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Abstract. In this paper the motor algebra for linearizing the 3D Euclidean motion of lines is used as the oretical
basis for the development of a novel extended Kalman filter called the motor extended Kalman filter (MEKF). Due
to its nature the MEKF can be used as online approach as opposed to batch SVD methods. The MEKF does not
encounter singularities when computing the Kalman gain and it can estimate simultaneously the translation and
rotation transformations. Many algorithms in the literature compute the translation and rotation transformations
separately. The experimental part demonstrates that the motor extended Kalman filter is an useful approach for
estimation of dynamic motion problems. We compare the MEKF with an analytical method using simulated data.
We present also an application using real images of a visual guided robot manipulator; the aim of this experiment
is to demonstrate how we can use the online MEKF algorithm. After the system has been calibrated, the MEKF
estimates accurately the relative position of the end-effector and a 3D reference line. We believe that future vision

systems being reliably calibrated will certainly make great use of the MEKF algorithm.

Keywords: computer vision, Clifford algebra, geometric algebra, kinematics, dynamics, rotors; motors, screws,
Kalman filter techniques, extended Kalman filter, visual robotics

1. Introduction

The registration of the motion of a moving object or
the computation of the motion between measurement
frames in front of an observer is fundamental for vari-
ous tasks in visual robotics, such as camera calibration,
hand-eye calibration, tracking, object collision avoid-
ance and surveillance. The most basic of the 3D geo-
metric primitives of the visual space for motion com-
putation are points (corners). These local features are
sensitive to noise and quantization errors that jeopar-
dize the motion estimation. Alternatively, the use of
lines (edges) or global features such as planes or sur-
faces makes the motion estimation process more robust,
however, the computational cost is increased especially
in the case of planes or surfaces. Since an artificial ob-
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server relies on image sequences, only the projected
motion of points, lines, conics, curves or surfaces is
distinguished. Using this information we can then com-
pute the actual motion of the object.

In this work we are interested in the estimation of the
actual rigid motion of an object or more generally the
motion between the coordinate axis of the observation
frames using 3D observation, as depicted in Fig. 1.
We can describe the position and orientation of the
coordinate frame B; relative to the frame A by using
a state vector X;. This state vector satisfies a dynamic
model known as the plant model

X = ®1Xi-1, W)), (1)
where W; denotes random noise with zero mean, nor-

mally distributed statistics and with known statistics.
The measurement of a line of a scene L; is corrupted
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Figure 1. Coordinate frames for observation of rigid motions.

by noise with known statistics, zero mean, normally
distributed and uncorrelated with respect to W;. The
relationship between the measurements and the state is
given by the following measurement function model

SLo,Li, X;, Vo, Vi) =0. (2)

In this noisy scenario the task we have is to find the
best estimate of the state variable vector X, s

In the literature we distinguish two main groups:
the least squares solutions or batch and the recursive
methods [20]. The key characteristic of these meth-
ods is whether they compute the translation and ro-
tation transformations simultaneously or decoupled.
Arun et al. use point sets by means of least-squares
fitting [1] to estimate the rotation and translation sep-
arately. In contrast Bayro-Corrochano and Daniilidis
use the motion of lines to estimate the motion dis-
placement components simultaneously [6, 10] for solv-
ing the hand-eye problem. Zhang and Faugeras, us-
ing Pliicker line sets, propose an analytical solution in
terms of least-squares to estimate the motion displace-
ment separately [22]. All these approaches are used for
static motion estimation.

The application of the Kalman filter as a recursive
minimum variance estimator has been popular since
the sixties [16, 17, 21]. In order to estimate dynamic

motion parameters, the authors used the Kalman filter
together with different types of state variable repre-
sentations. For instance, Bar-Itzhack et al. used point
sets for the quaternion extended Kalman filter to esti-
mate the dynamic rotation [3], and Zhang and Faugeras,
used line segments with their midpoints to estimate all
dynamic motion parameters with a standard extended
Kalman filter [22]. Recently, Azarbayejani and Pent-
land [2] applied the extended Kalman filter for the es-
timation of motion and structure using relative orien-
tation constraints in terms of quaternions.

In this paper, we present the development of a novel
extended Kalman filter in the geometric algebra frame-
work. This recursive filter has the virtue of estimat-
ing simultaneously the translation and rotation compo-
nents. This characteristic has not been achieved with
the Kalman filter before because the authors could not
overcome the singularities when dealing with Pliicker
lines. The key idea for the filter design is to work in the
4D geometric algebra, called motor algebra, and to rep-
resent the motion of the measurement frames as a mo-
tion of lines. The paper shows that the motor extended
Kalman filter is an attractive estimation approach, par-
ticularly in case of dynamic motion problems.

The paper is organized as follows: Section two out-
lines the geometric algebra. Section three introduces
briefly the 4D motor algebra. Section four is devoted to




the linear modeling of the 3D motion of lines using the
motor algebra. Section five gives a brief introduction to
Kalman filter techniques required for the understand-
ing of the rotor Kalman filter. Section six describes
the motor extended Kalman filter as a natural general-
ization. Section seven introduces briefly the analytical
method for the recovering of the 3D motion parameters
using line observations. In section eight, we compare
the MEKF algorithm and an analytical method using
simulated data of the screw motion of an object. Then
we apply the MEKF algorithm to estimate the relative
motion of a robot manipulator which is guided using a
stereo vision system. Finally, section nine is dedicated
to discussion and conclusions.

In this paper, the signature of a geometric algebra
G, will be clearly specified by G, , , where p, ¢ and
r stand for the numbers of basis vectors which square
to +1, —1 and 0 respectively. An even subalgebra will
be specified by G . We denote scalars with lower
case, matrices with upper case, vectors in 3D with bold
lower case and vectors in 4D with bold upper case.

2. Geometric Algebra

Clifford algebra is a coordinate-free approach to ge-
ometry based on the algebras of Grassmann [11] and
Clifford [9]. The approach to Clifford algebra we
adopt here was pioneered in the 1960’s by David
Hestenes [12] and later, with Garret Sobezyk, de-
veloped into a unified language for mathematics and
physics [13, 14]. Some preliminary applications of ge-
ometric algebra to the field of computer vision and
neural computing have already been given [5, 7).

2.1.  Basic Definitions
Let G, denote the geometric algebra of n-dimensions.

The geometric or Clifford product of two vectors a and
b is written ab and can be expressed as a sum of its

B = c/\b

/J/
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symmetric and antisymmetric parts
ab=a-b+anrb, (3)

where the inner producta - b and the outer producta A b
are defined by

a-b:%(ab-f—ba) (4)
arnhb = %(ab—ba). (5)

The inner product of two vectors is the standard scalar
or dot product and produces a scalar. The outer or
wedge product of two vectors is a new quantity which
we call a bivector. We think of a bivector as an ori-
ented area in the plane containing a and b, formed by
sweeping a along b, see Fig. 2(a).

The bivector b A a has the opposite orientation and is
antisymmetric as given in Eq. (5). The outer product is
immediately generalizable to higher dimensions. The
outer product of k vectors is a k-vector or k-blade, and
is said to have grade k, see Fig. 2(b). A multivector
(a linear combination of objects of different grades) is
said to be homogeneous if it contains terms of only a
single grade.

In a space of 3 dimensions we can construct a trivec-
tora A b A ¢, but no 4-vectors exist since there is no
possibility of sweeping the volume elementa A b A ¢
over a 4th dimension. The highest grade element in
a space is called the pseudoscalar. The unit pseu-
doscalar is denoted by 7 and is crucial when discussing
duality.

2.2.  The Geometric Algebra of n-D Space

In an n-dimensional space we can introduce an or-
thonormal basis of vectors {07} i = 1, ..., n, such that

aAbAC

7

Figure 2. (a) The directed area, or bivector, a A b. (b) The oriented volume, or trivector, a A b A c.
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0; -a; = 8;;. This leads to a basis for the entire algebra:

1, {oi}, {oinojl, {oincjAG),...,

o1 AGy A -+ Aap. (6)

Note that the basis vectors are not represented by bold
symbols. Any multivector can be expressed in terms
of this basis. In this paper a geometric algebra G, is
of the form G, 4 ,, where p, ¢, and r stand for the
number of basis vectors which square to 1, —1 and 0,
respectively, where n = p 4 ¢ +r. Its even subalgebra
will be denoted by G _ .-

In the n-D space there are multivectors of grade 0
(scalars), grade 1 (vectors), grade 2 (bivectors), grade
3 (trivectors), etc. . . up to grade n. Any two such multi-
vectors can be multiplied using the geometric product.
Consider two multivectors A, and B, of grades r and s
respectively. The geometric product of A, and B can
be written as

AB; = (AB), ;s + (AB), 452+ + (AB)r—y (7)

where (M), is used to denote the ¢-grade part of mul-
tivector M, e.g. consider the geometric product of two
vectors ab = (ab)o + (ab); = a-b+anb. As simple
illustration the geometric product of A = 503 + 30102
and b =907 + To3 is

Ab = 35(03)% + 2701(02)* + 450307 + 21010203
= 35+ 270, — 450,03 + 211, ®)
note that o;0; = (0';')2 =o0;-0; =1 and 0i0; =0; N
o, where the geometric product or equal unit basis

vectors equals 1 and of different ones equals to their
wedge, which for simple notation can be omitted.

2.3. The Geometric Algebra of 3-D Space

The basis for the geometric algebra Gs o, of the 3-D
space has 2° = 8 elements and is given by:

1 , {01, 02,03}, {0102, 0203, 0301},
—_ gt

v ~

scalar vectors bivectors

{o10003} =1 . 9)
[
trivector
It can easily be verified that the trivector or pseu-

doscalar oy 0,073 squares to —1 and commutes with all
multivectors in the 3-D algebra. We therefore give it

the symbol 7; noting that this is not the uninterpre-
ted commutative scalar imaginary j used in quantum
mechanics and engineering.

2.4. Rotors

Multiplication of the three basis vectors a1, 03, and 03
by I results in the three basis bivectors o107 = [03,
0,03 = Ioy and 0301 =I0;. These simple bivec-
tors rotate vectors in their own plane by 90°, e.g.
(0102)02 = 0y, (0203)0, = —073 ete. Identifying the i,
J. k of the quaternion algebra with /oy, —I 02, 103, the
famous Hamilton relations i* = j* = k* = ijk = —1
can be recovered. Since the i, j, k are bivectors, it
comes as no surprise that they represent 90° rotations
in orthogonal directions and provide a well-suited sys-
tem for the representation of general 3D rotations, see
Fig. 3.

In geometric algebra a rotor (short name for rotator),
R, is an even-grade element of the algebra which satis-
fies RR = 1, where R stands for the conjugate of R. If
A = {ag, a1, az, a3} € G300 represents a unit quater-
nion, then the rotor which performs the same rotation
is simply given by

R=ay+aloy—aloy+azlos

= ay +a1023 — 4203 + @3013 . (10)
— o y
scalar bivectors

The quaternion algebra is therefore seen to be a subset
of the geometric algebra of 3-space. The conjugated of
a rotor is given by

R = ay — a1023 + a2031 — a30712. (11)

A rotation can be performed by a pair of reflections,
see Fig. 3. It can easily be shown that the result of re-
flecting a vector a in the plane perpendicular to a unit
vectornisa, —ay =a’ = —nan~', where a, and g
respectively denote projections of a perpendicular and
parallel to n. Thus, a reflection of a in the plane perpen-
dicular to n, followed by a reflection in the plane per-
pendicular to another unit vector 7 gives the new vector
b = —m(—nan~"Yym~! = (mn)a(mn)~' = RaR. Us-
ing the geometric product, we can show that the rotor R
of Eq. (10) is a multivector consisting of both a scalar
part and a bivector part,i.e. R=mn =m-n+mAn.
These components correspond to the scalar and vector
parts of an equivalent unit quaternion in G; g o. Consid-
ering the scalar and the bivector parts, we can further
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Figure 3. The rotor in the 3D space formed by a pair of reflections.

write the Euler representation of a rotor as follows

0%9+us' g (12)
= COS— mn-, o
2 2

13

R=¢"

where the rotation axis n = ny0,03 + n,030] +n30102
is spanned by the bivector basis.

The transformation in terms of arotora > RaR = b
is a very general way of handling rotations; it works for
multivectors of any grade and in spaces of any dimen-
sion, in contrast to quaternion calculus. Rotors combine
in a straightforward manner, i.e. a rotor R; followed
by a rotor R, is equivalent to a total rotor R where
R =R\R;.

3. The Motor Algebra

Clifford introduced the motors with the name biquater-
nions [8, 21]. Motor is the abbreviation of “moment and
vector”. Motors are the dual numbers for 3D kinemat-
ics with the necessary condition of /*> = 0. They can
be found in the special 4D even subalgebra of G3 ¢
or motor algebra. This even subalgebra denoted by
GY o, is spanned by a basis of scalars, bivectors and

pseudoscalars,

L, nys 371 YiYa, Vavi, Vaya, V4V,

scalar 6 bivectors

L )

unitpseudoscalar

Note that the bivectors in the basis correspond to the
same basis for spanning 3D lines. Also note that the
dual of a scalar is the pseudoscalar P and the duals
of the first three basis bivectors are the next three, for
example the dual of y2y3 is Ty2ys or yay.

3.1. Motors, Rotors and Translators in G |

Since a rigid motion consists of a rotation and a trans-
lation, it should be possible to express a motor in terms
of individual operators like rotors and translators. The
motor action can be described basically in terms of two
steps: rotate one axis until its direction is parallel to an-
other axis then shift it to overlap the another one, see
Fig. 4. Note that the indicated vectors in the figure will
be represented in next sections as bivectors.

Let us now express this procedure algebraically.
First, let us consider a simple rotor in its Euler
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/ -R,t.R,

Figure 4. Screw motion of an object about the line axis / with #; longitudinal displacement by d and rotation R, with angle 6.

representation for a rotation with angle 6. The rotor
of a screw motion, should be represented in terms of a
screw axis line as follows

R, =ay+amn+lap At. =a, +a,(n+ Im)

C, e
= COS(E) + 51n(§)(n + Im)
= cos(g) e sin(g)l. (14)

Note that the line is expressed using a unit bivector
for direction n and dual bivector for the momentum
m=nnit.

The motor is defined by sliding along the rotation
axis line / the distance £, = dn. Since a motor is applied
from the left and its conjugated from the right we use
the half of ¢, when we define the motor

t
M=TR = (1 +!§5)(ag+a+fa/\tc)
dn
= (1 -+ l?)(ac+a,n+1asn At:)

d d
=a.+an+Ilagn At + Iaavn - Izasrm

' d
- (ac - Igas) + (as + Iacg—)(n + InAt,)

' d d
= |a.— la,— s+ la.— |l. 15
(a az)+(a+a2) (15)

Note that this expression of the motor makes explicit
the unitary screw axis line . Now let us express a motor
as an Euler representation. Substituting the constants
a. = cos(%) and a; = sin(%) in the motor Eq. (15)
and using the propertry of scalar functions with dual
argument we get

0 . [(B\d
S (COS(E) - fsm(i)i)
+ { sin g) +1 COS(E)E)I
2 2/2
0 d . (0 d
= Cos(f + IE) +sm(~2- + 15)1. (16)

If we want to express the motor using only a rotor and
its conjugated given by

R =ry— rio205 — nno3oy —rooa =rg—r, (17)

we proceed as follows

2
M=TR, = (1 + !E)RS
f
=RS+I§RJ =R, +IR.. (18)

We can now express the bivector¢; in terms of the rotors

.~ t, o
RR, = (ERS)RS (19)




so that

t;=2RR. (20)
Figure 4 shows that ¢ is a 3D distance vector referred
to coordinate system of the rotation axis of an object
and £ or £ is a bivector along the motor axis line.
The distance ¢, considered here as a bivector can be
computed in terms of the bivectors £, and ; as follows

t=t, +ty =t +t; =t —RtR)+ (t-n)n
=t — Rstcﬁs) +dn=t. - Rstcés +t

= (t. — Ri.R;) + CRR;). 21)
3.2, Properties of Motors
A general motor can be expressed as
M, =aM (22)

where @ € R and M is a unit motor as in the previous
sections. The norm of a unit motor M is defined by

» s t\p 5 t
\M| =M1 =TRR.T, = (1 +I5)R,Rs (1 = 13)

t t
=1+!§—1§=1, (23)

where M is the conjugate of the motor, defined by

M = TR = RT (24)
and 1 is the identity of the motor multiplication. Now
using the Eq. (18), and considering the unit motor mag-

nitude we find two useful properties

M| = MM = (R, + IR)R, + IR.)

=RR, +I(RR, +RR,)=1. (25

This requires that
RR, =1  (26)
RR. +RR; =2(rory—r-7)=0. (27)

The combination of two rigid motions can be
expressed using two motors. The resultant motor
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describes the overall displacement, namely

M.=MM, = (R, + IR, )(R,, + IR,)
=Ry,R;, + I(R,R,, + R, R,,)

Sa" 5y
=R, +IR,. (28)
Note that pure rotations combine multiplicatively,
whereas the dual parts containing the translation com-
bine additively.
Using the Eq. (18), let us express a motor in terms
of a scalar, bivector, dual scalar and dual bivector

M =TR; =R, + IR, = (ag + a1y2y5 + a2y3)»
+azyan1) + 1(bo + biyays + bayays + b3yayr)
= (ap+a)+ I(by+b). (29)

We can use another notation to enhance the components
of the real and dual parts of the motor as follows
M = (ag,a) + I (by, b), (30)

where each term within the parenthesis consists of a
scalar part and a 3D bivector.

4. Linear Modeling of the Motion
of 3D lines using the Motor Algebra

The modeling of the 3-D motion of lines using the
motor algebra G, , takes place in a 4D space where
the rotation and translation are operators applied multi-
plicatively; as a result the 3D general motion becomes
linear. Having a linear method we can then compute,
for example, the unknown rotation and translation si-
multaneously in such cases as the hand-eye problem [6]
or estimate dynamic motion using the motor extended
Kalman filter. In these problems, if we use the 3D
geometric algebra Gs o, we are unfortunately com-
pelled to compute the translation decoupled of rotation,
increasing therefore the inaccuracy.

4.1. Representation of 3D Lines Using
the Motor Algebra

The basis bivectors of the algebra of motors Gy ;,
spans the line space in 4D. Assume that two points
X = (X1, X12, X13, 1) and X5 = (X1, X2, X23, 1)
in the space of Gs o1 lying on the hyper-plane X4 = 1
belong to the line L;. Note that we use now upper
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Figure 5. (a) The moment and the direction of the line using dual bivector basis. (b) The screw motion of a line.

letters for points in the 4D space to differentiate them
from the points of the 3D space in the G g 9. The line
belongs to G5 ; and therefore it can be defined simply
as an outer product of these points, i.e.
L; = Xi AXy = (X12X23 — XsX)n2ys
+ (X13X21 — XuXa3)ysya
+ (XuX2 — XXy + (X2 — Xu)van
+ (X — Xi2)vaye + (X3 — X3)yays. (31)

Since this equation consists only of bivectors, it can
be expressed straightforwardly in terms of the bivector
basis, namely

Ly = (LPyys + L'y + LPniy)
+ (LM vy + L2y + LY vays)

= (L®yys + L'y + LPyip)
+I(LYyays + LYy + L¥niy),  (32)

where yay1 = I'2ys, vava = Iyayiand yays = Iy,
To agree with the conventional line representation, we
interchange the coefficients of the bivectors and we
express three of them as the dual part as follows

Li = (LY yays + L%y + L¥ i)
+(LPypys + L'ysy + L%y, (33)

Note that this is equivalent to the line expression using
Pliicker coordinates.

The real part can be seen as the direction of this line,
and the dual part as the moment of the plane where
the line lies. This plane crosses the origin and it is de-
scribed by the outer product between n and any vector
p touching the line, i.e.

Li=n+naAp=n+Im. (34)

Note that the term n x p is orthogonal to the bivector n,
so we can use the dual bivector representation for the
moment m. The representation of the line according
the Eq. (34) is given in Fig. 5(a).

This line representation using dual numbers is eas-
ier to understand and to manipulate algebraically and
it is fully equivalent to the one in terms of Pliicker
coordinates. Using the notation with brackets the line
equation reads

L; = (0,n)+ I(0,m). (35)

where the # and m are spanned with a 3D bivector basis.
Note that the first element of within the parenthesis
corresponds to the scalar and the second to the bivector
part.

4.2.  Modeling the Motion of Lines Using
the Motor Algebra

The motion of a 3D line, or the screw motion of a line
can also be seen as a rotation of the line about the axis




line Ly, followed by its translation along this axis line,
as depicted in Fig. 5(b). Note that in the figure the line
L, is shifted from the origin in f.. In Section 3.1 we
explained in detail how a motor implements the screw
motion of an object about a line axis. Considering now
the 3D line as a geometric object, and using the line
Eq. (34), we can express the motion of a 3D line as
follows

L=n+1Im =MLM
=T.R,(n+ Im)R,T,. (36)

This equation can be expressed purely in terms of rotors
as follows

I ~ f
I ~ ~ ~ [y
= (1 + 15) (R_mR, + IR.mR, — [RSnRSE)

. w il By o "
=RnR; + 1 (—RsnRSE’ - ;RJ.nR, + R,mRs)

= R.nR, + I(R.nR. + R'nR, + RmR;)  (37)

This equation is very useful for estimating the ro-
tation and translation simultaneously as in the case of
hand-eye calibration [6] or for the algorithm for the
motor extended Kalman filter.

4.3.  Representation of the Line Motion Model
in Linear Algebra

The line motion model presented in the last section
uses the geometric algebra G7 ;. Because the EKF
computer algorithm is implemented using techniques
of linear algebra, we should also formulate the line mo-
tion model L' = MLM in the frame of linear algebra.
Let us start using rotor relations. The multiplication
of two rotors U and V in geometric algebra G7 | reads

W=UV = (ug+u)(vyg+v)

=ugvg+u-v+ugy+vou+unrv. (38)
Multiplication of these two rotors in linear algebra is

W =URV = ViU, (39)
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where U = (ug uy uy u3)T, V = (vg v; v3 v3)7 and

(Uo —uy —uy —us
Ui 1o i3 —u2
Up =
uy —usz Up up
\u3 Uz —Uj Uo
(40)
(Ug - —U V3
U] Ug -3 %)
Vir =
v U3 vp —U]
\1’3 U2 v Up

We call Upg; “left-multiplication matrix of rotor U™ and
Vg, “right-multiplication matrix of rotor V.

The product of S = U+ IU" and T = V + IV in
geometric algebra G | gives

Q=ST=U+1U))V+1V)
=UV+I({UV +U'V), (41)

where U, U’, V and V' are all expressed in the form of
rotors. Multiplication of these two motors in terms of
matrices

0 =8uTl =TyS, (42)
where

S=(uo wuy wup uz uy uy wh ul)’,
vi)T, (43)
Rt Osxa Ver 04x4
SMI=(u ), TMr=( , )
Up Ug Vir Ve
We call 8y “left-multiplication matrix of motor §”
and 7}, “right-multiplication matrix of motor T,
To convert the line motion model of Eq. (36) to ma-
trix algebra we can handle the real and dual components
n,m,n' and m’ of the lines L and L' as rotors with zero

scalar. By right multiplication of both sides of Eq. (36)
by M we get

'} ! !

T=(@w v v v Uy U U

L'M -ML =0. (44)
This results in the following linear motion equation
(Lo — LM = AyM =0,  (49)

this matrix representation of the line motion was sug-
gested in [10]. The constraints of Eqs. (26) and (27),
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respectively, now are

R'R=1, (46)
R'R =0, (47)

with R = (rg ry ra r3)",R' = (rg r{ ry rj)7 and
M =R+ IR

These properties will be used for the implementation
of the MEKEF algorithm in the subsection 6.2.

5. Recursive Estimation using Kalman
Filter Techniques

The Kalman filter is a linear recursive algorithm, that
is unbiased and of minimum variance. It is used to
estimate optimally the unknown state of a linear dy-
namic system using noisy data which is taken at dis-
crete real-time intervals. The extended Kalman filter
(EKF) approach modifies the standard Kalman filter
(used for linear systems) in order to treat noisy nonlin-
ear systems. It starts with an initial guess, then updates
continually the predicted state with new measurements.
Unfortunately, if the disturbances are so large that the
linearization is inadequate to describe the system, the
filter will not converge to a reasonable estimate. First,
we give a brief outline of the Kalman filter and of the
extended Kalman filter, using this background we will
explain thereafter the rotor and motor extended Kalman
filters. For a more complete introduction the reader
should refer to [21].

5.1. The Kalman Filter

Let us describe the Eq. (1) of a dynamical system by a
linear difference state equation as follows

Xi=® 1 Xi 1 + W. (43)

The state of the system at f; is given by the n-
dimensional vector X;. The term ®;,;_; isann x n
transition matrix and W; is the random error with the
known first- and second-order characteristics

EIW1="0; i=0;L.. (49)
E[WiW]] = Qi3 (50)

where §;; is the Kronecker delta function. The matrix
Q; is assumed to be nonnegative-definite.

Suppose that at each time f; there is available an m-
dimensional vector of measurement Z; that is linearly
related to the state and which is corrupted by the addi-
tive noise V;. This is the so called observation equation

Zi=HXi+ Vi, (1)

where H; is a known m x n observation matrix, and
the vector V; a random error with the known statistics

EIVil=0; ‘§=0,1,:s (52)
E[ViV]] =Ci8y, (53)

where the matrix C; is assumed to be nonnegative-
definite [21].

Further, assume that the random processes W; and
V; are uncorrelated, i.e. for each i, j

E[wVi]=0, (54)

where O is the zero matrix.

Given the preceding models (48) and (51), we shall
determine an estimate X ; oli the state at #; as a linear
combination of an estimate X;_ at t;_; and the data Z;
measured at time ;. By defining an unknown (n x m)
gain matrix K;, the estimate X; is given by

ii = ‘I’f;f—lz’;’f—l + K2 — Hf'i’;,u—lnfi-l] (55)

The matrix /C; is determined so that the estimate has the
minimal variance. That is, the X; is chosen to minimize
its mean squared error

Evmx = (E[X; = X)X — X)lhaiv.  (56)

Equation (56) is equivalent to the minimization of the
trace of state error covariance matrix P;

Eyyn = {trace P; jviN
= {trace E[(X; — X)(Xi = X)"Jhuv. (57)
By substituting (51) in (55), and then substituting
the new (55) and (48) in (57), it can be shown that the

trace of matrix P; will be minimized by choosing the
following optimal gain matrix IC;,

Ki= ‘P:'ﬁ—IH? ('7'f;"7:’:'/s—17'53r “r Cf)_l, (58)
where P;;_, is the error covariance matrix

Piji-1 = Qi;i—lpi@ﬁ,'_l + Q. (59)




of the predicted state
Xijio = ®i1 X (60)

With this optimal gain matrix C;, the matrix P; reduces
to

Pi = Piji-1 — KiHiPiji-
= (I —K:H;)Pisi-1. (61)

Equations (55), (59), (58) and (61) constitute the
Kalman filter equations for the model of the system (48)
and that of the measurement (51), respectively.

From (58), we see that as the measurement error
covariance matrix C; approaches zero, the gain matrix
K; weights the residual more heavily,

lim IC; = H; . (62)
Ci—»0®

On the other hand, as the estimated state error co-
variance P; approaches zero, the gain /C; weights the
residual less heavily,

lim K; =0O. (63)

i—

Another way of thinking about the weighting the
Kalman filter by /C; is that as the measurement error
covariance matrix C; approaches zero, the actual mea-
surement Z; is “trusted” more and more, while the pre-
dicted state ‘I),-”_l)f’; is trusted less and less. On the
other hand, as the estimated state error covariance P;
approaches zero the actual measurement Z; is trusted
less and less, while the predicted state tI),—,;_lf,- (the
dynamic model) is trusted more and more.

5.2. The Extended Kalman Filter

As described previously, the Kalman filter addresses
the general problem of trying to estimate the state X;
of a discrete-time controlled process that is governed
by a linear stochastic difference equation. But what
happens if the process and (or) the relation between the
measurement and the state is non-linear? Some of the
most interesting and successful applications of Kalman
filtering are concerned with such situations. A Kalman
filter that linearizes about the current predicted state

X;/i—1 and measurement Z; is referred to as an extended
Kalman filter or EKF.
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In computer vision the measurement model is usu-
ally found to be described by a nonlinear observation
equation f;(Zy;, X;) =0, where the parameter Zy; is
the accurate measurement. In practice, such a mea-
surement is affected by random errors. We assume that
the measurement system is disturbed by additive white
noise

Zi=2Zp; + Vi (64)

where the statistics of noise V; are given by (52)
and (53).

To apply the Kalman filter technique, we must ex-
pand the nonlinear observation equation into a first
order Taylor series about (Z;, X ii=1)s

Ji(Zo,i, X;)
5 of: (Zi, Xi/i-
= fi(zr's Xa‘;'r‘—l) + 'ﬂ'—!—l)(zo_i -Z;)
YAR
ofi (Zi, Xiyi- ; )
2 o M(Xf - Xyi=1) + O =0. (65)

X,

By ignoring the second order term @7, the linearized
measurement Eq. (65) becomes

Y; = H:X; +N;, (66)

where Y; is the new measurement vector, N; is the noise
vector of the new measurement, and H; 1s the linearized
transformation matrix. The components of the Eq. (66)
are given by

afi(Z;, ii’ji——l)i

¥; = —ﬂ(z;..f;;r,'_l)'i' ili—=1,

oX;
B aﬁ(zs.i’m-i)
i = axX; ‘
ofi (Zi, Xi/i-1)
N 0Zo, (Zy, )
E[N:]=0,
E[N:N[] = Cijint
(2 Xijia) c_aﬁ(zhi’f;i—l)r
B 8Zy,; : 3Zy,; ’

where C; is given by the statistics of measurement (33).
This linearized equation (66) is a general form for the
nonlinear model. We will use this form for our partic-
ular nonlinear measurement model later in Section 6.
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5.3.  The Rotor Extended Kalman Filter

This subsection describes an EKF algorithm to esti-
mate rotors or quaternions. We call it Rotor Extended
Kalman Filter (REKF). In the static case the measure-
ments of points free of error satisfy

Ry =R;, (67)
Pois1 = RRit1)Poi+1, (68)

where {po,;} and { p;, ; } are sets of points before and after
rotation, respectively, and R; is the rotation quaternion
for the ith pair of points pg; and pp;. R(R) is the
matrix representation of R

R(R)
2(rars 4 ryry)

2 2 2 2
iy —ry—r;

2 7 Y 2

= 2(rary —rirg) ry—ryvry—n

2(rary —ryr3)
2rars +rir2) |,
2rary +r1r3)

2(rqry — ryra) rf - r% - 1"32 +rf

(69)

where r; for j = 1, 2, 3, 4 are the four components of
R which satisfies

IR]l = 1. (70)

Let us assume that the measurements {p;+;} and
i1} of {poi+1} and {pg; .} are corrupted by the
noise {n;4+} and {n;_,}, respectively, such that

Pi+1 =Poi+1 + iy (71)

Pis1 =Py + Mg (72)
Here the noise vectors {n;.,} and {n;_} are assumed
to have zero mean and the known covariance matrices
{Ci+1} and [C;,}, respectively.

We rewrite the Eq. (68) as the function f; . ; depend-
ing of the variables (po,i+1, P ;.1 Rit1)

ﬁ‘H (PO,HIvP’o‘f.Q.]»R:'H)
= PE),H.] —RRi+1)poi+1 =0 (73)
Expanding this equation about (p,-+1,p;+l,ﬁ,-+m) in
terms of first order Taylor series we get
.ff+] (p0‘5+| !palf+] s RH—])
- ﬂ+l(Pi+I-P;+1-Rf+lﬁ)

+ 3ﬂ+1(Pe+1»P:+1'ﬁf+1;f
9Po,i+1

) ! t
(Po,i+1 — Pit1)

A

4 fis1(Pis1,Pipys Rivryi)

(Po,i+1 —Pis+1)

apo,i+1
8 i i+1s # sﬁi i A ~
f+1(P+$RP,+1 = )(R:‘+l —Riyyi)+0O°

i+1
=0, (74)

where the second order term (@ can be omitted, and

-~

fi+1(Pi41. Py Rivryi)

, =1, (75)
P01

of; i1, 4 ,ﬁ(‘ i D

fi+1(p -;1 Pisy Rivy/i) ==R(R;+1/i), (76)
Po,i+1

fir1(Pis1, Piy Rivryi) - BR(I}H};:')PHI (77)
OR; 41 B OR; 4 .

In order to compute the expression (77), we utilize the
following vectors

pna=(p p p)l, (78)
Ri=(ry rn r3 )t (79)
ﬁf+1,u =R A A o) (80)

thus we can write

T\’-(ﬁi+uj)m+|
(Ff +F2 =P =1 2RF3+iife)

_ 22 22 | a2 a2
ry .\'2+J"3 ry

2(FyFy — FiFy)

2(Fafs — FiF3)

= 2(F4f3 + F172) )
2(Fary +1173) 2(?14;3 —FiFa) flz - fzz - ;32. + l:f

P

(pz) =, By P =By 81

P/ in

The derivative of the vector p|,, ,; with respect to a
vector R; . is of the form

aR(éIHN)PfH
OR; 4

)
dr,  0r, ory o

_ iy _ | 9, 8Py 9py 9P

T Ry | dr 9y ors  or
apy by 0B OB,
arl 3?’2 3?’3 8r4

(82)




AR (Ris1/ P11

Now defining a 3 x 4 matrix H;+1/i = — R

we can write the previous equation as

e aR(RI i)Pi
—Hr‘Hh d—f a;ljl g
i+

h} hz h_:; k4
= h4 —h'_!, fl;_ —h] ” (83)
——}33 —h4 h1_ !‘12

where

hy = 2(F1p1 + Fapy — F3p3),
hy = 2(Fap1 + F3pa + Faps3),
hy = 2(—=F3p1 + Fap2 — 71 p3),
hy = 2(=F4pr + F1p2 + Fap3).
First replacing (83) in (77) and then substituting it

together with (75) (76) in (74) and then omitting the
second order terms we get

0=p;, - ’R(ﬁi+1;i)pi+1 + Po,is1 = Pis1)
"R(ﬁi—i-lﬂ)(PD.Hl —Pi+1)
—Hit1)i(Riyr — Ri+1,ﬁ)- (84)

This equation can be further rearranged as

Pisy — RRiv1))Pis1 + HisijiRivuyi
= Hiy1yiRisv1 + 0i4 —Pois1)
- R(ﬁi+1/:‘)(ﬂf+1 — Po,i+1)- (85)
The components of this equation are now amenable

to be identified as the measurement z;; and the noise
of the measurement n;; as follows

Zi41=Plyy — RRiv1/)Pis1 + HivryiRivyi,
(86)
iy = (P;+1 ) it1) — R(ﬁfﬂﬁ)(PHi —Po,i+1)
niyy — RRiz1ydnis. (87)

In terms of these variables we can finally write the
first order linearized measurement equation more com-
pactly

Zit1 = Hiz1/iRiv1 + Biyyyi. (88)
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Here n;/; is zero mean noise with covariance given
by

Ciyiji =Clyy +R(Ri+1;f)cf+1RT(§i+uf)- (89)

where C; ., and C; . are the known covariance matrices
of the noise n;_ | and n, . respectively.

5.3.1. Rotation Estimation. Now we will describe
the procedure of the estimation of a rotation expressed
as a the rotor R. At the beginning of the iteration or
step i = 0, the initial state R, and an initial estimation
error covariance matrix Py are given. According to the
Eq. (67), given an estimate R and the covariance ma-
trix P; at step 7, itis reasonable to assign the following
as a prediction of the next stepi + 1

Riyiji =R, (90)
'7:";+1;r' =P;. o1

Taking into account the measurements p; 1, p; ., and
the predicted state I?,-.H si the new measurement z;41,
Eq. (86) can be straightforwardly computed. Then, ac-
cording Egs. (55) and (58) the Kalman gain matrix and
the estimate ﬁm at step i + 1 by EKF are computed
respectively as follows

Kiv1=PryiMi

(Hit1/iPiv1yiHivryi + Cisyi) ™, (92)
ﬁ:‘+! =ﬁi+l;‘:‘ + Kiy1(zig — Hs+i;i§£+1;f}
=§s+|ﬁ +Ki1(pyy — R(ﬁm;s)Pm)- (93)

ﬁi+1 must be modified prudently to satisfy the con-
straint ||R| = 1:

- Rl
R:H == = 94)

IRis1l

The updating of the error covariance matrix follows
according to

Pis1 = (I — Kt Hiz) Pigryitl — KisaHi)"
‘|‘K:x‘+lci+1’cjr+1- (95)

Note that 'H,H and C;.1 are recalculated using the
current estimate R +1- As far as the implementation of
the filter is concemed the measurement error covari-
ance matrix C; might be measured prior to the operation
of the filter.
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6. The Motor Extended Kalman Filter

The use of the EKF filter in the motor algebra frame-
work gives us the simultaneous estimation of transla-
tion and rotation. According to the literature there are
only batch methods for the simultaneous estimation of
these components [6, 15]. The motor extended Kalman
filter (MEKF) turns out to be a natural extension of the
rotor extended Kalman filter thanks to the multivector
concept of the geometric algebra. First, letus define the
noisy motion equation using lines in the motor algebra
framework G 5 .

The geometric features we will consider for the
measurements are 3D lines (L' L?...,.Ln = 2)
which belong to an object moving in the 3D space,
see Fig. 1. The rigid motion parameters between any
couple of consecutive time instants (to, t1s B2y v oo s IN)
are described compactly by the motor M;. According
to the Eq. (36), the motion of any line of the object is
modeled by

L,‘ =Mij_.1Hf. (96)

If the change of the parameters of the line in motion
between the time instants #;_; and f; is described in
terms of the motor velocity information V;/;

L; = VijiiLi-1Viji-1, 97)

we can then express the recursive motion equation of
the line in general as follows

L; = ML\ M,
=(Vf;s-lM.'-l)Lf-1(ﬂ7fs-1‘7f;f-1)- (98)

Thus, we obtain the ideal dynamic motion model in
terms of the motors

M; = VM. (99)

For example, suppose the motion is a screw motion
with rotation of constant angular velocity @ about an
axis of known line (L, = F+ It. A7) and with constant
translation velocity v, along the axis line. If the data
sampling is done at equidistant time interval, then the
instant times can be represented by integers, so the
motor equation reads

Vijiai=V
=(1+ Iv;/2)(cos(w/2) + sin(w/2)L;). (100)

Since in real work the relation between M;_; and M,
is known only approximately, the real dynamic model
of the noisy 3D motion is given by

M; =V i-imMi- + Wi, (101)

where the statistics of W; is given by (49) and (50).
Note that Vi1 s means “left-multiplication matrix”
of motor Vi/i-1.

6.1. Linearization of the Measurement Model

Considering Eq. (45), we can easily see that the re-
lation between the measurement .4y, and the state M
is unfortunately nonlinear; that is why we should lin-
earize it. Assume that the measurement Ay is the
true data Ay, contaminated by measurement noise
N 4,,; with zero mean and known covariance matrix

C_A’M_;
Ay = Ao, + Nay.i- (102)

Supposing that the predicted state of M, is M; /i than
according the Eq. (74) we can define a function fui
depending of the variables (Apo.i, M;) as follows

fori (Asois Mi) = AyoiM; = 0. (103)

This equation can be expanded into a first order Taylor
series about the predicted state (Ayi, Miji-1)
i (Ano,is M) = Fui (Apgi» Miji-1)

fvr.i (At Miji-) .
- i 31;4" L M; —M;;i-1)

A

Of i (Asti . Miji-1)
3. Au0,i
+0* =0. (104)

+ (Apo,i — Aui)

Now calling the components

-

fui (Amis Mijic) 4
M, = Aui,

ofui (Auis Mijic) o
: =M;i-1, (106
3 A0, L )

(105)




omitting the second order terms (®* and considering
the Eq. (102) for Ay, we get

AyiMijioy + Asii(M; — M)
+ (A0, — -AMi)Mf/i—l - AM:'MEH——I
+ Ay (M; = M) — N a,,, . Miji-y =0. (107)

or

—AuiM; +NAMJ5}U£“1
= AuiMijio — AyiMijiy =0 (108)

As aresult we can claim that the measurement equation
for the MEKF at step i is given by

Z; = —AyiM,; +NAM,.-H:'/;'—1
=H:M; + NZ.,‘ =0, (109)

where we call H; = — Ay, and Nz; = NAM‘.H]
M; ;. The covariance matrix of Nz ; is C;.

6.2. Enforcing a Geometric Constraint

In order to estimate the motor state, we assume first
that at the beginning or step i = 0 the initial state M
and the initial error covariance matrix of the estimate
P\ 0 are given. Now, according to Egs. ((55), (59), (58)
and (61)), the estimation equation of the motor state is
given by

M = @5/5-15?5—1 + K (2 — HI'I'HI'—]M;'-I)
= VijicomMi—y + Ki(Z; — HiVijioiaMi_y)
=@®RT R, (110)

where the optimal Kalman gain matrix /C; is computed
according to the formula

Ki=PyioH (HPyiaH! +€)7 a1
where

Pijii= q’iff—lpiti’;j_] + Qi (112)
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and the error covariance matrix for the i-step is updated
as

Pi = Pifi-1 — KiHiPijica = A = KiHi)Piji-a.
(113)

Now M} consists of two 4-dimensional vectors
R} and R'; which must be varied to fulfill the con-
straints (46) and (47). In the case of the constraint (46),
the modifications can be done simply by

. R'f
Ry= ——.
IRl

(114)

However, it is not that simple to satisfy the con-
straint (47). The constraint

R'™R=0 (115)

tells us that R must be orthogonal to the dual rotor R’
and this is valid up to a scalar, see the role of this scalar
in the Eq. (120) below. Unfortunately in the practice
the rotor estimate R" is usually not orthogonal to the
estimated dual rotor R’". The Fig. 6 suggests clearly
how to enforce this geometric constraint in order to
modify the orientation of R’

In order to do so first we consider the cosine of the
angle ¢ between estimates RY and R’}

RIR

cos e
@ =R

(116)

which can be simplified by using Eq. (114) and the unit
rotor R; as follows

RYER;
cos(p) = : = (117)
IR ||
JnJ-‘?'_.r
AR
R™
s8R’
@
@
O B

Figure 6. Constraint of RR =0.




220  Bayro-Corrochano and Zhan

Then we consider also the orthogonal variation
SR = |R|| cos(@)R: = (RT"R)R..  (118)

It is then straightforward to build the following
difference relation

R =k(R] - (R;"R)R;). (119)

Note that this equation is valid up to a scalar kK which
can be defined as

- bl . am
”RT - (Rrj* RE)RI ” ' "R; ||
therefore
> Rr* R;*TR
R = o:( ( ) ) ‘R I (121)

IR — (RTTROR R
where the scalar « can be find out thereafter by filter

tuning. An illustration of the effect of the tuning will
be presented in the experimental part.

6.3. Operation of the MEKF Algorithm

The processing of information by the MEKF filter can
be explained very simply by considering the block dia-
grams presented in Fig. 7(a) and (b).

k k+l
i ) 1)
| i
1)
r
M) ' )
up dating
) Z(#)

(a)

In general, during the MEKF cycle of Fig. 7(a), the
updating uses a prediction and a corrected input mea-
surement to actualize a new estimate which in turn will
be modified using a geometric constraint. This cycle
continues for each new measurement on and on. After
few iterations the MEKF should have stabilized to the
estimated proper states.

The Kalman gain XC; can be calculated before the
actual estimation is carried out and it does not depend
at all on the measurement Z;. The computation cycle
for K; illustrated in Fig. 7(b) would proceed as follows

Step Procedure

1 given Pi_1/i-1 = Pi, Qi and P;/; then Pisi-1is com-
puted using the Eq. (112).

2 P;ji-1, H; and C; are substituted in Eq. (111) to obtain
KC;, which will be used in step 3 of the MEKF algorithm.

3 Piji-1, Ki, and H; are substituted in Eq. (113) to deter-
mine P, which is stored until the time of the next mea-
surement, when the cycle is repeated

Next the MEKF algorithm illustrated in Fig. 8 will
be explained. For the initialization of the MEKF we can
use for the initial time instant i known values of M, i1
and P;_; or if we do not known them simply take the
trivial values M;_; = [10000000]7 and P;_; = Isxs.
After the initialization the MEKF seeks to determine
M; for some future time instant. The computation pro-
cedure of the MEKF would proceed as follows

P
1
" " Compute
P T
_._’ B 1
—H;
Compute —Ci | Compute _a
K P |
B
K

(b)

Figure 7. (a) Estimation and up-dating cycles (b) Kalman gain computation.




Step Action

Procedure

I Prediction

2 Estimation

3 Correction

4 Modification

The estimated :\3’,;. is propagated forward

by premultiplying it by the discrete
system model matrix &;/;_. This
gives the predicted estimate M;/;_; =
@;;4-_153;_1 . Then the measurement
model H; = —. Ay, is linearized,
see Eq. (45).

.-;f_;:'l-?‘-;,-_; is premultiplied by H; =
— Ay, giving the estimated input
measurement Z; = H; @;!,-_15?,-;;_1
which is subtracted from actual
measurement Z; to obtain the measured

residual or error e} = Z; — 'HZ.-‘P,—;,'_]f:l;_l 5
The error e] is premultiplied by the matrix /C;

and the result is added to M; Ji—1 to give
the current estimate M7, see Eq. (110).

The component R’} of the estimate M} =

®:T,R’;")T is modified using a geo-
metric constrain according the Eq. (Alf.;-l).
Then the final estimate M; = f}‘i’? R )
is stored until the next measurement

is made, at which the cycle is repeated,

Z:
Present
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The MEKF would run recursively completing these
cycles until instant time N. It is necessary to mention
that Kalman filter implementation is sensitive to the
numerical instability. In order to overcome these prob-
lems several techniques are available as the square-root
filtering and the so called U-D factorization [19].

7. Analytical Method for the Recovering
of Motion Parameters

In the experimental part we will compare the per-
formance of the MEKF algorithm with an analytical
method used by Zhang and Faugeras [22]. In this sec-
tion, we explain briefly this method. This procedure can
also be advantageously used for estimating the initial
prediction in our MEKF algorithm.

Consider k = 1, 2, ..., n lines belonging to a rigid
object. The lines L{ = nf + Im}; are measured before
the rigid motion transformation given by

t‘
M; = (1 +15‘)RI (122)
Step 3 Step 4
correction modification

>

e(i)=Z - H M ()
3 /-\ =K (i)

M (i) — R (i) ?l

[\ Mo é, M +Kell)
_|_

input =
observation

L )
A
o)
r s
H=-A < @ T
i B Ni(i-1)
20Ky=H i) M=, M(-1)
P =b Pé +Q Previous estimate
M(0)=[1,0,0,0,0,0,0,0]
P(0)=1
Step 2 Step 1
Estimate of present prediction
input observation

Figure 8. Representation of the MEKF algorithm.
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and the lines L¥ = n¥ + I'm are measured after. Ac-
cording to the Eq. (34) the relation between a line
Lo = L and the transformed line L; = L¥ is given
by

Li' =n; + Imi
=RinoR; + 1 (RimoR; +1; A (RinoR:)).  (123)
The real and dual parts of this equation are

n; = RinoR,; (124)
m; = RimoR; +t; An;. (125)

The method uses the noisy measurements L{ and Lf
in the least square sense to estimate the best solution
for the rotation and translation components. The first
criterion of minimization uses the rotation of Eq. (124)

Emin = l Z |nf — RingR, |3} . (126)
Min

k=1

Multiplying from the right both sides of (124) with the
rotor R; results

n;R; — Ring = 0. (127)
This expression in terms of linear algebra reads
("i’)R.’RI - (”O)RrRi = ARRi =0. (128}

Thus Eq. (126) can be reformulated as follows

n
El: = l ZR;’"AEATQR.-] = {RT AR},
Min

k=1
(129)
where
n
A = Z ((nf)m - (HE)R,-)' (130)
k=1
A=Y Ay A, (131)
k=1
Since .A is a symmetric matrix and |R; || = 1, the solu-

tion to this problem is given by the smallest eigenvalue
of A which corresponds to the 4-dimensional vectorR;.

Using the computed rotation R; the translation is
straightforwardly computed with Eq. (125). In terms
of linear algebra, Eq. (125) can be expressed as

m; = Rimy — (n;) 1, (132)

where
Ri = R) R & (133)

and the matrix (n;)« is the skew-symmetric matrix of
n;

0 n3 —N2i
("a’)x = | —n3; 0 nyi 3 (134)
na i =T 0

which performs the outer product of the bivector n;
with another bivector. The estimate of the translation ¢;
is obtained minimizing the following criterion

=13 |mt = Ruml+ () E|°F . (139)

k=1 Min

After differentiating this criterion with respect to o and
setting the result equal to zero, we obtain

S 2(mf — Rimf + (nf) &) (u}), = 0. (136)
k=1

Finally the desired #; can be gained solving the follow-
ing equation

(Z ("f)i(“f)x)ff = () (Rimfy — mf).
k=1 k=1
(137)

It is well known that at least two non-parallel lines
are required to determine a unique motion displace-
ment. This tells that the matrices A and B =
S i (n5)« (n¥)T are always of full rank if two of the
lines Lf.‘(k =1,...,n) are non-parallel.

8. Experimental Results

This section presents first a simulation to compute the
motion parameters of an object moving in a screw tra-
jectory. In this simulation the MEKF algorithm and the
analytical solution are compared. The second experi-
ment involves the use of the MEKF for the estimation
of the motion parameters of a line moving in 3D space.
The line measurements were taken using a stereo
system attached to a 6 DOF robot arm.




Figure 9. The object moving in 3-D with screw trajectory.

8.1. Comparison of the MEKF and Analytical
Solution Algorithms

This simulation was written using MATLAB to com-
pare both methods. The methods estimate the motion
parameters of a moving object in the 3D space.

The Fig. 9 shows a rigid object moving with screw
motion about the known line axis

LS = F + Itc- AF
= 0.7071y2y3 + 0353631 + 0.6124y, 1>

+ 1(=0.7418y2y3 + 0.3813y3y; + 0.6364y, ).

with angular velocity w/2 = —¢/15 and a constant
velocity v, = 0.3r. Since the measurements are sam-
pled at equidistant intervals, they are normalized to 1.
The motion between the instant times i — 1 to i was
represented using the Eq. (100) of the motor

V= (1+ Ivy/2)(cos(w/2) + sin(w/2)L;)
= (1 +10.37/2)(cos(—m/15) + sin(—7x /15)L;)
=0.9832 — 0.1289y,y3 — 0.0645y3
—0.1117y1y2 + 1 (—0.0266 + 0.2367 13
—0.0188y3y1 — 0.0283y1 ). (138)

In the simulation the variables of the used motor

V,‘/,‘._I = (l -+ )‘1’5‘;/2)(_503(&);/2) + Sin(_f{J,'XE)L,y)
w; =+ n,, {139)

Ugi = U + Ny,

3

2
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were corrupted using noise variables n,, and n,, which
are independent, normally distributed with zero mean
and known deviations o, and o, .

We use the Eq. (99) of the ideal dynamic motion
equation of a motor expressed in terms of linear algebra

M; = VM, (140)

in this sense the ground truth of the motor trajectories
M, ; can be computed as follows

’ ! ¥ 15T
My; = (roq ri ry ry Foi Ty T T3p)
= Viji-1,,Mo.i-1, (141)

using as initial state Mo = (1000000 0).

At the i-th instant of time in the MEKF algorithm
two 3D points x;, and y; define the line L, at the co-
ordinate frame A. After the application of the motor
M; = (V;)i—1)yiM;_ this line relative to the frame A
is L;. Note that the real part of M; gives the rotation
R; and from the dual part R! using the Eq. (20) we can
gain the expected translation t; = ER;R,-.

Now having two lines related to the frame A: at the
initial position L, and at the position at time i the line
L;, we can simulate the noisy line observations simply
adding to those lines independent Gaussian noise with
zero mean and known standard deviation o, obtain-
ing the noisy line observations Ly and L;. Using these
noisy line observations both methods estimated the mo-
tion parameters with different degree of accuracy.

The MEKF algorithm was tuned according to
Eq. (121) in order to improve its accuracy and the
convergence rate of the estimate. The Fig. 10 shows
the eight components of the motor parameters for a
motion trajectory of 20 time instants. The initial pre-
diction of the MEKF was estimated using the analytic
solution. This type of initial prediction (using the an-
alytical method) works very well, because in all eight
parameters the estimations align themselves quickly to
the ground truth. We can clearly see that the MEKF
algorithm follows the ground truth remarkably better
than the analytical method.

8.2.  Estimation of the Relative Positioning
of an Robot End-Effector

In this experiment we applied the MEKF aigorithm
to estimate the relative motion between the end-joint
of a Staubli RX90 robot arm and 3D reference line
belonging to a rigid object. The 3D line parameters
were recovered during the arm movement using a stereo
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Figure 10.
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The estimation of the motor parameters for the simulated object motion.

vision system. This approach can be used for several
industrial applications like maneuvering and grasping.

The physical setup of the experiment is shown in
Fig. 11. The system looks at a couple of lines lying on

Figure 11,

The physical setup of

the experiment.

the floor and moves in the 3D space always conserv-
ing those lines in field of view. The main task for the
system is to estimate automatically the relative motion
between the floor lines and its end-joint. The visual sys-
tem consists of two grey-scale CCD 640 x 480 cameras
fastened to the last joint of the robot arm. The Staubli
robot arm has six joints which can be controlled by six
variables (x, y, z, roll, pitch and yaw). The coordinates
(x,y,z) describe the position of the tool coordinate
system T of the end-joint, referred to the coordinate
system W of the robot. The orientation of the end-joint
is described by the variables (roll, pitch, yaw) in terms
of Euler angles. Since in practice we need three views
in order to reconstruct a 3D line, using a two cameras
stereo vision system we can create a virtual third one
simply moving a bit the stereo system as it is illustrated
in Fig. 12. The movement of the robot arm is carried
out and controlled by the relative position and orienta-
tion between the tool coordinate system 7 and the base
system W. The camera calibration procedure obtains




Figure 12. The relationship between the tool system 7 and the
camera system C.

the projective transformation matrix P which relates up
to scalar the visual 3D space to the image plane. The
coordinate system of the camera C at the end-joint is
related to the tool system frame T via a certain trans-
formation X which was computed using a hand-eye
calibration procedure [18]. When the tool system T is
transformed from 7 to 75 by the transformation T, the
camera system C will be transformed from C, to C;
by a certain transformation C

C=XTX". (142)

Since the motion of the robot arm specified by the
transformation T is known, we can compare it with
the relative motion C. The relative motion of the frame
W and the frame C is a screw motion with constant
angular velocity w = —x /90 and a constant translation
velocity v, = 0.2. The axis line L, is parallel to the z
axis of the system C and the point (1.5, 0, 0) touches
these axis line. In the motor algebra G, , the axis line
is given by

L; = yiya + [(1.50273) A (Y172)
=ny.+11.5py. (143)

Similarly as in the Eq. (138) the motor Vis calculated
as follows

| 4

(14 Ivgp/2)(cos(w/2) + sin(w/2)L;)

0.9994 — 0.0349y,y»

+1(0.0035 — 0.0523y3y1 + 0.0999y; ).
(144)
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Table 1. Reconstructed 3-D lines.

Time Line A point on the line Direction

0 1 (0.000 3.087 -2.327) (-0.345 0.937 -0.027)
(0.556 0.000 -2.250) (0.941 0.336 0.023)
(1.125  0.000 -2.027) (-0.404 0914 0.013)
(0.701  0.000 -2.049) (0915 0401 0.029)
(1.111 0000 -1.82) (-0462 0.886 0.017)
(0794 0000 -1.83) (0.880 0.471 0.055)

5]

2
Loc R 5 I

2

1 (0.018 0.000 0.648) (-0.971 0.236 -0.036)
2 (1.103  0.000 0538) (0.241 0.965 0.103)
15 1 (-0.680 0.000 0.753) (-0.986 0.139 -0.025)
(0.000 -6.341 0.783) (0.171 0.985 -0.003)

{ o8 ]

The motor M; ., expressed in terms of linear algebra is
given by

M; =VyM,;_, (145)

initialized with My = (100000 0 0)”. The recon-
structed 3D lines listed in Table 1 were used to estimate
the relative motion between the end-join and the object
on the floor using the MEKF algorithm.

The procedure followed in this experiment is sum-
marized below.

Step Procedure

1 Cameras calibration to obtain P for each camera.
2 Hand-eye calibration to obtain X for each camera.

3 Robot arm movement images taken at constant sample
rate, see Figs. 13 and 14.

4 Extraction of 2D lines from the images using the Hough
transform, see Figs. 13 and 14.

5 3D line reconstruction using matched lines of three
images, see Table 1.

6 Estimation of the motion using the 3D lines observations
and the MEKF algorithm, see Fig. 15

The algorithm for the motion estimation runs online
recursively following the steps 3 to 6.

The Fig. 15 presents the eight estimated parameters
of the motion for 15 instant times. We can see clearly
that after almost 4 observations the MEKF algorithm
starts to follow almost perfectly the ground truth of
the eight parameters. This real experiment as well as
the previous simulation confirm that the MEKF algo-
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Figure 13. A stereo triplet of a sample object at time i = 0 with its edge images overlapped by extracted 2-D lines.

B
3 € at

Figure 14. A stereo triplet of a sample object at time i = 4 with its edge images overlapped by extracted 2-D lines.
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Figure 15. The estimated motor parameters by the MEKF for the
visual guided robot system.

rithm is an appropriate tool for the estimation of screw
transformations using line observations.

9. Conclusion

In this paper we modeled the motion of lines in the 4D

space using the motor algebra. This kind of modeling
linearize the 3D Euclidean rigid motion transformation.

The model of motion of lines using motors is very ap-
pealing for the design of an extended Kalman filter for
the motion estimation. For the design of the filter we
started with the rotor extended Kalman filter. As a nat-
ural extension of it we set the theoretic foundations of
the motor extended Kalman filter (MEKF).

The MEKF algorithm has the virtue of estimating
the rotation and the translation transformations simul-
taneously. Since the most of recursive algorithms in the
literature compute the translation and rotation transfor-
mations separately we can claim that this is one of the
most important advantages of the MEKF. Additionally
using the modeling of the lines in the motor algebra
we could linearize the nonlinear measurement model
which does not face singularities. The dynamic motion
model using motors as states is useful to formulate ef-
fectively and to compute the screw motion of a line. In
the algorithm of MEKF, we modified the step of the es-
timation to satisfy certain geometric constraints, which
made the estimation converge faster to a proper motor
state. Tests with simulated data confirmed that the tun-
ing of the MEKF parameters improve substantially the
MEKEF capabilities.

We compared the MEKF with an analytical method
using simulated data. The comparison showed that the
MEKEF is a better estimation approach for the dynamic
motion problem and due to its nature it can be used
as online approach as opposed to batch methods. We
presented also a real application of visual guided robot
manipulation. This experiment aims to show the MEKF
as an online algorithm for real applications. The vi-
sion system was calibrated beforehand using controlled
robot movements and an effective hand-eye calibra-
tion method. Thereafter the system is ready to supply




the 3D line coordinates to the MEKF. The recovery of
the parameters of the 3D lines was carried out using a
stereo vision system, techniques of Hough transform
and shape filtering for the line matching. Using the 3D
lines the MEKF algorithm estimated efficiently the rel-
ative motion between its end-joint and a 3D reference
line. Since the primer aim of this paper is to show the
MEKEF algorithm working online, we are sure there
will be more accurate and faster methods for camera
calibration and hand-eye calibration for future applica-
tions, therefore the use of the MEKF will be even more
attractive for the estimation of screw motions using
3D line observations. Our future research includes the
use of MEKF for robot localization, obstacle avoidance
for mobile robots and control of binocular or trinocular
heads.
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