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Abstract.

In this paper we apply the Clifford geometric algebra for solving problems of visually guided robotics.

In particular, using the algebra of motors we model the 3D rigid motion transformation of points, lines and planes
useful for computer vision and robotics. The effectiveness of the Clifford algebra representation is illustrated by the
example of the hand-eye calibration. It is shown that the problem of the hand-eye calibration is equivalent to
the estimation of motion of lines. The authors developed a new linear algorithm which estimates simultaneously

translation and rotation as components of rigid motion.
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1. Introduction

The goal of this paper is basically to set up the necessary
mathematics for dealing with the 3D kinematics useful
as a general frame for the fields of computer vision
and robotics. For that the authors choose the algebra of
motors in the geometric algebra framework.

In the literature we can find various ways of rep-
resenting the 3D kinematics. They will be briefly re-
viewed emphasizing the screw transformations which
we follow in this paper. The foundations of the screw
theory can be traced back to the contributions of
Chasles and Poinsot in the early 1830s, see e.g. [2], as
well as the dual quaternions introduced by Clifford in
his seminal paper Preliminary sketch of bi-quaternions
[9] and later on the work of Study [38] who utilized the
dual numbers to represent the relative position of two

computer vision, kinematics, visual robotics, Clifford algebra, geometric algebra, rotors, motors,

skew lines in space. In an amenable article Rooney [34]
compared the different representations of the general
spatial screw. The twist or infinitesimal generator of
the Euclidean group is the Lie algebra matrix approach
to describe rigid 3D motions, see Murray et al. [30].
It is worth to mention the work of Chevalier [7] who
presented a geometrical formulation of the dual quater-
nions in the Lie algebra framework.

In the area of robotics for the treatment of the mani-
pulator kinematics Gu and Luh [14] used the dual
number transformations and Pennock and Yang em-
ploying dual matrices [31] presented closed-form
solutions for various types of robot manipulators.
MacCarthy [29] analyzed multilinks and similar as Gu
and Luh [14] he computed the dual form of the Jacobian
of a manipulator again using dual orthogonal matri-
ces. Funda and Paul [13] carried out a computational
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analysis of screw transformations in robotics. They
showed that the dual quaternions represent simultane-
ously rotation and translation transformations for deal-
ing with the kinematics of robot chains more efficiently
than any other approach. Kim and Kumar [23] using
the dual quaternion formalism as a line transformation
operator solved the inverse kinematics of a 6 degree of
freedom robot manipulator. Aspragathos and Dimitros
[1] confirmed that the homogeneous transformation is
the approach commonly used in robotics tasks and the
approaches of dual quaternions and Lie algebra were
overseen so far, although their advantages with respect
to the reduction of the number of representation para-
meters result in practical benefits.

In the field of computer vision we can find simi-
lar representation formalisms in various types of ap-
plications like motion estimation, pose and 3D struc-
ture recognition. In most of the methods the rotation
and translation transtormations were represented sep-
arately using either matrices or quaternions, see the
survey of Sabata and Aggarwal [35]. The disadvantage
of representing separately these components is that for
solving the problems nonlinear methods are often re-
quired. In the case of the so called hand-eye calibration
problem which we treat in this paper as an example
for the application of the motor algebra several authors
considered for the computation the rotation axis and an-
gle [36, 39]. the use of quaternions [8] and a canonical
matrix representation [25]. Chen [6] using the matrix
screw theory found the key invariant of the screw be-
tween two 3D axes which means the rotation angle and
the translation along the screw axis remain constant. In
other applications the authors applied successfully dual
quaternions like Walker et al. [41] for estimating 3D
location, and twists and exponential maps like Bregler
and Malik [5] for tracking the kinematic chains of
moving objects or persons.

Summarizing, in these mathematical approaches so
far we can clearly identify two key aspects the use of
dual numbers and the representation of screw transfor-
mations in terms of matrices or quaternions. In regard
to these aspects we should choose an algebraic system
that on the one hand allows representations in terms
of dual numbers and on the other hand offers an alter-
native to the matrix representations which often have
redundant entries.

In this paper we present an isomorphic approach to
screws called motors [3, 9] which offers computational
advantages with respect to dual quaternions. These are
based on the fact that motors represent spinors which

can be defined in spaces of any dimension and in the
case of kinematic chains they obey the group proper-
ties. The term motor was introduced by Clifford [9], but
he died before he could show us its embedding in the
special Clifford algebra. It is also important to mention
that the engineering literature does not show a sub-
stantial progress so far in the use of line geometry for
computer vision and robotics. In this paper we stress
the role of the line or bivector algebra for the modelling
of the motion of points, lines and planes. This can be
certainly used as a common framework advantageous
in a variety of computer vision and kinematics tasks.

The particular case of study to illustrate our mathe-
matical approach is the hand-eye calibration, simplified
as a problem of motion of lines. In the above men-
tioned publications many approaches came up with a
decoupled computation of the motion parameters of
the hand-eye calibration problem. Exploring this prob-
lem in the geometric algebra framework we end up
with an approach that simultaneously computes trans-
lation and rotation without resorting to nonlinear min-
imization algorithms. This application illustrates the
important case that some nonlinear problems treated in
higher dimensional geometric algebras become linear
ones. The virtue of computing in the geometric algebra
framework is thus strongly confirmed by the hand-eye
calibration problem.

The paper is organized as follows. In section two
an outline of the geometric algebra is given. The third
section presents the Euclidean 3D geometric algebra,
rotors and their properties and the modelling of the
3D motion of points, lines and planes using this al-
gebraic system, The fourth section introduces the 4D
motor algebra and shows its use for the modelling of
the 3D motion of points, lines and planes. Section five
describes the hand-eye problem and its solution. We
formulate the solution of the hand-eye calibration in
the geometric algebra framework. Then itis shown that
this formulation leads to the first hand-eye calibration
algorithm that simultaneously estimates the translation
and rotation without applying nonlinear minimization.
Finally, section six is dedicated to the experimental
results and section seven to the conclusions.

2. Geometric Algebra: An Outline

Geometric algebra is a coordinate-free approach to
geometry based on the algebras of Grassmann [15] and
Clifford [10]. The geometric approach to Clifford alge-
bra adopted in this paper was pioneered in the 1960’s by




David Hestenes [ 16] who has, since then, worked on de-
veloping his version of Clifford algebra—which will be
referred to as geometric algebra—into a unifying lan-
guage for mathematics and physics [17, 18]. Hestenes
also presented a treatment of the projective geometry
using Clifford algebra [19]. Some preliminary appli-
cations of geometric algebra in the field of computer
vision and neural computing have already been given
(3, 4, 24, 37]. In this paper the authors present the
mathematics of 3D kinematics as framework for com-
puter vision and robotics and extend previous results
[11] from the perspective of the geometric algebra. We
will begin in next subsections with basic definitions of
geometric algebra necessary for 3D kinematics. In the
whole paper we will denote scalars with lower case let-
ters, matrices with upper case letters, and we will use
bold lower case for both vectors in 3D and bivector
parts of spinors. Spinors and dual quaternions in 4D
are denoted by bold upper case letters.

2.1. The Geometric Product and Multivectors

The geometric algebra is defined on a space whose
elements are called multivectors; a general multivec-
tor is a linear combination of objects of different type,
e.¢. scalars and vectors. In addition to vector addition
and scalar multiplication geometric algebra has a non-
commutative product which is associative and distribu-
tive over addition—this is the geometric or Clifford
product. The existence of such a product and the calcu-
lus associated with the geometric algebra give the sys-
tem tremendous power. A further distinguishing feature
of this graded algebra is that any multivector squares
to a scalar. The geometric product of two vectors a and
b is written ab and can be expressed as a sum of its
symmetric and antisymmetric parts

ab=a-b+anhb, (1)

where the inner product a - b and the outer product
a A b are defined by

a-b = j(ab+ba) (2)
anb=1(ab—ba). 3)

The inner product of two vectors is the standard scalar
or dot product which results in a scalar. The outer or
wedge product of two vectors is a new quantity we call
a bivector. We think of a bivector as a directed area
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Figure 1. (a) bivector B, (b) trivector T, (c¢) 3D basis.

in the plane containing a and b, formed by sweeping @
along b—see Fig. 1(a).

Thus, b A a will have the opposite orientation mak-
ing the outer product anti-commutative as given in
Eq. (3). The outer product is immediately generaliz-
able to higher dimensions—for example, (@ Ab) /¢, a
trivector, is interpreted as the oriented volume formed
by sweeping the areaa A b along vectorc, see Fig. 1(b).
The outer product of & linear independent vectors is a
k-blade, and such a quantity is said to have grade k.
A multivector is homogeneous if it contains terms of
only a single grade. Thus, a k-vector is a homogeneous
multivector of grade k computed as a linear combi-
nation of linear independent k-blades. The geometric
algebra provides means of manipulating multivectors
which allows us to keep track of different grade objects
simultaneously.

Any couple of any multivectors can be multiplied us-
ing the geometric product. Consider two homogeneous
multivectors A, and B; of grades r and s, respectively.
The geometric product of A, and B, can be written as

Aa'Bs — (AB)J‘-%-.\ + (AB)r'+\'—3 o e <AB) [r—s] (4)




82  Bayro-Corrochano, Daniilidis and Sommer

where (AB), is used to denote the z-grade part of mul-
tivector A, B,,e.g. ab = (ab), + lab); =a-b+ab.
Note that (AB), corresponds to a full contraction or in-
ner product and (AB)|,_,| a generalized contraction or
generalized inner product. Since the elements of A, B;
are of different grade A, B, is thus an inhomogeneous
multivector. In the following sections expressions of
grade zero will be written ignoring their subindex, i.e.
(ab)o = (ab).

As simple illustration the geometric product of A =
503 + 30107 and b = 903 + 7oy is

Ab = 35(03)* + 270,(02)* + 450302 + 21010203
= 35 + 270, — 450103 + 211, (5)

note that 0;0; = (0;)* =0; - 0; =1 and 6,0, =0; A0},
where the geometric product or equal unit basis vectors
equals 1 and of different ones equals to their wedge,
which for simple notation can be omitted. The reader
can try computations in Clifford algebra using the
software package CLICAL [26].

2.2, The Geometric Algebra
of the n-dimensional Space

An n-dimensional vector space can be spanned by
the orthonormal basis of vectors {o;}.1 = 1,...,n,
such that o; - 0; = §;;. This leads to a basis to span the
linear space of the entire geometric algebra G, of that
vector space

L o), loiao) {ono;Aad....

I=a, Aoy Ao Ay, (6)

The dimension of the linear space is 2", In G, we can
find multivectors of grade O (scalars), grade 1 (vectors),
grade 2 (bivectors), grade 3 (trivectors), etc. up to
grade n.

The multivector / = o Aoz A -+ Ao, 1s called unit
pseudoscalar or unit hypervolume. Depending of the al-
gebraic properties we want to enforce in a geometric
algebra G, we select basis vectors which square accord-
ing o‘? > 0, <0, or =0. This indicates the dimensions
of the maximal involved subspaces with positive, neg-
ative and zero signatures. Thus the signature of G, will
be uniquely specified by G, , . where p, ¢ and r stand
for the numbers of basis vectors which square to +1,
—1 and 0, respectively.

The multivector basis elements of even grade span a

subalgebraof G, , » which we will denote by g;w and

the multivector basis elements of odd grade span the
linear space G, . which does not actually constitute
an algebra.

In the multivector basis of a geometric algebra there
is a dual relationship between the individual multivec-
tor basis components. This property is the result of the
geometric product between a t-blade A, and the unit
pseudoscalar / as follows,

(A*ums = (AN D, .
where A* stands for the dual of A. As simple examples
of that dual relationship in G5 g o the duals of the vectors
{oi} are the bivectors 0; A 0; = [0y and the duals of
scalars are the trivectors.

Since the multivector basis of some grade spans a
subspace of the geometric algebra its dual multivector
basis will span the dual subspace. The duality relates
the dual subspaces and in addition to the signature of
I indicates whether the duality is regarding complex
numbers (/% = —1), double numbers (/2 = 1) or dual
numbers Uz =0).

The concept of duality can be also seen in the dual
relation between the outer and the inner products. This
relation known as Hodge dual [27] involves the hyper-
volume or pseudoscalar as follows

A-B=A"AB=(IA)AB, (8)

where A and B are k-blades. The Hodge dual depends
not only on the metric but also on the orientation of
the pseudoscalar. This equation is very useful when we
want to express an inner product in terms of the outer
product for the simplification of complex equations.

2.3.  Geometric Algebra of General
Complex Numbers

The most general complex numbers [22, 40] can be
categorized into three different systems which are or-
dinary complex numbers, double and dual numbers re-
spectively. In general they can be represented as a com-
posed number a = b+ wc using the algebraic operator
o which in case of complex numbers w?=—1, in case
of double numbers w> = 1 and in case of the dual
numbers @® = 0. In case of dual numbers the term b is
called the real part and c¢ the dual part.

In this paper we will require the notion of a function
of a dual variable. A differentiable real function f :




R — R with adual argument o + wp wherea, f € R
can be expanded in terms of a Taylor series. Because

of w* = w° = @* = .- = 0 the function reads
ﬁz

fle) +of (@)B + o f( ot)—
= f(a) + wf (@) B. (9)

fla+ wp) =

A useful illustration of this is the exponential function
of a dual number

et =" fwe"B=¢*"(1+wp). (10)

In the seminal paper Preliminary sketch of bi-
quaternions [9] Clifford introduced using dual numbers
the motors or bi-quaternions for representing screw mo-
tion. Later on Study [38] used the dual numbers to rep-
resent the relative position of two skew lines in space,
i.e. # =6 +wd, where 0 stands for the dual angle, 6
for the difference of the line orientation angles and d
for the distance between both lines.

The algebras of complex, double and dual (hyper-
holic) numbers are isomorphic to certain geometric
algebras. For that we have to choose the appropriate
multivector basis so that the unit pseudoscalar squares
to 1 for the case of double numbers to —1 for com-
plex numbers and to 0 for dual numbers. Note that
the pseudoscalar for these numbers keeps its geomet-
ric interpretation as a unit hypervolume and like w itis
commutative with either vectors or bivectors depend-
ing only of the type of the geometric algebra.

Let us consider some examples of composed num-
bers in geometric algebra: the complex numbers can
be found in Gy | o, the double numbers in Gy, ;1 and the
dual complex numbers in Gj o1

Next subsections describe in some detail the com-
plex and dual numbers in the geometric algebra of the
2D. 3D and 4D spaces. The dual numbers in this con-
text will be used later for the modelling of points, lines
and planes and also for the modelling of their motion.

24. 2D Geometric Algebras of the Plane

In this section we want to illustrate the application of
different 2D geometric algebras for the modelling of
group transformations on the plane. Doing that we can
also see clearly the geometric interpretation and the use
of the complex, double and dual numbers for the cases
of rotation. affine and Lorentz transformations, respec-
tively [33, 40]. These transformations we will find in
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various tasks of image processing. For the modelling
of the 2D space we choose a geometric algebra which
has 22 = 4 elements given by:

l ._.G'],O'E- glo’2 Ef. (]l)
S —— F——
scalar  vectors  bivector

The highest grade element for the 2D space is a bivector
called unit pseudoscalar I = 0. According to the
basis vector signature we will get complex, double or
dual numbers. These cases will be now illustrated one
by one.

In the geometric algebra G, o0, Where [ = 0,02 with
12 = —1, we will represent the rotation of the points
(x, y) of the Euclidean plane. Here a rotation of the
point z = xay + yo, = r(cosao; +sinaoa) € Gr0,0
can be computed as the neometnc pruduct of the vector
with !he complex number ¢’ = cos & + o5 sin §
(cos & + I'sin 1) € Gy OrE ‘;pm(2) (spin ﬂroup} as
follows

N r(cnwm ot smam)e

9 -1
( os—+Hm ) r(cos oo + sinwoy)

f ; f
cos;}-—i— qmz

(cos(a + B)ay + sin(a + #)o2). (12)

We can see in Fig. 2(b) that each point of the 2D image
of the dice is rotated by 6. Note that this particular form
to represent rotation applying el? = (coq S+ Isin '9}
can be generalized to higher dimensions, “see the 3D
rotors in next section.

Let us now represent the points as dual numbers in
Gi1.0.1, where I* = 0. A 2D point can be represented in
Gio.1 asz = xoy + yop = x(0] + 502), where s = L
is the slope. The shear transformation of this pomt can
be computed applying a unit shear dual number e'i =
(1+13)€ G 0.1 as follows

A T
= 1—1-2- (x(01 + s02)) ]‘H'E
= x(oy + (s + 1)o2). (13)

Note that the overall effect of the transformation is
to shear the plane, where the points (x, y) lie parallel
to the oy-axis through the shear r with a shear angle
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Action of the 2D transformations: (a) original figure, (b)
rotation, (¢) shear and (d) Lorentz transformations.

Figure 2.

of tan™' r. Figure 2(c) depicts the effect of the shear
transformation acting on the 2D image of the dice.

Using the representation of the double number in
Gi.1.0. where 17 =1, we can implement the Lorentz
transformation of the points. This transformation is
commonly used in space-time of special relativity and
proposed to be used in psychophysics [12, 20]. In this
context a 2D point is associated with a double number
z = toy + xop; = p(coshao, + sinhaoy) € G) 0.
The lines |t| = |x| divide the plane in two quadrants
with |r| > |x| and two others with |t| < |x|. If one
applies a 2D unit displacement vector et =a+1b=
(cosh B + I sinh B8) € G, 1y from one of the quadrants
[t| > |x| to an arbitrary pointz =t 4 [.x we get

ik gt
7 =e "1

£ . . g
€ ‘rf,a(coslmm + Sll'th‘O’g)t,‘f:

=
= (cosh g + [ sinh g) (p(coshwa) + sinhaoy))

(cosh g -+ [ sinh g)

= p(cosh(a + B)o, + sinh(a + B)o). (14)

The point is displaced along a particular hyperbolic
path through the interval pf in |t| < |x|. Figure 2(d)
shows the effect of the Lorentz transformation acting
on the 2D image of the dice.

3. Geometric Algebra of the Euclidean 3D Space

In the case of embedding the Euclidean 3D space we
choose the geometric algebra Gs oo which has 2° = 8

elements given by:

I . {on,02,03), {0102, 0003, 0304},
— < ;
scalar vectors bivectors
ooz} =1 . (15)
[———-—
trivector

The highest grade algebraic element for the 3D space is
a trivector called unit pseudoscalar / = o0,03 which
squares to —1 and which commutes with the scalars
and bivectors in the 3D space. In the algebra of three
dimensional space we can construct a trivectora A b A
¢ = Al, where the points are in general position and
A € R. Note that no 4-vectors exist since there is no
possibility of sweeping the volume elementa A b A ¢
over a 4th dimension.

Multiplication of the three basis vectors o0, 07, and
o3 by I results in the three basis bivectors 007 = /o3,
o203 = loy and 0307 = [0,. These simple bivectors
rotate vectors in theirown plane by 90°, e.g. (oy07)on =
ay, (0203)0y = —o3 etc. Identifying the unit vectors i,
J. k of the quaternion algebra with /o}, —I0,, [0 the
famous Hamilton relations i = j* = k* = ijk = —1
can be recovered. Since the i, J, k are really bivectors it
comes as no surprise that they represent 90° rotations
in orthogonal directions and provide a system well-
suited for the representation of general 3D rotations,
see Fig. I(c).

3.1. Rotors

In geometric algebra a rotor (short name for rotator),
R, is an even-grade element of the algebra which sat-
isfies RR = 1, where R stands for the conjugate of R.
If A={ag, a1, a2, a3} € G3 0, represents a unit quater-
nion, then the rotor which performs the same rotation
1s simply given by

R = ay +a(lo)—ax(loy) +ai(lo3)
—_—— -

scalar bivectors
= ap + a10203 — 2030 + A3030]. (16)

The quaternion algebra is therefore seen to be a subset
of the geometric algebra of 3-space. The conjugate R
is

R = ay — a|0203 + ay030) — a3030). (17)

Considerin G o two non-parallel vectors which are
referred to the same origin. With a rotation operation
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Figure 3. The rotor in the 3D space formed by a pair of reflections.

these vectors can be overlapped, see Fig. 3. In general
a rotation can be performed by a pair of reflections.
It can easily be shown that the result of reflecting a
vector a in the plane perpendicular to a unit vector n
isa; —ay = —nan, where a, and aj respectively
denote projections of @ perpendicular and parallel to
n. Thus, a reflection of a in the plane perpendicular
to n, followed by a reflection in the plane perpendic-
ular to another unit vector m results in a new vector
b = —m(—nan)m = (mn)a(nm) = RaR. Using the
geometric product it will be shown that the rotor R of
Eq. (16) is a multivector consisting of both a scalar
part and a bivector part, i.e. R=mn =m-n+m A n.
These components correspond to the scalar and bivec-
tor parts of an equivalent unit quaternion in Gs g
and thus, R € G7,,. Considering the scalar and the
bivector parts we can further write the Euler represen-
tation of a rotor as follows

R=e"%=c0sv6~+nsing, (18)
2 2

where now n = n;0,03 + ny030 + n30)0; is spanned
by the bivector basis of G3, ,. Equation (18) is the
spinor representation of the rotor. Let us compare it
with the 2D rotation in G, computed in terms of
a spinor using complex numbers in Eq. (12). While
complex and quaternionic numbers (see Egs. (12 and
18)) used as operators of rotations are related to specific
spaces, spinors are more general representations for
rotation operators.

The transformation in terms of a rotor as spinora
RaR = b is a very general way of handling rotations;
it works for multivectors of any grade and in spaces
of any dimension in contrast to quaternion calculus.
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Due to the group properties of spinors, rotors combine
in a straightforward manner, i.e. a roter R, followed
by a rotor R, is equivalent to a total rotor R where
R = R;3R,.

3.2.  Representation of Points, Lines and Planes
Using a 3D Geometric Algebra

The modelling of the points, lines and planes in the
3D Euclidean space will be done using the Euclidean
geometric algebra Gs o o where the pseudoscalar 1? =
—1. A point in the 3D space represents a position, thus
it can be simply spanned using the vector basis of G3 ¢ ¢

X = X0 +“y‘0'2+2:(73 {19)

where x, y, z € R.

In the classical vector calculus a line is described by
a position vector x touching any point of the line and a
vector n for the line direction, i.e. I = x + an, where
« € R. In geometric algebra we have the multivector
concept, thus we can represent in Gs o aline compactly
using a vector n for its direction and a bivector m for
the orientation of the plane within which this line lies,
namely

l=n+xAn=n+m, 20)

note that the moment bivector m is computed as the
outer product of the position vector x and the the line
direction vector n. We can also compute m as the dual
of a vector, i.e. Ix x n = m. The representation of the
plane is even more striking. The plane is a geometric en-
tity one grade higher than the line, so we should expect
that the multivector representation of the plane should
be a natural multivector grade extension from that of
the line. In the classical vector calculus a plane is de-
scribed in terms of the Hesse distance from the origin to
the plane and a vector indicating the plane orientation,
i.e. {d, n}. Note that this description comprises of two
separate attributes. Again in the geometric algebra we
can resort to acompact expression with clear geometric
sense. In Gy g ¢ the extension of the line expression to
a plane should be done in terms of a bivector 2 and a
trivector /d as follows

h=n+xrn=n+1d. (21)

where the bivector n is now indicating the plane orien-
tation, and the outer product of the position vector x and
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the bivector n builds a trivector which can be expressed
using the Hesse distance, a scalar value, and the unit
pseudoscalar /. Note that the trivector is a volume with
the Hesse distance d as a weight.

3.3.  Motion of Points, Lines and Planes
in the 3D Geometric Algebra

The 3D motion of a point x in G3 ¢ has the following
equation

x = RxR +1. (22)

Using the Eq. (20) the motion equation of the line
reads

l'=n'"+m =n'+x'Arn
= RnR + (RxR + 1) A (RnR)
= RnR + RxR A RnR +t A RnR
= RnR + RxR A RnR + %Rnﬁ' —RnR;;-

. b £ o= =
=RnR+Rn§R 4 ERRR + RmR, (23)

where x” stands for the rotated and shifted position vec-
tor, n" stands for the rotated orientation vector and m’

for the new line moment. The model of the motion of

the plane in Gy can be expressed in terms of the
multivector Eq. (21) as follows
h=n+1I1d =n"+xAn

= RnR + (RxR + ) A (RnR)

=RnR +RxR ~ARnR +tARnR

=RnR+tARnR+Rx AnR

=RnR +1tARnR + R(Id)R

=RnR+¢ -RnR +1d

=RnR+(t- (RnR) +d), (24)

where n’ stands for the rotated bivector plane orienta-
tion, x’ stands for the rotated and shifted position vector
and d' for the new Hesse distance. Here we use the con-
cept of duality to claim that t A RnR = t* - RnR =
(It) - RnR, see Eq. (8).

4. The 4D Geometric Algebra for the Projective
3D Space

Until now we have dealt with transformations in 3D.
When we use homogeneous coordinates we increase

the dimension of the vector space by one. As a result
the transformation of the 3D motion becomes linear.
Let us now model the projective 3D space P>. This
space corresponds to the homogeneous extended space
R*. In real applications it is important to regard the
signature of the modeled space to facilitate the compu-
tations. In the case of the modelling of the projective
plane using homogeneous coordinates we adopt Gs 0,0
of the ordinary space, E°, which has the standard
Euclidean signature. For the 4-dimensional space R*
we are forced to adopt the same signature as in the case
of the Euclidean space. This geometric algebra G, 39
is spanned with the following basis

1, % YaV3: V3Y1: YIV2, YaVi, VaYas Va3,
—— —
scalar 4 vectors 6 hivectors
Iy, ! (25)
—— —
4 pseudovectors unit pseudoscalar
where yf = +1, yf = —] fork = 1, 2, 3. The unit

pseudoscalar is / = y;y»yays with

I* = (mnvsvs) Mvaysys) = —(sya) (rvs) = —1.
(26)

The fourth basis vector y4 can be seen also as se-
lected direction for the applications of the projective
split operation [4]. This operation helps to associate
multivectors of the 4D space with multivectors of
the 3D space. The role and use of the projective split for
a variety of problems involving the algebra of incidence
can be found in [4].

4.1. The 4D Geometric Algebra for 3D Kinematics

Usually problems of robotics are treated in algebraic
systems of the 2D and 3D space. In the case of 3D
rigid motion or Euclidean transformation we are con-
fronted with a nonlinear mapping, however if we em-
ploy homogeneous coordinates in 4D geometric alge-
bra we linearize the rigid motion in the 3D Euclidean
space. That is why we choose three basis vectors which
square to one and one which squares to zero to pro-
vide dual copies of the multivectors of the 3D space.
In other words we extend the Euclidean geometric
algebra Gs 0 to the special or degenerated geomet-
ric algebra Gy 5, which is spanned via the following




basis

. Ve
e ——

VaV¥i, ¥3Y1. Y12, Ya¥1, ¥aY2, Yays,

scalar 4 vectors 6 hivectors
I , / 27
Yi o (27)

4 pseudovectors unit pseudoscalar
where ¥ = 0, y2 = +1 for k = 1, 2, 3. The unit
pseudoscalar is I = y;y2y3y4 with

I* = (myaysve) nmyayavs) = —(vava)(vays) = 0.
(28)

4.2. The Motor Algebra

Clifford introduced the motors using the name bi-
quaternions [5,9]. The term motor is the abbreviation of
“moment and vector”. Motors are the dual numbers for
3D kinematics with the necessary condition of 7* = 0.
They can be found in the special 4D even subalgebra
of Gy, introduced in the previous subsection. This
even subalgebra will be denominated by G5 ; and is
spanned by the following basis

ny }’2?3?}’3}’1‘}'%17}11}/1,?4)/3, Ya¥3,
scalar 6 hivectors

1 ; (29)
—
unit pseudoscalar

This kind of basis structure allows also to represent
spinors which are composed of a scalar and bivector
parts. As a result, motors are spinors and as a such a
special kind of rotors. Because an Euclidean transfor-
mation includes both rotation and translation, we will
find in the following a spinor representation also for
translation to achieve the group properties of spinors
in the definition of motors. But first we will relate the
motors with the screw motion theory.

Note that the bivector part of the basis corresponds
to the same basis for spanning 3D lines. Also note that
the dual of a scalar is the pseudoscalar P and the duals
of the first three basis bivectors are the next three ones
that is for example (y2y3)* = I'2y3 = vav1-

According to Clifford [9] a basic geometric interpre-
tation of a motor can be seen as the necessary operation
to convert the rotation axis of a rotor into another one.
Each rotor can be geometrically represented as a rota-
tion plane with the rotation axis normal to this plane.
Thus, one rotor can be spanned using a scalar and the
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Figure 4. Screw motion about the line axis I (¢;: longitudinal dis-
placement by d and R;: rotation angle #/) (a) the motor relating two
axis lines, (b) motor applied to an object. Note that the indicated vec-
tors in the figures will be represented in Subsection 4.3 as bivectors.

bivector basis y2¥3, ¥3¥1» ¥1y2 and the dual one by a
pseudoscalar and ys¥1, Vay2, vaVs. Figure 4(a) depicts
a motor action in detail where the rotor axes are now
considered as rotation lines. In the Figure let us first
turn the orientation of the axis of one rotor R, parallel
to the other one R, by applying the rotor R;. Then slide
it the distance d along the connecting axis into the po-
sition of the axis of the second rotor. These operations
can be seen together as forming a twist about a screw
with the line axis [ and the relation called pitch which
equals to |t;| = % for 8 # 0. The Fig. 4(b) shows an
action of a motor on a real object. In this case the mo-
tor relates the rotation axis line of the initial position of
the object to the rotation axis line of its final position.
Note that in both figures the angle and sliding distance
indicate how the rigid displacement takes place around
and along a screw line axis [ respectively.

We said in Subsection 3.1 that a rotor relates two
vectors. Now, in the case of a motor it relates the ro-
tation axes of two rotors. A motor is specified only by
its direction and position of the screw axis line, twist
angular magnitude and pitch.
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4.3.  Motors, Rotors and Translators in g}fv‘ g

Since a rigid motion consists of the transformations
rotation and translation, it should be possible to split
multiplicatively a motor in terms of these two spinor
transformations which we will call a rotor and a trans-
lator. In the following we will denote all bivector com-
ponents of a spinor by bold lower case letters. Let us
now express this procedure algebraically. First of all let
us consider a simple rotor in its Euler representation for
a rotation by an angle 6,

R =aytany; +ayy +any

=dy+4a

_ . (f 6
=08 .— + sin ,} n

= a, + a;n (30)

where n is the unit 3D bivector of the rotation-axis
spanned by the bivector basis y» 3, 3y, vi1v2 and a,.
a; € R. Now dealing with the rotor of a screw mo-
tion the rotation axis vector should be represented as
screw axis line. For that we have to relate this rotation
axis to a reference coordinate system at the distance
f.. A translation £, in 3D in the motor algebra Q;n‘] is
represented by a spinor T, called translator. Applying
a translator from the left and its conjugated from the
right to the rotor R we get a modified rotor

R, = T.RT,

= (] 4+ !%)(a{)-l-ﬂ)(I 'ff%)

(.t t, t
=ay+a+ fﬂ{)a -+ fEa— lan-z— - !aa

t, &
=au—1—a+1(5a —aE)

g L
=a{,+a+!(a5 - Ea)
=ay+a+Illant,), (31)

which is a dual quaternion representation. Note that
{.a = at,, because bivectors commuite.

Expressing the last equation in Euler terms we get
the spinor representation

R, =ay+an+ lan rt,
=a.+ayn+Im)

74 0
=CDS(2) +Sm( )(n*f—]m}
= cos(g) + Sin(g)f. (32)

This result is really interesting because the new rotor
called R, is a rotor to be applied now with respect to
an axis line [ expressed in dual terms of direction n and
momentm =n A ..

Now to finally define the motor let us slide along the
rotation axis line / the distance t, = dn. Since a motor is
applied from the left and its conjugated from the right
we should use the half of ¢, by the spinor T, when we
define the motor

M=TR, = (l + 71— )(an +a+ lant)
dn’
= (l -+ 17)(;&(. +an+ lan nt.)

d d
=q.+an+ lanrt. + !Ea(,n - I;a,nn

(0, AT S —

=\{ac— Ea" + (as + G’E (n+1Innt.)
d d

= (ac - ]a,a) + (a_\ + fati)l. (33)

Note that this expression of the motor makes explicit
the unit line bivector of the screw axis line L

Now let us express a motor using Euler repre-
sentation. Substituting the constants a. = cos(%) and
&= sin(%) in the motor Eq. (33) and using the prop-
erty of Eq. (9) we get

M =T,R,

(e
(n(3) +1en(3)5)
_ cos(g- ¢ r‘j) + sm(z “)" (34)

which is a dual number representation of the spinor.
Analyzing the obtained expressions

R= cos(%) - sin(g)
5] A
Ri= 005(5) + Sin(i)!
6 d’ {8 d :




we can see how from a simple rotor R expressed in
terms of angle and the rotation axis n, in the case of
a pure screw rotation we change this axis to a rotation
line axis / resulting R; and finally for the motor the
information of the sliding distance d is made explicitin
terms of dual arguments of the trigonometric functions.
It is also nice to see that the expression for the motor
simply extends the expression of R, using dual angles
instead.

If we expand the exponential function of the dual
bivectors using the Taylor series we get again the motor
expression as spinor

P/ L 8 3
(?IE"H_EL = (l + 15)(3!% = IR, (36J

where I% = f%(ﬁO’gUg + hhoso) + 30102) = %(r.cmo]
+ hhoyoy + 130403).

If we want to express the motor using only rotors in
dual spinor representation we proceed as follows

L
M=TQR, = (1 - f;;-)m
=R, + IR, (37)

Let us consider carefully the dual part of the motor.
This is the geometric product of the bivector f; and
the rotor R,. Since both are expressed in terms of the
same bivector basis their geometric product will be also
expressed in this basis and this can be seen as a new
rotor R;. Thus, we can further write

L; 7
M=R,+ ;?RS =R, + IR, (38)

In this equation the line axes of the rotors are differently
oriented in space, see Fig. 4(a). That means that they
represent the general case of non-coplanar rotors. If the
sliding distance f, is zero then the motor will degenerate
to a rotor

M=TR, = (1 + I%‘)Rs - (1 + Ig)R_\- —R..
(39)

In this case the two generating axis lines of the motor
are coplanar, thus the motor is called a degenerated one.

Finally, the bivector f; can be expressed in terms of
the rotors using previous results

RR, = (%R)R (40)
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therefore,

t, = 2R'R;. (41)

Figure 4 shows that t is a distance bivector relating the
two rotation axes of the rotors R, and Ry, and £, is a
bivector representing a displacement along the motor
axis line. According to Fig. 4(b) the distance f consid-
ered here as a bivector can be computed in terms of the
bivectors t, and ¢, as follows

t=t 4+t
t=(t —Rt.R)+(t-n)n
= (t, — Rt.R,) + dn
=t —Rit.R, +t,
=t.—Ri.R, +2RR,. (42)

So far the motor was studied from a geometrical point
of view, next its more relevant algebraic properties are
given.

4.4. Properties of Motors

A general motor can be expressed as
M, = oM (43)

where @ € R and M is a unit motor as in previous sec-
tions. In this section we deal further with unit motors.
The norm of a motor M is defined as follows

IM| = MM = T,R,R, T,

A - t,
= (1 + I—,):)RJRS(] - .-’nz-)

=1 f"‘ 1“‘—1 44
= +5—5—, (44)

where M is the conjugate motor and 1 is the identity
of the motor multiplication. Now using the Eq. (38)
and considering the unit motor magnitude we find two
useful properties

M| = MM = (R, + IR)(R;, + IR))
=RR,+I(RR,+RR)=1. (49
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This requires that

RR, =1

o (46)

RR. + R;R; =0.

The combination of two rigid motions can be

expressed using two motors. The resultant motor
describes the overall displacement, namely

M.=MM, = (R, + IR, )(R, + IR, )
=R,R,, +I(R.R, +R.R,)
= R‘SL + ]R;‘ . (47)

Using the Eq. (38) let us express a motor in terms of
dual spinors

M=TR,=R,+IR
= (ao + a1 273 + @ysy2 + asyayi)
+1(by + biy2ys + baysya + bayayn)
= (ap+a) + 1(by + b). (48)

We can use another notation to enhance clearly the
components of the real and dual parts of the motor as
follows

M = (ag.a) + I (by, b), (49)

where each term within the brackets consists of a scalar
part and a 3D bivector.

A motor expressed in terms of a translator and a rotor
is applied similarly as in the case of a rotor from the
left and its conjugate from the right (motor reflections)
to build an automorphism equivalent to the screw. Yet
conjugating only the rotor or only the translator for
the second reflection we can derive different types of
automorphisms.

Changing the sign of the scalar and bivector in the
real and the dual parts of the motor we get the following
variations of a motor

M = (ag+a) + I(by +b) =T,R;
M = (ag —a) + 1 (by— b) = R, T,
M = (ag +a) — I(by +b) =R, T,

M = (ag—a)— [{by — b) = R,T..

(50)

The first, the second and the fourth versions will be
used for the modelling of the motion of points, lines
and planes.

Using the relations from above we get
ag=1M+M+M+M)

Ihy=iM+M-M-M)
(31)

a=LtM-M+M-M)

Ib=M—- M- M+M).

4.5. Representation of Points, Lines and Planes
Using a 4D Geometric Algebra

Now we will represent points, lines and planes in the
4D space. For that we choose the special algebra of the
motors G5, | which using a bivector basis spans in 4D
the line space.

For the case of the point representation, we proceed
embedding a 3D point on the hyperplane X4 = 1, thus
the equation of the point X € G | reads

X=1+xpy + 020y + 6%y
=1+ 1(xipys+ 2y +x37172)
=14+ Ix=(1,0)+1(0,x). (52)

We can see that in this expression the real part consists
of the scalar 1 and the dual part of only of 3D bivector.

Since we are working in the algebra Q;U_J spanned
only by bivectors and scalars, we can see this special
geometric algebra as the appropriate system for line
modelling. As opposite to the line representation, the
point and the plane are in some sense unsymmetric
representations with respect to the scalar and bivec-
tor parts. Let us now rewrite the line equation (20) of
Gs 0.0 in the degenerated geometric algebra g;‘{“ . We
can express the vector and the dual vector of Eq. (20) in
G7 .1 as a bivector and a dual bivector. Since the prod-
uct of the unit pseudoscalar I = y, 234 with any
dual bivectors build from the basis {ysyi, yay2, Vavs}
results in zero, we have to select the bivector basis
{v2v3, »3¥1, Y12} for representing the line

L=n+1Im, (53)

where the bivectors for the line direction and the mo-
ment are computed using two bivector points x; and x;
lying on the line as follows

n=(x;—x)

= (x2) —x11)12ys + (x22 — x2) Y30




+ (x23 — X13)71 %2
= Lo V2¥s + Lo y3¥1 + L1z
m=x; XX (54)
= (X223 — X13X22)y2¥3 + (X13%21 — X11X23) V3Y)
+ (X11x22 — X12X20)%1 V2

= Lnn Yava + Lrng Y3Yi + er}q Y2

This line representation using dual numbers is easy to
understand and to manipulate algebraically and it is
fully equivalent to the one in terms of Pliicker coordi-
nates. Using the notation with brackets the line equation
reads

L=(0,n)+1(0,m). (35)

where the n and m are spanned with a 3D bivector basis.

For the equation of the plane we can proceed simi-
larly as for the Eq. (21). We represent the orientation of
the plane via the bivector n and the outer product be-
tween a bivector touching the plane and its orientation
n. Since this outer product results in a quatrivector,
we can express it as the Hesse distance d = (x - n)
multiplied by the unit pseudoscalar

H=n+xrn=n-+I(x-n)=n+1d
= (0,n)+ 1(d,0). (56)

Note that the plane equation is the dual of the point
equation

H=d+In))=(Un)"+(d)"=n+1d. (57)

where we consider instead for the plane orientation the
unit bivector n and for the scalar 1 the Hesse distance d.
Figure 5 presents a comparison of the representations
using classical vector calculus, the Euclidean geomet-
ric algebra Gs o o and the motor algebra g_:-_& g

4.6. Motion of Points, Lines and Planes in the 4D
Geometric Algebra

The modelling of the 3D motion of the geometric pri-
mitives using the motor algebra G7 | takes place in
a 4D space where rotation and translation are multi-
plicative operators which are applied as multiplicative
operators, as a result the 3D general motion becomes
linear. Having a linear method we can then compute for
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example the unknown rotation and translation simulta-
neously as we will show in detail in the next sections.

For the modelling of the point motion we use the
point representation of Eq. (52) and the motor relations
given in Eq. (50) with 12 =0.

X =1+ Ix' = MXM =MQ + Ix)M
= T,R,(1 + Ix)R, T,

I = L

t = r
= (1 # 15)(1 + m_va,.)(l + ig)

r.v " 't,s'

=14+ I(RxR, +1,). (58)

Note that the dual part of this equation in the 4D space
is fully equivalent to Eq. (22) in the 3D space.

Using the line Eq. (53) we can express the motion of
a line as follows

L'=n+1Im =MLM=Mun-+ImM
= T.cR.w (" + fﬂ!)ﬁ, Tﬁ‘

i o i
= (l + Ij)ﬁ"(n + !mJR,(l — 17)

= (] + )"ji) (R,ans I !R.va.v - IR.\“"R-‘%)

_ Lie fo n _
=RnR, + !(RS-II#R.,- B j—R‘.nRS + R,.mR\.)
= R.nR, + 1 (R;nR, + R'nR, + RmR,) (59

Note that in Eq. (59) before we merge the bivector '%
with the rotor R, or R; the real and the dual parts are
fully equivalent with the elements of the line Eq. (23)

of G300

The motion of a plane in Q;DI] can be seen as the mo-
tion of the dual of the point, thus using the expression
of Eq. (56) the motion equation of the plane is

H =n' +1d = MHM = M(n + Id)M
= T‘ER.\'(H + [d)iésTr

t - f
=(1+I2)RaR, +Id)| 1+ 1=
(+2)(.n_+)(+z)
2 5 N T
=RnR,+1 (R,.nRs; + -2-R,,n R, + d)

=RnR, + I(t; - (R;nR,) + d). (60)
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Figure 5. Comparison of representations in the vector calculus, Gs.0.0 and G .1 of (a) the point, (b) the line, (c) the plane.

The real part and the dual part of this expression are
equivalent in a higher dimension to the bivector and
trivector parts of the Eq. (24) in G3 g0

5. Case of Study: The Hand-Eye Problem

In this section we want to illustrate the use of the motor
algebra for solving an exemplary task of visual guided
robotics. We choose the so called hand-eye calibration
problem. We find this kind of task in the area of visual
guided robotics where cameras are attached to robot
arms or mounted on a vehicle and they have to be

directed towards a goal. The cameras capture visual
cues of the 3D visual space and have their own world
reference coordinate system. On the other hand the
robot arm or vehicle moves relatively to a reference
coordinate system. By computing the intrinsic and ex-
trinsic parameters through the camera movements we
can gain the geometrical relationship between the cam-
era positions relative to the world coordinates. The po-
sition of the robot arm or vehicle, on the other hand, is
always known due to the angular position of the step
motors of the device which are permanently controlled
by the computer. The problem of hand-eye calibration




B,

Figure 6. Abstraction of the hand-eye system.

arises when we try to find out the group transformation
between the reference coordinates of the mechanical
device and the coordinate frame of the camera.

An abstraction of the geometry of a camera mounted
on an robot arm is depicted in Fig. 6. The classical
way to describe the hand-eye problem in mathematical
terms is by using transformation matrices. This prob-
lem was firstly formulated as a matrix equation of an
Euclidean transformation by Shiu and Ahmad [36] and
Tsai and Lenz [39], respectively

AX =XB (61)

where the matrices A = A;A;" and B = BB]" ex-
press the elimination of the transformation between
hand-base and world. From the expression (61) the
following matrix equation and a vector equation can
be derived by splitting the Euclidean transformation
into rotation and translation components

RisRy = RxRp (62)
(Ry — Dty = Rytp —t4. (63)

In the literature we find a variety of methods to es-
timate the rotation matrix Ry from Eq. (62), see the
survey by Wang [42]. Most of the approaches estimate
first the rotation matrix decoupled from the translation.
Tsai and Lenz showed that to solve the problem at least
two motions are required with rotations having no par-
allel axes [39]. The most relevant approaches consider
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for the computation either the axis and the angle of ro-
tation [36, 39], they use quaternions [8] or a canonical
matrix representation [25].

Horaud and Dornaika [21] were the first authors who
applied a nonlinear method to compute Ry and ty si-
multaneously. In their work they showed the instabil-
ity of the computation of the matrices A; given the
projective matrices M; = SA; = SRy, Sta,, where S
stands for matrix of the the camera intrinsic parameters.
Let us assume that the matrix of the intrinsic parame-
ters S remains constant during the camera motions and
that one extrinsic calibration A, is known. Introducing
N; = SR,, and n; = St4, and replacing X = Ay Y, we
getnow as the hand-eye unknown Y. Thus, the Eq. (61)
can be reformulated as

A'A)Y = YB. (64)

Now if A;lAl is written as a function of the projec-
tion parameters it is possible to get an expression fully
independent of the intrinsic parameters S, i.e.

[N7'N;,  N7'(ng — np)
—| - 2 1 2 1 2
AT'A = o :
3

B ¢ (65)
= 0{ 1 O:

Taking into consideration the selected matrices and re-
lations, this result allows to consider the formulation of
the hand-eye problem again with the standard Eq. (61)
which can be solved with all the known methods and
the one presented in this paper.

Other relevant contribution to enlighten the hand-
eye problem was made by Chen [6]. According to a
geometric point of view he formulated the hand-eye
calibration problem using the screw theory. In this at-
tempt the author discovered the important property that
the hand-eye transformation is fully independent of the
pitch and the angle of the camera and hand motions.
The unknown transformation depends simply on the
parameters which relate to the screw axis line on the
hand motion and the screw axis line of the camera mo-
tion. In this paper we will use an unitary motor which
is completely isomorph with the unit screw and we will
present an algorithm which as opposite to the one of
Horaud and Dornaika [21] computes the rotation and
the translation simultaneously in a linear manner.
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5.1. Solving AX = XB Using the Motor Algebra

In terms of motors the system Eq. (61) can be expressed
as follows

ﬂ’IAMx — MxIWB (66)
or
My=MxMyMy, (67)

where My = A+ IA Mz =B+ IB and My =
R+ IR'. Next we will simplify this equation to a motor
relation between the motor line axis of the camera L 4
and the motor line axis of the hand Lg.

If we isolate the scalar part of M 4 by using the grade
operator (M 4)o = (M), according Eq. (51) and using
the previous equation we get

(M) = 3 (MyMy My +MyMzMy)
= IMy(Mp + Mg)My = My (My) My
=My My(Mg) = (Mp). (68)

Thus, we can equalize the scalar parts of M4 and Mg,
and regarding Eq. (34) we obtain

B4 d, f d .
cus(?—l-!?‘) =cos(—2f{—t—]-2—8) (69)

or by separating the real and dual parts

[ Oa O

CcOs —2“ = COS§ 'E'
14 sin Oa d 5in(83
dy — | = sin| — .
A 5 B 5

Taking this fact into account we can be sure that only
the bivector parts of M, and of My will contribute
to the computation of the unknown My . Then using
Eq. (34) the hand-eye equation reduces to

e d,
sm(?"1 + I—;)La

e d -
= Mx(sm(?g + IEB)LB)MX

(70)

2} d -~
— sin(TB + f%)M,\rLg My. (71)

If 6, and #z do not abandon the range from 0 to 360
degrees we can get rid off the sines and get the simpli-
fied expression

L,=MyLyMy. (72)

This shows that in this kind of problem formulation
the rotation and pitch of M4 and Mp are always
equal throughout all the hand movements. Thus the
consideration of this information can be neglected. It
suffices to regard the rotation axes of the involved mo-
tors, i.e. the previous equation is reduced to the motion
of the line axis of the hand L towards the line axis of
the camera L 4. This property known as the congruence
theorem has been pointed out by Chen [7]. However
thanks to the use of the motor algebra the proof of this
theorem was reduced to one step shown by the Eq. (68).
This simplification of the hand-eye problem is depicted
in the Fig. 7.

Since the hand-eye problem is a matter of motion of
lines the Eq. (59) can be used for the estimation of the
unknown 3D transformation which relates to the screw
line axes of the hand and of the camera.

L,-s_ =a-+ !a!
—RbR+ I(RbR +Rb'R +RBR), (73)

wherea, a’, b, b’ are spanned by bivectors. Separating
the real and dual parts

a=RbR

L (74)
a =RbR +Rb'R +RbR

and multiplying from thE right with motor R and us-
ing the relation RR" + R R = 0 we get the following
multivector relations

aR —Rb =10

(@R —Rb') + (aR' — R'b) = 0. (=)

These equations can be expressed with a matrix con-
sisting of the scalar and bivector parts and the outer
product as follows

a-b [a+b]l, 05, 033 R 0
ad-b [@+b), a-b [a+b) ||R|

(76)
where the matrix—we will call D—is a 6 x 8 matrix
and the vector of unknowns (R, R') is 8-dimensional.
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Figure 7. The hand-eye system as the motion of related axes lines.

The notation of [@ + b], stands for the vector cross conclude that two equations are necessarily redundant.
product as an antisymmetric matrix [28]. Recall that That is not a surprise really, because it is known that
we have two constraints on the unknowns so that the at least two lines are required to estimate 3D motion
result is a unit motor with the properties from their correspondences [35]. As aresult at least two
motions of the hand-eye system are required in order to

RR=1 and RR =0. (77 compute two lines from the involved screws. Chen [6]

clearly noticed this fact and analyzed the uniqueness

So we have got six equations and two constraints so far. of the problem. He proved geometrically that even in
However, due to the fact that the unit bivectors a, b are case of two parallel rotation axis lines it is still possible

perpendicular to the bivectors a’, b', respectively, we to compute all the parameters up to the pitch.
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5.2.  Estimation of the Hand-Eye Motor Using SVD

The hand-eye problem was reduced to the Eq. (76)
which depends only of 3D bivectors. Thus we canresort
for the estimation to the singular value decomposition
method (SVD) [32] which is actually a vector approach
for finding singular values. Since we are dealing only
with bivectors we can use the SVD method. If we were
dealing with a simultaneous estimation of multivectors
of different grade of course we should extend the SVD
to the multivector concept.

Let us consider that » > 2 motions are available.
Thinking in the singular value decomposition method
we build the following 6n x 8 matrix

c=[p{ o} - p]]'.
Due to the fact that the 3D motion has six degrees of
freedom this matrix will be in the case of noise-free
data at most of rank 6. Let us analyze in more detail
the nature of this matrix. Regarding the equations in the
noise-free case which were found out basically using
geometric and algebraic concepts we should expect that
the null-space necessarily contains at least the solution
(R. R'). The solution (04, R) (“pure rotation”) is the
trivial one. Thus, we can reaffirm that the matrix has
maximally the rank of six. In the particular case where
all the b axis lines were mutually parallel one degree
of freedom remains constant thus, the matrix will be of
rank 3.

For the solution of the Eq. (78) we use the SVD
method. This procedure decomposes the matrix C in
three matrices as follows: € = ULV’ . The columns
of the U and V matrices correspond to the left and
right singular vectors, respectively and X is a diagonal
matrix with singular values. Since the rank of the matrix
C is 6 the last two right singular vectors v; and vy
correspond to the two vanishing singular values which
span the null space of C. For convenience these will
be now expressed in terms of two 4 x 1 vectors v; =
(u,v))" and vl = (uy.v>)". Since (R, R)7 is a null
vector of C, specifically C(R, R')" = 0, then it must
be expressed as a linear combination of v; and vy as
follows

Now taking into account the two degrees of free-
dom imposed by the Eq. (77) we obtain two quadratic

equations in & and S:

azufm + Efxﬁurug + ﬁzugug =1 (79

oCulvi+aB(ulvy +ulv)) + prulva =0 (80)

Regarding that @ # 0 and 8 # 0 and without lost
of generality that uf'vl # 0 we can set u=u«/f and
substitute in Eq. (80) to obtain two solutions for wu.
Coming back to Eq. (79) and inserting in it the relation
a = pff we obtain the following quadratic expression

B (pzu'frm + ,u(2ulrng) +uru3) = | (81)
which yields two solutions of opposite sign. This sign

variation is simply an effect of sign invariance of the
solution. Both, [R, R']” and [—R, —R']", satisfy the

-motion equations and the involved constraints.

Since the equation has p squared we should also
consider the other two solutions. In this case we can
see that the second solution for u causes necessarily
the vanishing of the factor in the left hand side of (81).
This corresponds to the solution (04, ;. R) and clearly
does not satisfy the first constraint of Egs. (77). The
algorithm can be finally summarized as the following
procedure.

I. Consider n hand motions (b;,b;) and their corre-
sponding camera motions (a;, a;). Check if their
scalar parts are equal (Chen’s invariance theorem).
By extracting the line directions and moments of the
screw axes lines construct the matrix C as in (78).

2. Apply the SVD procedure to C and prove if only two
singular values are almost equal to zero. In case of
noise data we keep the four biggest singular values.
Select the related right singular vectors v; and vg.

3. Setting the coefficients for a’ul v + af(ul v, +
ugvl) + ﬁzu;‘b’g = ( solve it and find two solutions
for pz.

4. Using these two values of u solve p(u’uu; +
;,L(Zufug)-l-ugug = | and select the largest solution
to compute « and then S.

5. The final solution will be av; + Bvg.

6. Experimental Results

This section 1s devoted to test the new algorithm and
to compare its performance with a two-step algorithm
similar to the one introduced by Chou and Kamel [8].
These authors estimated the quaternion rotation g direct
from the equation ag = ¢b and then they computed




the rotation matrix Ry and solved the translation ty
component using the vector equation (63).

The experiments were carried out using a computer
simulation. Firstly, n hand motions (R, t;) were cre-
ated and Gaussian noise was added with relative stan-
dard deviation of 1% simulating the inaccuracy of angle
readings. To simulate the hand-eye scenario we gen-
erated the camera motions (R,, t,) adding similarly
Gaussian noise of varying standard deviation. In this
case the noise was added as absolute value to the rota-
tion axis direction and as relative value to both the angle
and the translation. In order to compute the estimated
rotor R and the translation component ¢ between the
hand and camera the algorithm was run 1000 times for
each value of added noise. The quantification of both
algorithms was done according the RMS of the abso-
lute errors in the rotation unit rotor |[R — R| and the
RMS of the relative errors in the translation ||t —£]|/|l¢]..

6.1. First Experiment

In this test a set of 20 hand motions was prepared with
quite different rotation axes and large rotation angles
and a translation varying within 10 to 20 mm. The
Fig. 8 shows the comparison of the results where our
algorithm is labeled with MOTOR and the two step
algorithm with SEPARATE.

T T T T

0012 - MOTOR ° -]
SEFARATR +

0.008 =

Error in rotation |

0.004 -
0.000 | | |
0.00 0.02 0.04 0.06 0.08 0.10
Rel. noise std. dev. in measurements
0,050 T T T T
B MOTOR o B
D.040 - SEPARNTE - o
0.030 4
Rel. error in translation [~ -
0.020 ~ =
0.010 - -
0.000 | | 1 1
.00 0.02 0.04 (.06 0.08 0.10

Rel. noise std. dev, in measurements

Figure 8. Behavior of the proposed algorithm (MOTOR) and of a
two-step algorithm (SEPARATE) with variation of noise.
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The upper graphic shows the RMS rotation error
and the one below the RMS relative to the translation
error. The performance of our algorithm is undoubtly
better. It is clearly shown that computing the rotation
simultaneously with the translation we get much better
estimation of the rotation than in the case of a separate
computation.

6.2.  Second Experiment

Here we wanted to explore the estimation performance
by zero translation. As it was expected the behavior of
both algorithms is almost the same, see Fig. 9. This ef-
fect is easy to explain if we consider Eq. (76). Since the
translation is zero the dual parts of the measurements
(a'.b") become zero. Therefore, the left lower block
of the matrix in (76) will disappear which obliges the
separate computation of R and R’

6.3. Third Experiment

In the last experiment we were interested in the per-
formance of both algorithms when the noise level is
kept constant and the number of motions is gradually
increased. Of course in general using more hand and
camera motions it is expected to get a much better esti-
mation. The noise level was kept at 5% and the number

0.006 -

MOTOR o
SEPARATE +

0.004 - -

Error in rotation
0.002 - -

0.000 :
0.00 0,02 0.04

Rel. noise std. dev. in measurements

0.005 -

MOTOR °
0.004 SEPARATE + =

0.003 o
Rel. error in translation - -

0.002 -

000 -

0.000 L
0.00 0.02 0.04

Rel. noise std. dev. in measurements

Figure 9. Both algorithms have almost the same performance in
absence of translation.
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2 4 [ 8 10 12 14 16 18 20

Number of motions

Figure 10.  The errors in rotation (upper) and translation (below) as
a function of the number of hand and camera motions.

of motions was varied from 2 to 20. The Fig. 10 shows
that from the fourth motion onwards our algorithms has
a superior performance.

7. Conclusion

This work presents the Clifford or geometric algebra
for computations in visually guided robotics. Looking
for other suitable ways of representing algebraic rela-
tions of geometric primitives we consider the complex
and dual numbers in the geometric algebra framework.
It turns out that in this framework the algebra of mo-
tors is well suited to express the 3D kinematics. Doing
that we can linearize the nonlinear 3D rigid motion
transformation. In this paper the geometric primitives
points, lines and planes are represented using the 3D
Euclidean geometric algebra and the 4D motor alge-
bra. Next the rigid motions of these geometric primi-
tives are elegantly expressed using rotors, motors and
concepts of duality. In the algebra of motors we extend
the 3D Euclidean space representation to a 4D space
by means of a dual copy of scalars, vectors and rotors
or quaternions.

In the literature it was shown that the invariance of
the angle and the pitch of the screws of the camera and
hand helps to reduce the complexity of the hand-eye

calibration problem. We used this fundamental idea to
simplify the hand-eye problem to a problem of motion
of lines. For this case we used the algebra of motors
which is the one indicated for treating problems involv-
ing algebra of lines. The resultant simplified parame-
terization of the problem enabled us to establish a linear
homogeneous system for finding out the motor param-
eters. The computation of the null-space with SVD and
the consideration of the constraints for the dual rotors
to be unit helps to get a simple algorithm which avoids
non-linear steps. In this work it can be seen that the
algebraic structure of the gained equations helps to un-
derstand much better the performance of the algorithm.
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