot product and produces a scalar. The

outer or wedge product of two vectors is a new
quantity which we call a bivector. We think of a
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a
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Figure 1. The directed area, or bivector, a A b. (b) The
oriented volume, or trivector, a Ab Ac.

bivector as an oriented area in the plane containing
a and b, formed by sweeping a along b (Fig. 1a).

The bivector b A a has the opposite orientation
and is antisymmetric as given in Eq. (3). The outer
product is immediately generalizable to higher di-
mensions. The outer product of k vectors is a k-vec-
tor or k-blade and is said to have grade k (Fig. 1b). A
multivector (a linear combination of objects of differ-
ent grades) is said to be homogeneous if it contains
terms of only a single grade.

In a space of 3 dimensions we can construct a
trivector a A b A ¢, but no 4-vectors exist since there
is no possibility of sweeping the volume element
aAbAc over a 4th dimension. The highest grade
element in a space is called the pseudoscalar. The
unit pseudoscalar is denoted by I and is crucial
when discussing duality.

2.2. The Geometric Algebra of n-Dimensional Space

In an n-dimensional space we can introduce an
orthonormal basis of vectors (o} i=1,...,n, such
that 0;-0; = §;;. This leads to a basis for the entire
algebra:

1,{c;}. {oA a'j-}, {o;Aay A % DR
oy Aoy A Aoy 4)
Note that the basis vectors are not represented by

bold symbols. Any multivector can be expressed in
terms of this basis. In this article, a geometric alge-

bra &, is of the form ..‘?J’P,‘F,,, where p, q, and r stand
for the number of basis vectors which square to 1,
—1, and 0, respectively, where n =p +q +r. Its even
subalgebra will be denoted by & ,.

In the n-D space there are multivectors of grade
0 (scalars), grade 1 (vectors), grade 2 (bivectors),
grade 3 (trivectors), etc., up to grade n. Any two
such multivectors can be multiplied using the geo-
metric product. Consider two multivectors A, and
B, of grades r and s, respectively. The geometric

product of A, and B, can be written as
A,B,=(AB),+; + (AB), 452+ - +{(AB),,_, (5)

where (M), is used to denote the t-grade part of
multivector M, e.g., consider the geometric product
of two vectors ab = (ab)y+ {ab);=a-b+aAb.

2.3. The Geometric Algebra of 3D Space

The basis for the geometric algebra &, ¢ of the 3D
space has 2° = 8 elements and is given by

1

st {0’1;?";: a3}, {0103;0'10'3;030'1} '

—r

vectors bivectors (6)

(oy0,05) =1.
Nt

trivector

It can easily be verified that the trivector or pseu-
doscalar o0, 0; squares to —1 and commutes with
all multivectors in the 3-D algebra. We therefore
give it the symbol I, noting that this is not the
uninterpreted commutative scalar imaginary j used
in quantum mechanics and engineering.

2.4. Rotors

Multiplication of the three basis vectors oy, 03, and
o3 by I results in the three basis bivectors o0, =
lo,, 0,03=1Icy, and 0300 = Ior,. These simple
bivectors rotate vectors in their own plane by 90°,
e.g, (0y0y)0y =0y, (G05)0,= — 03, etc. Identify-
ing i, j, k of the quaternion algebra with Ioy,
—1Io,, Io,, the famous Hamilton relations 2=jt=
k?=ijk= —1 can be recovered. Since i, j, k are
bivectors, it comes as no surprise that they repre-
sent 90° rotations in orthogonal directions and pro-
vide a well-suited system for the representation of
general 3D rotations (Fig. 2
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a' =nan”’

m

b=ma'm~' = m{nan~'jm"!
. =mna(mn)™' = Ralt

Figure 2. The rotor in the 3D space formed by a pair of
reflections.

In geometric algebra a rotor (short name for
rotator), R, is an even-grade element of the algebra
which satisfies RR =1, where R stands for the
conjugate of R. If & ={ay, a;,a,,a3} €%, repre-
sents a unit quaternion, then the rotor which per-
forms the same rotation is simply given by

R= a;, + afloy)-a,(Ioy)+a,(loy). (7)

——

g

scalar bivectors

The quaternion algebra is therefore seen to be a
subset of the geometric algebra of 3-space.

A rotation can be performed by a pair of reflec-
tions (Fig. 2). It can easily be shown that the result
of reflecting a vector a in the plane perpendicular to
a unit vector nis @, —a;=a'= —nan"', where a,
and a,, respectively, denote projections of a per-
pendicular and parallel to n. Thus, a reflection of a
in the plane perpendicular to 7, followed by a
reflection in the plane perpendicular to another unit
vector m, gives the new vector b= —m
(—nan~)m~ ' = (mn)a(mn)~' = RaR. Using the
geometric product, we can show that the rotor R of
Eq. (7) is a multivector consisting of both a scalar
part and a bivector part,ie, R=mn=m-n+m An.
These components correspond to the scalar and vec-
tor parts of an equivalent unit quaternion in & , .
Considering the scalar and the bivector parts, we
can further write the Euler representation of a rotor
as follows

g ]
R=e"‘”/2’=cos§+nsm§, (8)

where the rotation axis n=1,0,0,+ 0.0, +
nyoy 0, is spanned by the bivector basis.

The transformation in terms of a rotor a — RaR
=D is a very general way of handling rotations; it
works for multivectors of any grade and in spaces
of any dimension, in contrast to quaternion calculus.
Rotors combine in a straightforward manner, i.e., a
rotor R, followed by a rotor R, is equivalent to a
total rotor R where R =R, R;.

3. THE MOTOR ALGEBRA

Clifford introduced the motors with the name bi-
quaternions.” Motor is the abbreviation of “mo-
ment and rotor.”” Motors are the dual numbers for
3D kinematics with the necessary condition of I? =
0. They can be found in the special 4D even subal-
gebra of ¥, ;, or motor algebra. This even subalge-
bra denoted by £, is spanned by a basis of
scalars, bivectors, and pseudoscalars,

¢ Y2Y3: Y3V V1Yo YaY1r YaYa: Ya¥a

scalar

6 bivectors (9)
I

i
unitpseudoscalar

Note that the bivectors in the basis correspond to
the same basis for spanning 3D lines. Also note that
the dual of a scalar is the pseudoscalar P and the
duals of the first three basis bivectors are the next
three; for example, the dual of y,y; is Iy,y; or

Ya¥1

3.1. Motors, Rotors, and Translators in 7 , 4

Since a rigid motion consists of a rotation and a
translation, it should be possible to express a motor
in terms of individual operators like rotors and
translators. The motor action can be described basi-
cally in terms of two steps: rotate one axis until its
direction is parallel to another axis and then shift it
to overlap the another one (Fig. 3). Note that the
vectors indicated in the figure will be represented in
next sections as bivectors.

Let us now express this procedure algebraically.
First, let us consider a simple rotor in its Euler
representation for a rotation with angle 8. The rotor
of a screw motion should be represented in terms of
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-RstRy
Figure 3. Screw motion of an object about the line axis !

with t, longitudinal displacement by d and rotation R,
with angle 8.

screw axis line as follows

R,=ay,+an+IlanAnt,

f £
=a,+a,(n+Im) =cos(-£) + sil1(5)(n+fm)

9 0
—) +sin(—)l. (10)

= COS
2 2

Note that the line is expressed using a bivector for
direction n and dual bivector for the momentum
m=nAt,

The motor is defined by sliding along the rota-
tion axis line I the distance t, = dn. Since a motor is
applied from the left and its conjugated form from
the right we use the half of ¢, when we define the
motor

t
M=T5R5=(1+I§](ao+a+1a/\tc)
dn
= 1+IT)(ar+asn+la5n/\tr)
=ac+asn+Ia5nAtc+IEa511—IEasnu
d d
= ac_IEas)-l-(a!-'-mtE (ﬂ-}'fﬂl\f‘:)

d d
=(ar—1’as—)+ [a\.-i«l:zk.—)f. (1D
2 ’ 2

Note that this expression of the motor makes ex-
plicit the unitary screw axis line /. Now let us
express a motor as an Euler representation. Substi-

tuting the constants a, = cos(6/2) and a, = sin(6/2)
in the motor Eq. (11) and using the property of
scalar functions with dual argument we get

] i
M=TR.= (cos(—) —Ism(g)i)
‘ 2 2)2

folg o2

B (G_H_d (e d
= C0S 5 E) +bm(-£ +IE)I. (12)

If we want to express the motor using only a rotor
and its conjugated form given by

R=r1,— 10,03 —17,0,0y — 13000, =715 —t, (13)

we proceed as follows

t, t
M=T.R, = (1 +1—2'—)R5 =R, +I—§—RS =R, +IR..
(14)

We can now express the bivector ¢, in terms of the
rotors

- ([t ) -
R,R,= (ERS)RS (15)

so that

t,=2R.,R. (16)

Figure 3 shows that t is a 3D distance vector re-
ferred to the coordinate system of the rotation axis
of an object and t, or t, is a bivector along the
motor axis line. The distance t, considered here as a
bivector, can be computed in terms of the bivectors

t, and ¢, as follows:
b=t +ty=t, +1,
= (tc—Rst‘.ﬁs) +(tm)n
=(t.— R,tR,) +dn
=t ~R,t.R +t,
= (t.—R,t.R,) + (2R\R,). (17)
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3.2. Properties of Motors

A general motor can be expressed as

M, =aM (18)

where «€R and M is a unit motor as in the
previous sections. The norm of a unit motor M is
defined by

IM|=MM =T,R,R,T,

t, _ t,
= 1+IE)RSR;(1—I—2—)

1+zt’ Its—l (19)
a 2 2 7

where M is the conjugate of the motor, defined by

M =TR=RT (20)

and 1 is the identity of the motor multiplication.
Now using Eq. (14) and considering the unit motor
magnitude, we find two useful properties:

IM|=MM = (R, +IR,)( R, +IR,)

=R,R,+I(R,R,+R,R,)=1. (21

This requires that
R.R,=1 (22)
R,R.+R,R,=2(ryry—r-r)=0.  (23)

The combination of two rigid motions can be
expressed using two motors. The resultant motor
describes the overall displacement, namely,

M, =M,M,= (R, + IR, )R, +IR,)
=R,R, +I(R,R, +R,R,)

=R, +IR}. (24)

Note that pure rotations combine multiplicatively,
whereas the dual parts containing the translation
combine additively.

Using Eq. (14), let us express a motor in terms
of a scalar, bivector, dual scalar, and dual bivector

M=TR,=R,+IR,
=(ag+ 2,773 + B Y3Y2 T 03%27)

+1(by + byy2 Y3 + by ¥a¥a + b3vavi)
= (ag+a) +1(by + b). (25)

We can use another notation to enhance the compo-
nents of the real and dual parts of the motor as
follows:

M=(ay, a) + (b, b), (26)

where each term within the parentheses consists of
a scalar part and a 3D bivector.

4. Representation of Points, Lines, and Planes

In this section we will model points, lines, and
planes in the 4D space. For that we choose the
special algebra of the motors 73 ,, which using a
bivector basis spans in 4D the line space.

For the case of the point representation, we
proceed by embedding a 3D point on the hyper-
plane X, =1; thus the equation of the point X &
30,1 reads

X=1+x1y%7y1+x%Y2 T X%
=] + l(xl')'z')’s + X737t xs')’l'}’z)
=1+Ix=(1,0)+ 100, x). @D

We can see that in this expression the real part
consists of the scalar 1 and the dual part of only a
3D bivector.

Since we are working in the algebra ¥,
spanned only by bivectors and scalars, we can see
this special geometric algebra as the appropriate
system for line modeling. Opposite to the line repre-
sentation, the point and the plane are in some sense
unsymmetric representations with respect to the
scalar and bivector parts. Let us now write the line
equation in the degenerated geometric algebra
%50, Since the product of the unit pseudoscalar
1= v,¥,7sy with any dual bivectors built from the
basis {7v,¥;, %472, 7475} results in zero, we have to
select the bivector basis {7y,7v3, Y3Y1, 7172} for repre-
senting the line

L=n+Im, (28)
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where the bivectors for the line direction and the
moment are computed using two bivector points x,
and x, lying on the line as follows

n=(x, =) =(xy — )72
+ (= X2)va ¥y + (g — X13) N Y2
=L, v2v3+ L, vav:i T Lyni¥a
m=x; XX
= (42 %g3 — X13X22) 72 %3 + (X3 X — Xy X23) V3%
+(xXy X2 — X2 X2)N1 72
=L, 7273+ Lu, Y371+ Lu, 1172 (29)
This line representation using dual numbers is easy
to understand and to manipulate algebraically, and
it is fully equivalent to the one in terms of Pliicker

coordinates. Using the notation with parentheses
the line equation reads

L=(0,n)+1(0,m), (30)

where the n and m are spanned with a 3D bivector
basis. Fig. 4 depicts the line in terms of dual bivec-

tor basis.

For the equation of the plane, we represent its
orientation via the bivector n and the outer product
between a bivector touching the plane and its orien-
tation #. Since this outer product results in a qua-
trivector, we can express it as the Hesse distance

Y2

lIml

m“'-_ \ Y

Y n, lnil=1

Figure 4. The moment and the direction of the line using
dual bivector basis.

d = (x+n) multiplied by the unit pseudoscalar

H=n+xAan=n+I1(xn)=n+Id

=(0,n) +1(d,0). (31)

Note that the plane equation is the dual of the
point equation

H=d+In*=(n)*+@)*=n+1d, (32)

where we consider instead for the plane orientation
the unit bivector n and for the scalar 1 the Hesse
distance 4.

5. MODELING THE MOTION OF POINTS,
LINES, AND PLANES

The modeling of the 3D motion of the geometric
primitives using the motor algebra &5, takes place
in a 4D space where rotation and translation are
operators which are applied multiplicatively, as a
result the 3D general motion becomes linear.

5.1. Point Motion

For the modeling of the point motion we use the
point representation of Eq. (27) and the motor prop-
erties with > =0:

X' =1+ ' = MXM =M + )M
=T.R,(1+IX)R,T,

L,

5

t .
(1 +12 )Rs(l +Ix)Rs(1+ 2)

1 Jt"
+ —
:

L. _
- [1 -1-15](1 +IR,xR,)

t, .
===} IE +IRsst*|'I-2—
=1+I(R xR, +1,). (33)

Note that the dual part of this equation in the 4D

space is fully equivalent to the equation formulated
in the geometric algebra of the 3D space’® 3,0
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5.2. Line Motion

Using the line Eq. (28) we can express the motion of

a line as follows

L'=n'+Im'=MLM=M(n+Im)M
=T,R(n +Im)R.T,

£ B} £,
= (1 + I?]Rs(u + hn)Rs(l - IE]

t, , ) = &
= (1 +: I?)(Rsﬂﬂs + IR, mR, — IR,-"RSE)

. t, - L - 2
=R,nR,+ I(RSHES-R,. + 5’,[{‘.'1'1;1'{S + Rsts)

=R, nR, + I(Rsnﬁg +R,nR, + Rh.mli_\.) (34)

Note that in Eq. (34) before we merge the bivector
t,/2 with the rotor R, or R,, the real and dual parts
are fully equivalent with the elements of the line
equation’® formulated in £, . Figure 5 illustrates
the screw motion of the line.

5.3. Plane Motion

The motion of a plane in #5,, can be seen as
the motion of the dual of the point; thus, using the

i

Ls
L'

ts L

n,

Bkl

Y1

Figure 5. The screw motion of a line.

expression of Eq. (31) the motion equation of the
plane is

H' =n' +1d' = MHM =M(n+ d)M
=T.R(n+Id)R,T,

t, = £,
= (1 +I~)(RsrrR5+M) 1+1—']
2 2

b

A S
-+ —R, 1R, +r:f)

=R,.n1i‘,+r(nqn1§5~
e ik DI

= RuR, +1(t, (RuR,) +d). (35)

The real part and the dual part of this expres-
sion are equivalent in a higher dimension to the
bivector and trivector parts of the equivalent equa-
tion'® formulated in &, g .

5.4. Dual Quaternions or Motor Algebra

Blaschke'® was the first to introduce the modeling
of points, lines, and planes using purely dual
quaternions. The notion of motors was introduced
by Clifford,"” but he did not show the modeling of
the motion of points, lines, and planes in terms of
motors. Dual quaternions are isomorph with mo-
tors; however, due to the geometric meaning of
bivectors as rotating planes, we can easily formulate
screws using motors from a purely geometric point
of view. As a result, the motor algebra modeling of
problems involving the algebraic manipulation of
points, lines, and planes is simpler than the model-
ing with the help of dual quaternions. Since motor
algebra is a geometric algebra, we can also make
use of the concept of duality for the selection and
interpretation of 2-blades, as well as the formulation
of geometric constraints or flags.

In the last decades many authors**”"® used
dual matrices or dual quaternions for various tasks
in robotics. We believe that the use of motor algebra
offers one major advantage: it does not make us lose
geometric insight of the problem through the com-
putations. Opposite to dual quaternions, the model-
ing of the motion of points, lines, and planes based
on motors is geometrically motivated. The motor
algebra is a subalgebra of higher dimension Clifford
algebras; thus, we can profit from this fact when we
want to access other facilities like the algebra of
incidence in the geometric algebra of the 3D affine
plane &, , , (here we get a null vector similar to the
pseudoscalar of the motor algebra). The computa-
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ion with dual matrices adds extra redundant
numerical computations (dual matrices have 18 co-
efficients and a motor only 8) and obscures the
geometry of the problem.

In this article we show what many authors have
neglected: the use of the plane representation to
alleviate the computational burden. Computing the
inverse kinematic in section 8, we illustrate clearly
that in some parts of the backward computing we
can simplify the computations, resorting to a line or
a plane representation instead of a point. This fact is
a novel and very useful aspect in our approach
which can be used for computations in more
complex multilink mechanisms or in parallel ma-

nipulators.

6. ELEMENTARY TRANSFORMATIONS OF
ROBOT MANIPULATORS

The study of the rigid motion of objects in 3D space
plays an important role in robotics. To linearize the
rigid motion of the Euclidean space homogeneous
coordinates are normally utilized. That is why we

.2

chose the special or degenerated geometric algebra
to extend the algebraic system from 3D Euclidean
space to the 4D space. In this system we can nicely
model the motion of points, lines, and planes with
computational advantages and geometric insight.
Let us start with a description of the basic elements
of robot manipulators in terms of the special or
degenerated geometric algebra 7, ; or motor alge-
bra. The most basic parts of a robot manipulator are
revolute joints, prismatic joints, connecting links,
and the end-effectors. In the next subsections we
will treat the kinematics of the prismatic and revo-
lute manipulator parts using the 4D geometric alge-
bra &5, and we will illustrate an end-effector
grasping task.

6.1. The Denavit—Hartenberg Parameterization

The computation of the direct or inverse kinematics
requires both the exact description of the robot
manipulators structure and its configuration. The
description approach used most is known as De-
navit-Hartenberg procedure.! This is based on the
uniform description of the position of the reference

o)

Figure 6. SCARA type manipulator
parameters are encircled.

according to the DH parameters in Table I. Variable
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coordinate system of a joint relative to the next one
in consideration. Figure 8a shows how coordinate
frames are attached to a joint of a robot manipula-
tor. Table | presents the specifications of two robot
manipulators: the SCARA and the Stanford as shown
in Figures 6 and 7, respectively.

In Table I a variable parameter is indicated by
the letter v and a constant one by c. This tells us
whether the joint is for rotation (revolute) or for
translation (prismatic). The transformation of the
reference coordinate system between two joints will
be called joint transition. Figure 8b shows the screws

/=

20

| zz\
}'[ I iy}
______ z VI_’T ' Py / -
n
- <N 2

involved in a joint-transition according to the De-
navit-Hartenberg parameters. The frame or refer-
ence coordinate system related to the ith joint is
attached at the end of this link and it is called .

The position and orientation of the end-effector
in relation to the reference coordinate system of the
robot basis can be computed by linking all joint-
transitions. In this way we get the direct kinematics
straightforwardly.

Conversely for the inverse kinematics given the
position and orientation of the end-effector we have
to find values of the variable parameters of the

25/

P4.P{.P¢

Figure 7. Stanford type manipulator according to the DH parameters in Table I. Variable

parameters are encircled,
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Zi-1

(b

Figure 8. (a) ith joint of a robot manipulator and the
attached coordinate frames according to the Denavit=
Hartenberg procedure. Here the encircled is the vari-
able parameter. (b) The transformation from frame %; to
&,_, is represented by =1M,. The motor =M, consists of
two screw transformations Mg and M.

joint-transitions which satisfy this requirement. In
the next sections we will go more into details about
the computation of direct and inverse kinematics of
robot manipulators.

6.2. Representations of Prismatic and
Revolute Transformations

The transformation of any point, lines, or plane
between coordinate systems ., and & is a revo-

lute one when the degree of freedom is only a
variable angle 6, and a prismatic one when the
degree of freedom is only a variable length d;. The
transformation motor '~ 'M, between & and F_,
consists of a sequence of two screw transformations,
one fixed, i.e, M}, and another variable, ie., M;
(Fig. 8b). Note that we use dual angles B,=6,+ 4,
and &;=a; + II,. In the revolute case the latter has
as a variable parameter the angle 6; and in the
prismatic case the displacement ;. The transforma-
tion reads

"IM, = MjMj = TiR; TiR;,

—_—

=1+ R:. (36)

i

M| =

0 I
0| |R:|1+ =
all "l 2

oo

For the sake of clarity the dual bivectors of transla-
tors are given as a column vector simply to make
the variable parameters explicit.

Since "~ 'M;~'M, =1, we obtain

'M,_, = M; M} = TFR: Ti R;. (37)

For the rest of the paper 'M; denotes 2 motor trans-
formation from %; to &;.

We will now give general expressions for the
transformation of points, lines, and planes with one
of the parameters 6; and d;, respectively, as a vari-
able and with two fixed parameters o; and /;. In the
joint depicted in Figure 8b a revolute transforma-
tion will take place only when 6 varies and a
prismatic transformation only when d; varies. Now
taking a point X represented in the frame 7_,, we
can describe its transformation from #_,; to F; in
the motor algebra with either 6; or d; as a variable
parameter. We will call this transformation a for-
ward transformation.

The multivector representation of point X re-
lated to the frame & will be expressed as ‘X with

fx=f s lf_IXfﬁf—l = M:fiﬁi-i_lxm_:iﬁi
= f,jﬁgi’f‘;i Iijv"_'XRjifde:iﬁ;"
=1+I', (38)

where 'x is a bivector representing the 3D position
of X referred to 7. Thinkingina transformation in
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Table I. Kinematic configuration of two robot manipulators.

Twist Link
Robot type Link Revolute & v/c Prismatic d, v/c angle o, length /;
SCARA 1 f, v d, c 0 8
2 0 v d, C 0 I
3 61 v 0 0 0
4 0 dy v 0 0
Stanford 1 0, v d, c -90° 0
2 6, v d, c 90° 0
3 0 d, v 0 0
4 6, v 0 —90° 0
5 05 v 0 a0° 0
6 B v dg C 0 0

the reverse sense we call it a backward transformation
which transforms a point X represented in the
frame &; to the frame % _, as follows

i1X =T IM XM, = MM XM MG

=1+1""x. (39)

Note that the motor applied from the right side is
not purely conjugated as in the line case. This will
be also the case for the plane.

Consider a line L represented in the frame &_,
by "'L="'n+I""'m, where n and m are bivec-
tors indicating the orientation and moment of the
line, respectively. We can write its forward transfor-

mation related to the frame #; as follows:
‘L . r‘A/.f‘.'_ 1 i-lLI‘Mr’_l = ME‘ME':']_ILME{ML;‘

='n+I'm. (40)

Its backward transformation reads
1L =ML M = M METLMEM;

=ty i, (41)

Finally, the forward transformation of a plane H
represented in &_, reads

H='M,_,/"H'M,_, = M} M;~"HM; M,

='n+1'd,, (42)

Table [Il. Rendezvous equations obtained for P§ regarding frames %, 7, %;, and 7.

Frame Eq. Forward Backward
Fo 1 P, = dy8,¢; — i35
2 b, == dis,6y +djc
3 P, = dsc, +dy
2 dl "‘P_ = _dSCE
3 P,e, — P,s = d,
5 1 —P,s;+d;8, +P,r:1r:2+1=‘yslc2 = 0
2 dy — Py.':l +P.5 = 0
3 P,cy —dyc, + Poeys, + P,s;5, = dy
7 1 —P,55 +dys; + Proycy + Pysicy = 0
2 dy=P,c; + P85 = 0
3 P.cy—di&y + Pocys; + Pysys, —dy = 0




Bayro-Corrochano and Kihler: Computing Robot Manipulator Kinematics + 507

and similarly as above, its backward transformation
equation 1s

U =i M H T M= M M THME M

="'y+1'"'4,. (43)

6.3. Grasping by Using Constraint Equations

In this subsection we will illustrate a manipulation
related task of a very simplified grasping operation.
This task involves the positioning of a two-finger
grasper in front of a static object. Figure 9 shows the
grasper and the considered object O. The manipula-
tor moves the grasper near to the object and to-
gether they should fulfill some conditions to grasp
the object firmly. To determine the overall transfor-
mation M,,, which moves the grasper to an appro-
priate grasping position, we claim that ’M, has to
fulfill three constraints, For the formulation of these
constraints we can take advantage of the point, line,
and plane representations of the motor algebra. In
the following we assume that the representations of
geometric entities attached to the object O in frame
F, are known.

Attitude Condition

The grasping movement of the two fingers should
be in the reference plane Hj of O. That is, the yz
plane of the end-effector frame %, should be equal
to the reference plane H,. The attitude condition
can be simply formulated in terms of a plane equa-

Figure 9. Two finger grasper approaching an object.

tion as follows
"M,"H{**M, ~"H =0, (44)

where "HY* = (1,0,0)" + 1 0=(1,0,0)7 (Fig. 9).

Alignment Condition

The grasper and object should be aligned parallel
after the application of the motor "M,. That is, the
direction of the y axis and the line Ly should be the
same. This condition can be simply expressed in
terms of a line equation

M, "LY°M, Yy — CLp)a=0, (45)

where "L =(0,1,0)7 + 1(0,0,00" = (0,1,0)" and { L),
denotes the components of direction of line L.

Touching condition

The motion "M, should also guarantee that the
grasper is in the right grasping position. That is, the
origin P? of the end-effector frame %, should touch
the reference point X, of O. A formulation of this
constraint in our framework is

"M, "P?°M, ~*Xo = 0. (46)

By these three conditions we get constraints for the
0 2 0
components of "M,, and we can determine "M,
numerically. The next step is to determine the vari-
able joint parameters of the robot manipulator which
leads to the position and orientation of the end-
effector frame %, described by M, This problem is
called the inverse kinematics problem of robot ma-

nipulators and will be treated in section 8.

7. DIRECT KINEMATICS OF ROBOT
MANIPULATORS

The direct kinematics involves the computation of
the position and orientation of the end-effector or
frame &, given the parameters of the joint-transi-
tions (Fig. 10).

In this section we will show how the direct
kinematics can be computed when we use a point,
line, or plane as geometric object. The notation for
peints, lines, and planes we will use in the next
section is illustrated in Figure 11. The direct kine-
matics for the general case of a manipulator with
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direct kinemalics
‘_'___l_.—"-_—-.-_-_-_-—-_'-—;___&‘
gl-";'b--- -éﬂ nﬂ"fu
e

inverse kinematics

Figure 10. Direct and inverse kinematics.

joints can be written as follows
uwa=UM‘I.!w22M3"'”_lM"= H!‘—‘le‘ (47)
i=1

Now we can straightforwardly formulate the direct
kinematics in terms of point, line, or plane represen-
tations as follows

_ no [ g
']X=DM""X°1’T/I_,, = HJ-IM!_NX HHAIM”‘{‘I—FI
i=1

i=1

n n
UL - I“EI—IMFHL Hn—:M’H—l-H (48)
i= i=
n R n =
qu ]—I‘_-IM;”H I_Ilri_lMu-i-l-f'
=

i=1
Let us now write the motor "M, for the direct
kinematics for points, lines, and planes like Eq. (48)
for the SCARA manipulator specified by the De-
navit—Hartenberg parameters of Table I. First, using

Eq. (47) with n =4, we can write down straightfor-
wardly the required motor *M; as follows

OM.; =GM11M12M33M4 = (Mﬁle&xl) [Mtng*)
=(TiRETIRE) - (TE R TRS,)

1 : g Ri|1l 2 1 l g
=l | L i all+ =10 + =
2 d, ! 2 0 2 d,
A, owf)) | x(®
Ri(1+7 0 R031+§£ . (49)
0 .

Note that translators with zero translation and ro-
tors with zero angle become 1. =

Applying the motor M, from the left and °M,
from the right for point and plane equations and the
motor °M, from the left and "M, from the right for
line equations as indicated by Eqs. (48), we get the
direct kinematics equations of points, lines, and
planes for the SCARA robot manipulator.

L " i
t 2-ixin H
N ! ST ‘
R
NRNN-
/y-nxln N YRx
: ks S
X-rxin .
X=X
L
Figure 11. Notations for frame specific entities as the

origin, the coordinate axis, and coordinate planes.

7.1. Maple Program for Motor Algebra
Computations

Since the nature of our approach requires symbolic
computation we chose Maple to implement a pro-
gram suitable for computations in the motor algebra
framework &7 ;. We have developed a comfortable
program for computations in the frame of different
geometric algebras. When dealing with the motor
algebra we have simply to specify its vector basis.
The program has a variety of useful algebraic opera-
tors to carry out computations involving reversion,
Clifford conjugations, inner and wedge operations,
rotations, translations, motors, extraction of the i
blade of a multivector, etc.

As a first illustration using our Maple program,
we computed the direct kinematic equation of the
origin P of & for the SCARA manipulator speci-
fied by the Denavit~Hartenberg parameters of Table
I. Figure 12 shows the frames and the point Py
referred to &;. The final result is

0
0
0

Ope =M, *P?°M, ="M,|1+1

l,cos(8, + 6,) + 1,cos(#,)
=1+1I|{ l,sin(8, + 8,) + I;sin(6,) |. (50)
dy+dy+d,

8. INVERSE KINEMATICS OF ROBOT
MANIPULATORS

Since the inverse kinematics is more complex than
the direct kinematics, our aim should be to find a
systematic way to solve it exploiting the point, line,
and plane motor algebra representations. Unfortu-
nately, the procedure is not amenable for a general
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>

Figure 12. The representation "P{’ of P in frame % is computed using M.,

formulation as in the case of the direct kinematics
Eq. (47). That is why we better choose a real robot
manipulator and compute its inverse kinematics to
show all the characteristics of the computational
assumptions.

The Stanford robot manipulator is well known
among researchers concerned with the design of
strategies for the symbolic computation of the in-
verse kinematics. According to Table I the variable
parameters to be computed are 6y, 8, 6y s B,
and d,. By means of this example we will show that
in the motor algebra approach we have the freedom
to switch between the point, line, or plane represen-
tation according to the geometrical circumstances.
This is one of the most important advantages of our
motor algebra approach.

According to the mechanical characteristics of
the Stanford manipulator, we can divide it into two
basic parts: one dedicated for the positioning in-
volving the joints 1, 2, and 3 and one dedicated for
the orientation of the end-effector like a wrist com-
prising the joints 4-6. Since the philosophy of our
approach relies on the application of point, line, or
plane representation where it is needed, we should
first recognize whether a point or a line or a plane
representation is the suitable representation for the
joint-transitions. As a result, on the one hand a
better geometric insight is guaranteed and on the

other hand the solution method is easier to be
developed. The first three joints of the Stanford
manipulator are used to position the origin of the
coordinate frame ;. Therefore, we apply a point
representation to describe this part of the problem.
The last three joints are used to achieve the desired
orientation of the end-effector frame. For the formu-
lation of this subproblem we use a line and a plane
representation because with these entities we can
model orientations.

8.1. The Rendezvous Method

The next important step is to represent the motor
transformations from the beginning of a chain of
joint-transitions to the end and vice versa as is
depicted in Figure 13. As a result we gain a set of
equations for each meeting point. In each of these
points the forward equation is equal with the back-
ward equation. Using these equalities we have a
guideline to compute the unknowns. We will call
this procedure the rendezuvous method. Slightly simi-
lar procedures have been presented in the past,”!
however, either using simply points or only lines. In
contrast, our approach uses equations of points,
lines, and planes. The simple idea of the rendezvous
method has proved to be very useful as a strategy
for the solution of the inverse kinematics. The
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forward trasfornations backward transfornutions

g —

Figure 13. Rendezvous method: If ‘X and /X are known, we can compute “X for each
i<k <j in two different ways: by successive forward transformations of 'X and by
successive backward transformation of /X.

Figure 14, The rendezvous method applied to Pj to determine the equations shown in
Table II. The equations of rendezvous frame &, are chosen to compute the variable
parameters 6,, 8,, and d,.
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searching of meeting points helps to reduce the
complexity of equations systems. This approach can
be extended for dealing with complex linked mech-
anisms.

8.2. Computing 0,, t,, and d, Using a Point
Representation

In the case of the Stanford manipulator the orienta-
tion and position of frame & uniquely determine
the position of frame .#;. This will be explained in
the following.

The position of frame %, with respect to % is
described by the multivector representation "Py of
Pj in &;. By successive forward transformation ap-
plied on ’P§ =1 we get the representation Py of P§
in & by

; 0
*Py="M;’P;*M; =1-1| 0 (51)
dg
Now we can compute "Py by
e 0 -
Ops =M, P2 M, ="M, [1-1| 0 | |°M,
dy
PJ-'
=1+1I|P, (52)
P,

Note that °M, is given. The vector (P,,P,,P,)"
describes the position of the origin Py of frame 7
in frame &, for a given overall transformation 'M,.
Now we can apply the rendezvous method since we
know the representation of Pj in the two different

frames 7, and %, (Fig. 14).
Applying successive forward transformations

we obtain
'Py ="M, °P5 M,
2P3”=2M11P;2J\_:Il, (53)

4 35F

3p =*M,*PM,.

These computations were carried out with our
Maple program getting the left-hand sides of the
four groups of equations of Table II.

On the other hand, applying successive back-
ward transformations to the origin of & given by

0
3P;,'=1+1(0)=1, (54)
0
we get
2 == 0
Py =MP{*M;=1+1{ 0 |,
d;
] dysin(6,)
'Pe="M,*P{'M, = 1+1| —d,cos(6,) |,
d, (55)

°P§=0M11P3"0M;]

dysin(6,)cos(6,) — d,sin(6,)
=1 +I| dasin(6,)sin(8,) + d,cos(6,) |.
d,cos(8,) +d,

These equations correspond to the right-hand sides
of the four groups of equations of Table II. For
simplicity we use the abbreviations s; for sin(6;)
and ¢; for cos(6),).

Using the third equation of the rendezvous
frame &, we compute

B, = arctan,(x, 2, ¥1/2), (56)
where
d, =P,y
Y1p2=— _p ¢
x
e (57)
P,d, + PB; + By —id;
1 ==
L Bi+8
and
arctan(3) y>0
z : y=0and x>0
arctan,( x, y) = { undefined y=0and x=0

-z : y=0and x<0

2
arctan(§) +7 @y <0.

(58)

This gives two values for ;. Now let us look for d,
and 6,. For that we consider the first and second
equation of the rendezvous frame ;. With @, 5=




512 - Journal of Robotic Systems—2000

P,x10+ Pty and b =P, —d, we get two values
for d,. Since for the Stanford manipulator d; must
be poqmve we choose

dy  =1[@,+ 1P (59)

Using this value in the first and second equations of
Table 1I, we compute straightforwardly

a7 b
6, = arctany| —==, =— |. (60)
32 Mhin

8.3. Computing 0, and 0 Using a Line
Representation

These variables will be computed using the joint-
transition from 5 to %. According to the geometric
characteristics of the manipulator it appears appeal-
ing that we should use the line representation to set
up an appropriate equation system. The representa-
tion L6 of the line L in frame %, can be computed
using "M

L ="M,"L} "M,

0 o\ .
="M,||0] +I|o0]|°M,. (61)
1 0

Since the z axis of F, frame crosses the origin of 7,
we can see that the z axis line related to this frame
has zero moment. Thus, we can claim that L in the
S, frame is

A, 0
Li="M, LMy = | Ay | +1 0)- i
A, 0

Note that M, is known since we have already
computed 8,, 6,, and d;.

Now applying successively forward transforma-
tions as follows

Lz =*M,LEM,,
5Lg :5M44L25M4, (63)
6Lz =SM,°L:°M;,

we get the left-hand sides of the four groups of
equations of Table IIl. The z axis line Lg of &
represented in % has zero moment; thus, it can be

expressed as

(64)

0 0
SLz=o| +!|0].
1 0

Now applying successive backward transforma-
tions, we have

L; ="M, °Li M,
‘Lz ="M, L:* M, (65)
=M, *Li’M,,
Using our Maple program, we compute the right-
hand sides of the four groups of equations of
Table IIL

We will consider the equations of rendezvous
frame &;. Using the third equation, we compute

84 = arctﬂl’lz{ 2’.1/2, y‘|f2); (66)
where
A A
xuz__‘__ 1,|'y1/2=i _g.r-_,
~Ax VAL + A
(67)
A

X

Vip= =
v TR A

This results in two values for 6,, which substituted
in the first and second equations of Table III, help
us to find two solutions for 65

65 = arctan,(ss, cs)

= arctan,((—A, s, — A.c,), -A;). (8)

8.4. Computing 8§, Using a Plane Representation

Since 8y, 6,, dj, 6y, and fs are now known, we can
compute the motor °M,. The yz plane H{* repre-
sented in & has the Hesse distance 0; thus,

1 1
o|+I10={0]). (69)
0 0

Sy =
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Table lll. Rendezvous equations obtained for Lg regarding frames &, 3, 5, and .
Frame Eq. Forward Backward
Ty ; A, = —C4 55
Ay = 5,55
3 A, = -
7 ! Asg+A, - "
2 A, = —C5
3 Aycy—AS, = 0
F5 1 —A,Ss+ A Cy5 + A 5656 = 0
2 A]I’C4 “Ax54 = O
3 — A cs— A 0,85 —AySySs = 1
Z, 1 A, 545 --z"x,l,f.\;sﬁ+A],slicsz:&+ﬂt,rc",c5::ﬁ—A:ssc6 = 0
2 —A 50+ A e+ A $4CsCe + A C4Cs5g — A1 8556 = 0
3 —A3C5 - xC_1 Ss_Ay5435 - 1

Its transformation to & reads

. 1 ==
Opy: =M, CHY* M ="M, | 0 |"M,.  (70)
0
Now we compute *H¢* by
N,
Sy =5M.° 5% = | N 5
éy Mu Hﬁy MG.._. i +I dez. (71)

N,

N

The orientation bivector (N, N, N;)" describes the
orientation of the yz plane of frame 5 in frame %5
given the values of the joint variables 8,, 0,, 6;, s,
and d,. Now, applying forward transformation from
; to F, we obtain

oHy =CMSHY* M. (72)

Table IV. Rendezvous equations obtained for Hg*
regarding frames F; and %.

Frame  Eq. Forward Backward
‘93 1 N, ¥ = €s

2 N, = Sg

3 N. = 0
7 [ 1 N I Sg %+ N ¥ Cﬁ = 1

2 N’:. 56 — Ny Co = 0

3 N, = 0

Using our Maple program, we get the left hand
sides of the two groups of equations of Table IV.
Since the values for 6,, 8,, da, 6,, and 65 are not
unique, we will get different values for the equa-
tions. Applying °M; to *HJ* we get the right hand
sides of the two groups of equations of Table IV by

SHy® ="M, *HY**M,

1\ . sin(6;)
=5Ms( 0 )sMa = | cos(8;) (73)
0 0

We will consider the equations of the rendezvous
frame ;. Using the first and second equations, we

can compute 6 by

6, = arctan,(sg, €s) = arctany(N,, N,). (74

Note that since we had two values for 6, and two
values for s, there is more than one solution for 6.

8.5. Multiple-Link and Cooperative Mechanisms

In this subsection we will briefly give some com-
ments related to the possible use of the motor alge-
bra for the understanding and handle of multiple-
link mechanisms and cooperative operation of
multiple manipulators. The use of motor algebra for
such applications is, in fact, an important issue for
future research. In that regard, the importance of
this paper is twofold: it gives to the novice the
basics of motor algebra and shows to everybody
how we can exploit the computational advantages
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of the motor algebra without losing the geometry of
the problem. This aspect is crucial for high level
reasoning utilizing geometric objects. Researchers
can now start to apply motor algebra to handle
more complicated robot mechanisms.

Motor algebra is an even 4D geometric algebra
equipped with the geometric product, geometric
interpretation of rotors and translators, and a useful
concept of duality. The fact that the 3D rigid motion
is linearized using multiplicative rotors and transla-
tors helps to reduce the complexity of the computa-
tion. As the architecture and dynamics of parallel
manipulators are in a certain sense related to serial-
link manipulators, most of the theoretical problems
can be reconsidered using the motor algebra in the
light of the duality concept.

Cooperative operation schemes of multiple
manipulators have become popular in industrial
automation, outer space, and hazardous terrestrial
applications. Requirements for increased speeds of
operation and light-weight design of robot manipu-
lators show that structural flexibility becomes a dom-
inant factor in the design and control of cooperating
manipulator systems, In this regard, we believe that
the motor algebra gives the approach flexibility due
to the alternative use of points, lines, and planes.
Since motor algebra is a coordinate-free system, we
can attach observers to deal locally with the dynam-
ics of points, lines and planes. Furthermore, extend-
ing the signature from &3, , to the geometric alge-
bra of the 3D affine plane ¥, , 5,2 we can use rotors
and translators effectively the same as motors and
the algebra of incidence operations of join and meet
for computing the join and the intersection of points,
lines, and planes. These algebra of incidence opera-
tions help enormously for the formulation of geo-
metric constraints and flags.

In this article we have not discussed the dynam-
ics of rigid objects; however, its formulation is
straightforward®! and briefly follows. In the motor
algebra the motion of a point of a rigid body given
by Eg. (33) obeys the kinematic equation

M=31ivM (75)

with V= —iw+ vl, where i=0,0,0; (pseudo-
scalar of &%), w is the angular velocity of the body,
and v is assumed as the velocity of the center of
mass. Accordingly it follows that ¥ =V-x and X =
w X x + v. We are now ready to define basic equa-
tions for dynamics.

The co-montentum is defined as
P=M(V)=il(w)+Inv=iu+lp, (76)

where for simple notation we introduce a “mass
transformation” M,( ) in terms of the”inertia trans-
formation” [,( ) and the body mass m.

The coforce or wrench W acting on a rigid body
is defined in terms of the torque I' and a net force f
as follows:

W =il +If. (77)

Thus, the compact dynamical equation for rotational
and translational motion is given by the time
derivative

P=—=W (78)

and the conservation of energy law is given by
K=V-W=wT+vf (79)
for the kinetic energy
K=3V-P=3(w-u+vp). (80)

Equation (33) is related to a particular reference
frame; any displacement of the frame changes the
velocity and co-momentum of the object as follows:

V' = MVM (81)
P = MP'M. (82)

Note that since V is covariant and P is contravari-
ant, the dot product remains invariant:

PV’ = (MVM)-(MPM)
~M(P-V)M=P-V. (83)

The formulae presented above should be useful for
the treatment of problems involving actuator torques
in a closed-loop chain structure as in the case of
multiple manipulators acting cooperatively on an
rigid object. Essentially, redundant actuation is one
of the inherent characteristics of such systems. The
computation of actuator torques, necessary to
achieve a prescribed object motion, is known as the
inverse dynamics process. Due to the presence of re-
dundant actuators, inverse dynamics torques for
cooperating manipulator systems admit, unfortu-
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nately, an infinite number of solutions. Further-
more, the consideration of flexibility in the links of
manipulators restricted to the applications space not
only complicates the modeling of the dynamics of
the system but also introduces instability in the
inverse dynamics solution,

It seems natural to partition the problem into
two separate parts: the force distribution problem
and the inverse dynamics problem for serial flexi-
ble-link manipulators. Since motor algebra lin-
earizes by means of an economic representation of
the displacement transformation, we could formu-
late the force distribution problem as a linearly
constrained local optimization problem. Note that
all the entities given in section 5 are multivectors
with only 8 coefficients. The traditional use of ma-
trices with unnecessary redundant coefficients is a
burden for the computation. On the other hand, an
approach based on distributed force with coordi-
nate-free observers guarantees the stable behavior
of the internal dynamics system. One way to reduce
the number of elastic coordinates of the system is
the search for redundant actuators or the use within
the computation duals of the serial manipulators
where the alternative use of points, lines, or planes
and their constraints gained by join and meet opera-
tions helps to simplify the problem. As a result we
gain systems of equations; here, the rendezvous
method can be helpful as a natural strategy for
solving the problem.

9. CONCLUSION

This article presents the application of the algebra of
motors for the treatment of the direct and inverse
kinematics of robot manipulators. When dealing
with 3D rigid motion it is usual to use homoge-
neous coordinates in the 4D space to linearize this
nonlinear 3D transformation. With the same effect
we model the prismatic and revolute motion of
points, lines, and planes using motors which are
equivalent to screws. The fact that in our approach
we can also use the representation of planes widens
the geometric language for the treatment of robotic
problems.

The article has shown the flexibility of the mo-
tor algebra approach for the solution of the direct
and inverse kinematics of robot manipulators. Us-
ing a standard robot manipulator, we show that for
solving its inverse kinematics, according to the need,
we can resort either to a point, a line, or a plane

representation. Thus, the main contribution of this
article is to show that motor algebra is indeed a
language for high level reasoning by means of which
our approach gains more flexibility, preserving the
geometric insight during the computation. We be-
lieve that the increasing complexity of future multi-
ple-link and cooperative mechanisms will profit
from the versatility of the motor algebra framework.
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