Medical Image Segmentation
With the 2-Dimensional Analytic Signal

Diplomarbeit

vorgelegt von

Felix Thomsen

Christian-Albrechts-Universitat zu Kiel
Institut fiir Informatik

Lehrstuhl Kognitive Systeme

Betreuer:
Dipl. Inf. Lennart Wietzke
Dipl. Inf. Oliver Fleischmann
Prof. Dr. Gerald Sommer

Kiel, den 30. April 2010

Erklirung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbstdndig verfasst und keine
anderen als die im Literaturverzeichnis angegebenen Quellen benutzt habe.
Diese Arbeit ist in gleicher oder dhnlicher Form noch bei keiner anderen Priifungsbehor-

de eingereicht worden.

Kiel, den 30. April 2010

Felix Thomsen

Danksagung

Nach dem Abschluss der Diplomarbeit mdchte ich allen Personen danken, die mich dabei

unterstiitzt haben.

Besonderer Dank gilt Herrn Prof. Dr. Sommer fiir das Thema und die Rédumlichkei-
ten, die er mir fiir die Diplomarbeit zur Verfiigung gestellt hat. In diesem Abschnitt
meines Studiums durfte ich sehr tief in das Thema der elektronischen Bildverarbeitung

eintauchen und habe zudem viel iiber das wissenschaftliche Arbeiten lernen diirfen.

Meinen Betreuern Lennart Wietzke und Oliver Fleischmann danke ich fiir die Anre-

gungen, die Unterstiitzung und die Korrekturvorschlége.

Dem Universitatsklinikum Kiel, stellvertretend Dr. med. Ole Kayser, danke ich fiir die

freundliche Bereitstellung der verwendeten Wirbelsdulen- und Leberfotografien.

Andrea Menge, Caprice Sturm, Hanjo Hamer und Andreas Stadler danke ich fiir das

Korrekturlesen.

Meiner Familie danke ich fiir die finanzielle und moralische Unterstiitzung.

Contents

b The 2 Dimensional Analvtic Sienal

2.1. Preliminaried

2.4.5. Scale Detection on Multiple Waves

3.3. Low-Level Componentd
3.3.1. Scale Function .

3.3.3. Reconstructio
|3 4. Modification Functio

3.41. Band Pass Filtel

3.3.2. Attenuation Function o o ot

S ot w W

10
10
12
13
17
20
24
24
25

33
34
36
38
38
38
38
39
39
40
42
43
44
45

Contents

|3 5. Training of the SSSFl

3.5.1. 1-Dimensi

onal Cost Functiond

3.5.3. Update Ft

(3.5.2. Multi-Dimensional Cost Functiond

mction: Adaption of the Knowledgg

ind

mmwmmmﬂaummm

pplication of the SSSFI.

.79 Fvaluation of the Maximum Seald - o o

3.7.3. Optimum Maskd
3.7.4. Evaluation of the Filter Tvped
Mhm&m&ﬁbﬂb@m
3.7.6. Final Presetd
3.7.7. Evaluation of the Multi—FiltetI

4.3.1. Relation t

4.3.2. Conclusio

A ode

1. _Analytic Signal

B.1. Specifications of our GPUI

B.2. GPU-Codd . . .

IT

89
89
91
92
92
93

103
103
110
132
138

1. Introduction

In this thesis we consider the development and application of a novel segmentation filter,
called the Scale Space Segmentation Filter. The SSSF is a phase- and amplitude-based
segmentation filter, which uses the 2-dimensional analytic signal, described in [40].

An image segmentation filter is in our case a functionality which maps the image in a
representation having ones at positions of the region of interest and zeros at positions
of the background.

Segmentation of grey value images is a main task of computer vision. Our approach is
rotationally invariant, global, and independent from special image classes: It is applica-
ble to any class of grey value images or objects, regardless of the profile, the luminance,
rotation, scale or other attributes of the region of interest. The implementation of our
filter is based on an application of the analytic signal transform for n different scale-
space intervals. It maps the signal into a set of n phase- and amplitude-images. Based
on this set we apply a special threshold operator, before we reconstruct the image in a
pixel based manner.

The filter is designed to be executed on parallel processors, therefore we are able to
utilise fully a given GP. Furthermore the calculation time is constant for a given filter
and independent of the design of the input image.

The filter is specialised and tested on medical image data of the human spine and on
image-stacks of the human liver.

This thesis is organised as follows:

We start with the introduction of the 2-dimensional analytic signal. In this chapter we
optimise the given implementation in relation to speed. Further we improve the main-
scale detectiont.

The next chapter is about the SSSF. We give examples for the training and application
of the filter. Finally we present the results of the SSSF in case of medical image data.
We apply it to the spine detection and the liver volume estimation, followed by a sum-

mary of the properties and advantages of the SSSF.

! Graphics Processing Unit
2The main-scale detection or extrema-detection returns the scale-space interval which maximises the
filter response. This is the scale interval which maps best to the local image region.

1. Introduction

In the third chapter we implement a spine curve detector which can be used to find the
degree of a scoliosig.

The results of our approach show a significant improvement compared to the state-
of-the-art methods[4] with the advantages of higher computational speed and higher
segmentation accuracy.

We assume that the reader of this thesis is familiar with the basics of general image
processing and computer vision, which can be found in [2], [20], [36], and [37].

Future works will deal with an expansion of this filter for not only 2-dimensional signals,
but 3-dimensional signals like the image-stack of the human liver. They will be based on
the application of 3 scale space segmentation filters spanning the transverse, the coronal,

and the sagittal plane.

This thesis contains a DVD with the programme code and the image data. The text is
written in British English.

3The scoliosis is a medical condition in which a person’s spine is curved from side to side.

2. The 2-Dimensional Analytic Signal

2.1. Preliminaries

Signal

A (n-dimensional) signal is a mapping Z" — R!. We will consider 2-dimensional signals
7% = R! with [€ {1,2,4}. The set of signals Z" — R! will be called R .

Image

A discrete image is a signal f € NlZQ, where in general f € {f|f:Z* — {0,...,255}}.

Local image region

A (local) image region is a set of adjacent pixels inside an image. Generally we consider
circular or rectangular image regions. One pixel or the complete image are special cases

of image regions.

Floor, ceiling and rounding function

We define the floor function |x| and the ceiling function [x].

lz] = {z€Z|z<a<2+1} (2.1)
[z] = {z€Zlz—-1<ax<z} (2.2)

The rounding is defined by

lz+05]: >0

[2—-05]: z<0 (23)

round(z) := {

2. The 2-Dimensional Analytic Signal

Rotation
A rotation r., for a constant rotation centre point ¢ = (x.,y.) and rotation angle « is

a mapping r : Z% — Z* with

rea(z,y) = [round(z. + (z — 2.) cosa — (y — y.) sin),

round(y, + (y — y.) cosa + (x — x.) sin o] (2.4)
and (z,y) € Z*.

Rotation of a signal

Let f € R™ . A rotation of fin c is defined by ry.q(z,y) = f(rea(z,y)).

Single-point mapping

k k
Let f: R” — R™ be a mapping between two signals. f is a single-point mapping if

g € R” b= f(g),x,y € ZF : g(x) = g(y) = h(z) = h(y). (2.5)

In case of mappings between images, the colour of the output image at a certain position

is determined by only the colour of the input image at the same position.

Rotation invariant/variant mapping

2 2 2
Let f:RY - R™ | se R, g= f(s) and g,po = f(Fspa). f is rotation invariant in
p € Z* ifVs,a : g(p) = grpa(p), otherwise f is rotation variant in p.
Note: The rotation centre equals the evaluation point p, hence if f is a single-point it

follows that f is rotation invariant.

Intrinsic dimension

Let f be a function Q C R! — R™. The intrinsic dimension of f is

min{n|3 g: R = R" h:R" = R™ ¥x € Q: f(x) = (hog)(x)}. (2.6)

The value n depicts the dimension of f we need to describe f without any loss.

An image has the intrinsic dimension 0 ({0D) if V(z,y) € Qf(z,y) = ¢. We will also

consider i1D functions f(x,y) = (g o h)(z,y) for example f(z,y) = sin(x +y)). The
k

maximal intrinsic dimension for a signal f € R™" is ikD or for images 2D, respectively.

2.2. The Analytic Signal

Intrinsic dimension in a local image region

As real images are in general i2D, we do not consider the whole image but make state-
ments about the intrinsic dimension in a local image region. Local 1D regions are lines
or edges, whereas local i{0D regions are plateaus, 12D regions are generally superposi-
tions of two or more lines. In general noise is of intrinsic dimension 2 for 2-dimensional

images.

2.2. The Analytic Signal

The development of the monogenic signal [10] which is a special case of the 2-dimensional
analytic signal [40] is motivated by the one-dimensional analytic signal or simply called
analytic signal.

Let f € R — R be square integrable
feLlyRR) & / |f(x)|?dr < oo. (2.7)

The Fourier series of f is given by
f(z) = Z a, cos(2mvr + ¢,) (2.8)

with v as the frequency. Every 1D function can be locally decomposed to an unique set
of basis-frequencies v with different amplitudes a, and phases ¢,. For the introduction
into the analytic signal we follow [40] and [13]: The local 1D signal model for the analytic
signal at origin 0 of the applied signal reads

g° = acos(@) := as cos(¢s) := Ps{g}(0) (2.9)

with s > 1 as the scale parameter of the filter operator P {-} of the analytic signa]H.
Since the local signal model is an even function, hence Vo € R : cos(x) = cos(—zx), we
call ¢g¢ the even part of the analytic signal. The odd part can be calculated by using

the convolution of the filtered original signal with the classical 1D Hilbert transform

Statistically the occurrences of local ikD regions decrease for increasing k: 0D regions appear most
frequently whereas in case of images i2D regions are most rare.

2The scale parameter s is the equivalent to the frequency v, but with the difference that high values
of s correspond with low values of v.

2. The 2-Dimensional Analytic Signal
kernel h(7) := - and

9° = asin(@) := assin(p,) = (h* P{g})(0) (2.10)

with % as the convolution operator and

(mn@})@):%pv./%m (2.11)

TER

as the Hilbert transform of the signal g in scale space and P.V. as the Cauchy principal
value [22].
The phase ¢ and the amplitude a can be determined by

o

= arctan g— .
¢ = arct . (2.12)
a = (99?2 +(9°) (2.13)

The complex extension g¢+1 ¢° of a scalar valued one-dimensional signal ¢ is called the
‘analytic signal’. The analytic signal now enables the identification of amplitudes and

phases for all scale parameters.

2.3. The 2-Dimensional Analytic Signal

The 2-dimensional analytic signal expands the input function. It is defined for g €
Ly(R% R). With this expansion a new feature arises, the orientation . It depicts the
orientation of amplitude and phase. In the case of the simple monogenic signal we take
the orientation which maximises the amplitude. The benefit of the monogenic signal
is its isotropy [9], hence for the calculation of the (main) orientation we only need one
application of the operator.

That approach does not yield to a true extension from the first to the second dimension,
as the phase and amplitude are only calculated for one line defined by the orientation.
A better method for the calculation of at least two orientations is the 2-dimensional an-
alytic signal [40]. With the expansion from the monogenic to the 2-dimensional analytic
signal, there comes up a second orientation which generates a further rotation invariant
property, the apex angle between the first and the second orientation.

We continue with the formulas of the four different scalar values of the 2-dimensional an-

3We do not need any steerable operators [14] to calculate the main orientation.

2.3. The 2-Dimensional Analytic Signal

alytic signal. To generate the 2-dimensional analytic signal we need the Poisson kernel £?

and the second order Hilbert transform kernel k" for a given scale s

1
kP (z, = 2.14
©) = e (2.14)
5(25% + 3(2% + y? —232+x2+y2%
K'z,y) = (() — X .) (2.15)
2 (22 + y2)%(s?2 + 22 + y2)>2

We calculate the 2-dimensional analytic signal for a given scale interval which includes
the scale of interest. We take two scale values sy and s. the fine- and the coarse-scale

with 0 < sy < s.. For these scale values we calculate the following six masks

qgf,sc(xa y) = kagf (l’, y) - Sckgc (l‘, y) (216)
Q,ff,sc o T D D
y (l’,y) i (ka('ray) - ksc<x7y)) (217)
qs; s Yy
L frdc | L
- q?f,sc - [2
@, | (@y) = | ay | (k5 (2,y) — k(2 y)) (2.18)
2
L 4], L v

which lead to the signals

fe =, 0 % 1 for € € {p, 22,2y, yy) (2.19)

with f as the input signal and * as the 2-dimensional convolution.

For the signal calculation we introduce the abbreviations

fo = % (2.20)

foo = @ (2.21)
/ 2__'_ x2y

fe = ﬁT (2.22)
2A+ 1)

fo = B (2.23)

2. The 2-Dimensional Analytic Signal

For the final signal formulas, we define

(

arctan £ : x>0
5 r=0,y >0
atan2(z,y) == ¢ —2: r=0,y<0 . (2.24)

7T—|—arctan%: r <0,y >0

—m+arctan? : x <0,y <0

\

Note: atan2(0,0) is undefined. The formulas for the phase and amplitude read

¢ = atan2(\/7q,fp) (2.25)

a = 0.5\/(f2+ f,). (2.26)

The formulas for the main orientation 6,,,;, and the apex angle o are given by

Omain = atan2(f,, fz) (2.27)
/ £2 + 2
Q. = arccos M . (2.28)
|fsl
The apex angle depicts the angle between the two calculated orientationsH
with o 10 .
Omean = — % _ 2 arctan Jay (2.30)
2 2 fio
and
o
01,2 = emean + 5 (231)

Note that the domain of the main orientation 6, is not equal to the domain of the
mean orientation #,e,,. The mean orientation is the mid-orientation between #; and 6,
whereas the main orientation is the one with the highest gradient. In the following we
substitute Gpean With 6.

The authors of the monogenic signal and the 2-dimensional analytic signal released many

publications concerning this topic: Felsberg introduced the monogenic signal in [9],

4Note: The formulas for the orientation and the phase are formulated in such a way, that the orientation
is not only in range [0, 7] but in [—m, 7]. It depicts not only the orientation but the direction. This
reduces the range of the phase from [—m, 7] to [0, 7] in this implementation.

2.3. The 2-Dimensional Analytic Signal

Figure 2.1.: Calculation of the mean orientation on a 'Lena’-image. From the left to the
right: coarser and finer scale interval. The resolution is one pixel per arrow.

and [10]. The features and the potential of this low level image processing tool are de-
scribed in [8], [11], and [12]. Sedlazeck [34] gave solutions for the local feature detection
on images using two similar methods. Wietzke et al. published a large set of researches
concerning the 2-dimensional signal and its applications [41], [43], [39], and [44]. Recent
researches [42] deal with the extension of the 2-dimensional analytic signal to the calcu-

lation of any number of orientations which is the most general formulation.

The analytic signal is a tool for low-level image processing. It delivers four different
values based on the local neighbourhood of a location p € R™: (¢, a,0,«). The values
¢ and a have the same meaning as in the 1-dimensional case whereas the orientation 6
depicts the flow of the grey values inside the scaled neighbourhood. Considering the
signal as a Monge patchl, 6 is the deepest descent at p. A bowl at p would start to roll
in direction #. Hence, the orientation is the direction of the gradient. Continuing with
this illustration the size of a bowl (which equals the scale) influences the direction. We
illustrate that relationship by applying the orientation on the 'Lena’-image for coarser
and finer scales.

At coarse scale the arrows only satisfy the coarsest structures. For finer scales there arise

new orientations at positions where the orientations for the coarse scale do not change.

5A Monge patch is a patch f : R? — R of the form f(z,y) = (x,,g(x,y)). It is named after Gaspard
Monge (1746-1818).

2. The 2-Dimensional Analytic Signal

The 2-dimensional analytic signal is able to determine this orientation for a given scale s
(see Figure 2.)).

If we consider the neighbourhood of p, we focus on the adjacent points of p within
radius r. In the case of the analytic signal we express the observation of the neighbour-
hood of p by convolving f at p with the six different convolution masks (2.16]), (Z17),
and (2.I8)). The size of the convolution masks is basically influenced by the scale s. Small
values of r satisfy finer scales, coarser scales require larger values of . To understand
the exact relationship between r and s we have to take into account the shape of the

masks.

2.4. Application of the Analytic Signal

From now on we follow and expand the implementation of the analytic signal given
in [40].

2.4.1. Calculation of the Mask Size

The convolution mask size n € N of a considered neighbourhood is related to the scale s.

The basic low pass filter of the analytic signal is the scaled Poisson kernel
ps =5k (2.32)

where k? is defined in Equation (2I4). This is combined by using two different scale
parameters@, a coarser s. and a finer one s;. The construction is given in Equation (2.16]).
We get a band pass filter which is known as Difference-of-Poisson (DoP) ﬁlterH.

The parameters s, and sy define the parameters of the low pass and the high pass
filters respectively. The size n of the DoP-filter defines the radius of the considered
neighbourhood. Since it is impossible to convolve each pixel position with a mask with
an infinity radius we have to find an optimal n depending on the scale-values. Therefore,

we cut all elements on the border which have no significant effect on the result. Hence,

6The parameters must be positive and the coarse scale must be bigger than the fine scale. Felsberg
actually postulates in his PhD thesis [§] 1 < sy since a scale parameter less than ’1’ would be
meaningless for discrete signals.

"The DoP filter is the difference of two Poisson-filters, similar to the Difference-of-Gaussian (DoG)
filter for Gauss-filters.

10

2.4. Application of the Analytic Signal

we assign a static error e with 0 < e < 1 and in the continuous case

e/psc(w,y)dx dy = /n/npsc(x,y)dx dy. (2.33)

RQ —n —n

The maximal mask size only depends on the coarse scale, as this is the parameter which
is responsible for the coarser structures. Because of the attribute of the Poisson kernel,

being normalised
1= [piGey)do dy (2.34)

]RQ

it follows that

e/psC(l“,y)daf dy =e= //psC(x,y)dx dy. (2.35)

RQ -_n —n

Hence (still for the continuous case)

e = //psc(x,y)dx dy
n n 1
= i// =dx dy
2m (s2+a%+y?)z

2 Ty
— arctan
m Scy/ 82 + 2% + y?

oy 2 n?
n:=xr=y
= —arctan | ————— 2.36

T (sc\/82+2n2) (2:36)

=n = sc\\/tan (%) (tan (%) +4/1+ tan (%))J (2.37)

=Cerror

The value c...., only depends on the constant e. The parameter n depends only linearly
on s.. It is reasonable to keep the error independent from s.. In the discrete case, it
follows that

n = [scCerror | (2.38)

with cepror € [0, 00[. Felsberg uses a value cepror = 1.66. In his implementation [7] and [6]
he does not solve the integral, but accumulates the sum, until he covers the value of e.

This approach needs O(n?) calculations.

11

2. The 2-Dimensional Analytic Signal

[EEN
\

Poisson kernel
Hilbert kernel §
o

Figure 2.2.: Convolution kernels with c...., = 1.66 and n = 24. From left to right: cjf4715
and Qf4,15

In the discrete case Equation (2.33]) equals

e Y. plwy)= > pulz,y) (2:39)
Z,y=—00 T,y=—n
whereby
> nlo) > [pey)ds dy (2.40)
T, Yy=—00 RQ

for s < 0o. The Equation (Z.38)) does not change in the discrete case, i.e. n still depends

linearly on s.. However, for ce..o another term follows compared to (231, because of
the inequality (2.40)).

2.4.2. Calculation of the Offset

As the unlimited integral p,(x,y) is always 1, it follows

@, s (vy)=1-1=0. (2.41)

Hence, a convolution with constant signal f always generates the result ’0’. This pos-
tulation is important for the analytic signal. When calculating in the discrete case this
attribute disappears, as ps(x,y) is restricted to a limited sum. In the discrete case for

limited n it always follows that ¢ , (z,y) # 0. We need to post-process the signal

12

2.4. Application of the Analytic Signal

x10° -
4r- : R
X
= =)
= =
g 2 e
E —
< £
£ =
o 0y~
3 2
T T
_2 -

Figure 2.3.: Kernels {75 and 7} 15

response by subtracting the mean elements-value. This substraction is only required for

three of the six masks

n

q/ff,sc(xay) = qgf,sc(xay) - Z (2’)’L + 1)

T,Yy=—"n

f ~ ~
)
A==, E e {p, xx, Yy} (2.42)

The formulas for the other masks do not change.

ngf,sc(%y) = q§f786(:p,y), € e{z,y,zy} (2.43)

Figure and depict the convolution kernels (j§4715 with £ € {p,z,zz,zy} and
Cerror = 1.66. The radius is n = 24 and the diameter is (2n + 1) = 49. The design of
the kernels is determined by the quotient j—;, the resolution is induced by s.. These four
kernels and the two transpositions of 45,5, and ¢;7,, are used in the implementation of

the 2-dimensional signal.

2.4.3. The Basics of the Analytic Signal

As already mentioned, the analytic signal is not only used to calculate the local phase
and amplitude of the neighbourhood, but also for the mean orientation and the apex
angle. The fine- and coarse-scale values supply the boundaries in which the considered
structure is located. In this subsection we are focussing on the class which is the signal
model of the analytic signal.

Figure depicts an example for the usage of the analytic signal on a pure non-axis-

13

2. The 2-Dimensional Analytic Signal

—
[eubis indul

pi/2

|
uolneIuaLIOo

0.10,

0.00!

—_———
—_—
==
—

————

5 and s, = 7. From
signal, reconstructed

signal are s

Figure 2.4.: Application of the analytic signal on a synthetic image with a = 1, 0 = /8
and s = 6. The values of the analytic

the left to the right and the top to the bottom: input

a, ¢ and a.

and normalised signal, 6,

14

2.4. Application of the Analytic Signal

parallel sinus-oscillation. The distance of two maxima in the input signal is 24 pixels,

7 is represented by 12 pixels. The relation between the scale and the pixels is

~

™

= 2.44
s 2 pixel ()

with 7 as the size in pixels used to describe w. For this example it follows

12 pixel
2 pixel

The sine wave is exactly detected in a scale interval which includes scale s = 6. In our

example, we have chosen the interval [5, 7]. The lower four plots depict the results of the

s

8
and %’T. This is exactly the rotation of the sine wave concerning the x-axisd. Only the

analytic signal. The first picture is the mean orientation. It only adopts the values —

crossover areas and the borders introduce small errors. Tracking the input signal from
the left to the right, the mean orientation displays whether the input signal is ascending
or descending - the higher value represents a locally ascending wave.

The next plot - the apex angle - is the angle between the two orientations in one point.
In most cases the apex angle is '0’, any calculated orientations are positioned in the same
direction, it follows that the intrinsic dimension at this point is '1’. But there are also
five ridges of values near to 5. These ridges are located at extreme values of the input
signal which are the points of changing the orientation. These positions are crossovers
from one to another statefl.

The plot for the local phase ¢ represents the structure of the input signal. At ¢ = 0 the
input signal is reaching its maximum value, at ¢ = 7 the input signal becomes minimal.
The linear development of ¢ between minimum and maximum value is only visible if the
scale interval is chosen in a correct way.

The last plot shows the amplitude a. In the ideal case one expects a constant value.
This cannot be matched at every point, because there are problematic fringe effects on
the border of the input signal. The input signal f can be reconstructed using a and ¢
with

~

f =acos(). (2.45)

80n an axis-parallel wave, the orientations would equal 0 and .
9The width of these crossovers is induced by w = s. — sy. For w — 0, also the width of the crossovers
becomes ’0’.

15

2. The 2-Dimensional Analytic Signal

MSE

—

S

——

=
—

=

A

—

Figure 2.5.: MSE of the reconstructions with f = acos(¢) and f’ = cos(¢).

This reconstruction is depicted next to the input signal. Since the amplitude is con-

stan@, Zang [44] suggests an only phase-based reconstruction

~

I = cos(¢). (2.46)

This reconstruction can be helpful in some cases, especially if the amplitude is not of
any interest. The mean square error (MSE) between the two reconstructions and the

input signal is depicted in The following equation is used to compare both MSE’s.

mse(f) > mse(f’)
XY

= —0.08 (2.47)

with X Y as the number of pixels in the test image, mse is the mean square error

and a > b the function

1: a>b
a>b:=4¢ 0: a=b . (2.48)
—1: a<b

The quality of both reconstruction methods is very simila.

10This makes sense only for this example.
"UEquation (Z47) means: 46% of the pixels of f are afflicted with greater MSE than the same pixels
of f'.

16

2.4. Application of the Analytic Signal

2.4.4. Expansion to Multiple Scale Intervals

The practical application of the analytic signal consists of the comparison of the results
for different scale intervals. For n scale intervals {[ss, S|, ..., [Sf., Sc,]} We calculate
the analytic signal and compare the different results. An useful requirement is the

disjunctive covering of the scale intervals

Sfy < Sey =S, < Sey---Sc (2.49)

n*

A simple requirement concerning a static shape of the convolution masks leads t

Se
= —. 2.50
1=, (2.50)
This can be realised by
s; =20 (2.51)

with sy, = s;_; and s,, = s,. An octav is decomposed into d different parts.
A well known application is the analysis of the attenuation att which is identical with

the amplitude. For this certain partition of the scale space it reads
att! = qa; (2.52)

We take an one-pixel-stripe inside the input image of Figure 4] and apply the analytic
signal n times. In our example, the scale interval borders run from 1 to 24, using 40
different intervals. The attenuation is maximal at the scale interval which includes the
induced scale. Figure depicts the results. The maximum ridge is positioned in the
middle, for too fine or too coarse scales the responses are less intensive. The maxima only
differ in the fore- and background, but these inaccuracies are the result of convolution.
The induced scale can be detected by isolating the scale with highest attenuation.

The first plot in Figure 2.7 depicts the scale interval in which the attenuation reaches
its maximum for every point. This procedure is proposed in [1I], but the result is
inaccurate: The located scales vary inside seven different intervals between [4.18,7.28];
the main scale is located at 5.73. The results are only applicable in the areas with a
maximum in the input image, in other areas the scale becomes too small, which means it

is not ascertainable by the main scale detection. The maximum grey value in the input

12This requirement is not necessary but yields to a simple equidistant scale space where each octave
has the same number of intervals, in other words Vi, j : (log s., —logsy,) = (logs., —logsy;).
130ctave has the same meaning as known from music: For scale s the octave is given by 2s.

17

2. The 2-Dimensional Analytic Signal

71
s

7"

attenuation
il

scale 10 15 24

Figure 2.6.: 40 different attenuations for an image stripe in the input image of 2.4] at
y = 25 with scales running from 1 to 24.

signal is indicated by ¢ — 0 or ¢ — 7. In other words there is a relationship between

the inaccuracy of the main scale detection operator (error) and the phase
error =1 — | cos(9)| € [0, 1]. (2.53)

This leads to the use of the phase to improve the main scale detection.
We introduce another measurement which replaces the attenuation att®. We call this
the new measure att® with

att = a;] cos(¢;)]. (2.54)

The application of the maxima detection with att® is a bit more accurate, however it
does not lead to an absolute elimination of the weak points. It obtains to high responses
at points where the first method is too low. A benefit of this approach is the appearance

of a large uniform plane between the error-wedges. The plot for this method is depicted
in 2.7

The combination of both methods lead to the final main scale detection:

1. calculate n attenuations based on att?

2. exclude the (n — d) scale intervals where d > 0 responses are below a certain
threshold

3. take highest attenuation att’ inside the d remaining intervals.

18

2.4. Application of the Analytic Signal

standard approach

scale

alternative approach

24~

7

scale
Ul

14

combined approach

24~

7

scale
(2]

1=

Figure 2.7.: Detection of the main scale.

19

2. The 2-Dimensional Analytic Signal

One interesting point of this routine is how to find the threshold. There are two possible

ways:
1. choose d of the highest responses for constant d > 0.

2. choose all responses higher than a given threshold, e.g. threshold = factor max(a)
with 0 < factor < 1.

In both cases we find a set of scales {s;,,...,s;,}. An appropriate choice in the first

approach is d = 7. In the second approach factor = 0.8 leads to reasonable results.
The last plot in Figure 2.7 shows the second approach with factor = 0.8.
This method is superior to the other two approaches. The advantages of the alternative

method are combined with an outlier-elimination using the normal method.

So far, the considered attenuations were only based on a or a and ¢, respectively. We
will now introduce an approach only based on the phase congruence. This approach uses
a property of exactness of a local scale in p. It finds the scale in p, having the minimum
difference to other adjacent scales concerning the phase response. In our definition the
method operates on the modulus of diﬁ'erence

| cos(i) — cos(¢i1)| + | cos(¢s) — cos(it1)|

Hw=1—
att; 1

(2.55)

with att{ € [0, 1] having a good value close to '1’. The best scale includes the highest
possible variance of a band pass width at lowest variance concerning the detected struc-
ture. The detected scale will also be called the main scale.

The detected structures differ from those, detected by the other methods, because the
amplitudes are ignored and phase and amplitude are in general linear independent. There
is no quantitative information about the intensities concerning signal response, rather
than qualitative information about separateness of the scale, hence the reconstruction

using phase congruence differs from other methods in a fundamental way.

2.4.5. Scale Detection on Multiple Waves

As in real images, there is always a local superposition of many arbitrary waves, we will

consider the behaviour of the scale detection on two arbitrary waves. Figure 2.8 shows

1 For the following definition it is important to assume a comparability between different scale intervals.
In a simple approach using the same number of intervals per octave it is already guaranteed.

20

20

40

60

80

100

2.4. Application of the Analytic Signal

40 60 80 100 20 40 60 80 100

20
standard approach: scales reconstruction
B] L
i | Vo l"- !
~ \\ L
LN ._
.|I ll'-._ ‘-\
J 'I. .
20 40 60 80 100 20 40 60 80 100
combined approach: scales reconstruction

Figure 2.8.: Main scale detection on the signal s, using the standard approach and the

combined

approach.

21

2. The 2-Dimensional Analytic Signal

the construction of our input signal. The signal is built by two sine waves with differ-
ent scales and orientations. The first wave is three times larger than the second. The
intensities are distributed in a way, that the first wave descends linearly from the left to
the right and the second behaves oppositely. The crossover of the intensities is located
in the middle of the picture. The third picture displays the overlay of the signals, which
is the input signal for the scale detection of the three proposed methods. The fourth
figure is the estimated result for the standard method and the combined method.

The next four plots show the results of the two amplitude-based main scale detectors.
The left images depict the detected scales. The right image is the phase-based recon-
struction f’ using only these scales.

The standard approach is also known as 'maxima detection’. The combined method is
characterised by a higher concentration of a detected scale in a certain part.

The first two plots in depict the application of the phase congruence. The next figure
is the histogram of the detected main scales for the three methods. The phase-congruence
based method induces another kind of signal than the amplitude based approaches: The
correct scales are only detected at extreme points concerning a certain scale which are
points with ¢ = 0 or ¢ = 7. The amplitude-intensity is ignored.

The histogram depicts the differences of the three methods. The estimated result con-
sists of two peaks at s =4 and s = 12. The peaks of the three methods are marked by
a square.

The standard approach detects two peaks for the fine wave at s = 3.3 and s = 4.5. For
the coarse wave it detects two peaks at s = 10 and s = 12.

The combined method performs better. It just detects the two estimated peaks at s = 4.5
and s = 12. In this sense, it is superior to the standard approach.

The phase congruence generates the worst results as it detects a huge false positive rate
at s = 1.5. The other two local maxima are given by s = 5 and s = 12, whereas the
number of occurrences of these two maxima is only a bit higher than the number of the
adjacent occurrences.

The computer code for the main-scale detection is given in listing [A.5] the code for the

function which generates the synthetic image is given in listing [A.6l

22

2.4. Application of the Analytic Signal

100

20 40 60 80 100

phase congruence: scales reconstruction

= standard approachX combined approach¥# phase congruence

2500— T T T T \ \
D
o] Bd
2000 ® H .
O
O
c
L 1500 H%(.
>
3
o2 tH
o
% 1000- -
E
= o x
500 x*** X X H +]
* ' g e e Far
o soleisimii X % 5 X¥x &t *"‘%ﬁ
l l 05 20.7 306 500

1.0 2.2 4.3 7 0 1
scale

Figure 2.9.: Top: Application of s, with the phase congruence approach. Bottom: His-
togram of the detected scales. The squares mark the peaks of each approach.

23

2. The 2-Dimensional Analytic Signal

2.4.6. General Definition of the Attenuation

If we ignore the constraint, that we need the same number of intervals per octave, the

general definition of the first attenuation reads

a;

att! =) 2.56
lo8(5%,) — 108(57) (259
For the second attenuation it follows
atp = — Gleos(@)l (2.57)
10g<80i) - log(sfi>
The phase congruence is defined by
atte — 1 Le08(0) —cos(oy e] cos(0) —eos(uln

2(wy + w,,)

with w, = log(s.,,,) — log(sy,) and w; = log(s.,) — log(sy,_,).
These definitions allow the usage of every partition of the scale space and not only the

one given in Equation (Z3I]). Now it is possible to separate the scale space by
S7,, Se;] = [(i — 1)eg + coyicr + col, with ¢, co € NT (2.59)

with ¢y the interval size and cp the offset. It also satisfies the constraint of disjunctive
covering.

The code for the calculation of the three attenuation-types can be found in [A.5l

2.4.7. Modified Image Reconstruction

If the sum of all scale intervals covers each important wave, the image can be recon-

structed by
f(ﬂfa y) = Z a; cos(¢;). (2.60)
i=1

Using Equation (2.60) we introduce the modified reconstruction by introducing an array
of factors b .
f(ﬂfa y) = Z bia; cos(¢;), b; € [0, 1]. (2.61)
i=1
With the support of the modified reconstruction we can design a large set of different

phase- and amplitude-based filters. It allows us to suspend or emphasise some scale

24

2.4. Application of the Analytic Signal

responses according to the information given by a local histogram or previous knowledge.

In Section 2.4.4] the reconstruction satisfies the definition

(2.62)

b 1: s; = main scale
’ 0: otherwise

This method is also applicable to noise reduction using the analysis of the respective
attenuation. Low values of attenuation can be considered as noise, whereas too high
attenuations can be determined as scratches on the surface of a scanned photography.
After noise reduction the resulting signal f can be considered as a new input image for
further computations.

We come back to this definition in the main chapter of this thesis, as it will be the basis
of the SSSF.

2.4.8. A Fast Implementation of the Analytic Signal

We finish the chapter about the analytic signal with a description of a fast performing
implementation. We introduce a convolution pyramid and an instruction for the imple-
mentation on the GPU.

As already mentioned, an introduction to the implementation in C code is given in [40)].
From the programmers viewpoint, the convolution draws most of the attention. The
analysis of a neighbourhood at a point p with radius n takes (2n + 1)? image- and filter-
mask—accesse combined with the same number of multiplications and sums. This
complexity of O(n?) leads to a non-acceptable draw-back for the application especially
for big convolution sizes. The only way to reduce the number of calculations is to re-
strict the considered (image-) points by only paying attention to every dz-th pixe.
This approach is also known as convolution pyramid [I]. The mask-calculation does not

need to be changed using the relationship
§=—. (2.63)

The shortened convolution mask has the same design and size as the convolution mask
created by shortened scale parameters:
Consider a convolution mask m with parameters s, and sy and the size kn x kn. Com-

puting the sum for every k x k-square results in an n x n mask m. This new convolution

15The main problem is generally the speed of the image accesses.
16The value dx is the offset between two considered points on the signal.

25

2. The 2-Dimensional Analytic Signal

mask has the same design and sum as the first one, but less entries. Because the design

is defined by the ¢ = j—; and the size is linear in s, it follows that m equals a convolution

Sf
dx”

The application of the offset dx on the first kernel ¢? is depicted in Figure ZI0. The

height and the design is not touched, whereas the resolution is minimised.

mask created by s, = 2= and sy =

The opposite part of the convolution - the input image - must be preprocessed by a mean
value convolution with the same mask size as dr. A good approach is the limitation of
the maximum convolution mask size to n,,.,. For a scale interval with convolution size n,

the value dz is computed by

dz = [n W . (2.64)

nmaz

This decreases the complexity of the convolution to a maximum of (21,4, + 1)? steps

2

e takes time, this part

which is independent from n. Although the calculation for n
has an effort of O(1) concerning n.

The calculation of the mean value can be decomposed by an iterative approach:

We need two different convolution masks, the one to have an odd number n of elements

for calculating the mean values reads

oad = 5 |1 T i (2.65)

For an even number of n we need an (n + 1) x (n + 1) matrix

025 05 ... 0.5 0.25]
. 05 1 ... 1 05
M:ven = E . . (266)
05 1 ... 1 05
0.25 0.5 ... 0.5 0.25
When calculating different mean values fi,, := f* M'y;, and fi . := f* M., it is

reasonable to use the results iteratively. The origin equals a 2 x 2 convolution mask

0.25 0.25
2 — fx . 2.67
Jour =1 [0.25 0.25] (267)

26

2.4. Application of the Analytic Signal

- A

% /I'"“\\\ CII
= N S
s IAAA XL §

Figure 2.10.: Convolution mask ¢” as in 2.2 and its resulting equivalent with dz = 2.

The iteration starting at : = 3 reads

1. calculate ff _, using é;dl

2. calculate fi,, using fi,..fir and f.

O

3. increase 1.

It is possible to store the required information in the four slots of the graphic-card, hence

Pl 9,6, 0] = Dl feurs Frugs ooy £] with p[r, g, b, a] being the four channels of one image
pixel.

Initially p[f2., fra(=), f24, f] becomes starting at i = 3

A o i1
® D[flvens odd ” éddvf]

d p[féddv foi;dla féddv f]-

The start-equations for the mean value calculation steps read

f;dd(xvy) = f(:c,y) (268)
Pulwy) = 3 3 fa+ay+y) (2.69)
z',y'=0

27

2. The 2-Dimensional Analytic Signal

The further equations are given by
1
foen(@:y) = 7 D fad (w =y =) (2.70)
y'=0
i 1 : 2 i : 2 pi—2
fodd(l" y) = Z_2 2(2 - 1) even(x’ y) - (,L - 2) odd (l’, y)
1 : . :
1 1 — oo —1 1—1
- _1)* _
+2MZ::0f(x+ — ()" + — { 5 J

,y+i_1(—1)y’+i_1—V”D}. (2.71)

The used values of f are depicted in Figure ZI1l The terms f¢ with i € {2,4,6,...} are

dx 1 2 3 4 5)
f oldd f e?’ven gdd f eSUen f o5dd

Figure 2.11.: Masks for the calculation of the mean value

not used for the calculation of the mean value.
From one step to the next one, we need only 5 or 13 image accesse, independent
from dz. This leads to a time complexity of O(1). The time complexity of the convolution
and the calculation of the mean value on an n x m pixel image having s different scale
intervals is in O(n x m X s).
Obviously we are going to lose some information by applying this pyramid, but the
mean square errors between two following values of dx are still reasonably small. The
application on the sine wave - as in Figure with dr = 1 and dx = 2 - is depicted in
Figure The implementation with this special convolution pyramid is given in the
Appendix [AT]
On a graphic processor unit there are some continuative possibilities for acceleration.
The analytic signal is defined on grey scale images, we only need one channel for the
imainformation. When using GLS there are always four different channels per
19

pixell: three channels for red, green and blue and one channel for the alpha value. The

1TFor fi,q we need 4 pixel accesses on the border edges of f and one pixel access on f!
which are stored in the certain pixel; for f,..
4, fio} with 5 and finally fi ., with 4 pixel accesses.

80pen Graphics Library Shading Language is the language, which is used for the implementation on
the GPU.

193 GPU register consists of a vector having 4 floats. It follows that the processor always calculates 4

floats per clock. However one does not have to use these 4 channels.

1—2
ven f?md Joad

with odd value of i we need to calculate fi ! with

28

2.4. Application of the Analytic Signal

x10° X 10

[oe]
o

MSE: amplitude
S
MSE: phase

o

0.04 0.08,
c <@
o o
= c
8 @
g 5
Lo02 S 0.04]
IS S
n n
= =
0.00: 0.00!

Figure 2.12.: MSE’s for the the application as in 2.4] between dx = 1 and dx = 2. First
row: a and ¢. Second row: # and a.

access to a pixel always uses these four channels. A common way to use this for grey
scale images is to put the adjacent image pixels into the three remaining free channels,

this results for a certain dx in

p[fr’ 9, b’ a] (z,y;dx) = [?(x,y)) ?(zqtda:,y)) ?(z,erdz)) ?(erdz,erdz)] (272)

with f being the input signal after mean valuing as in 11l Tt reduces the image accesses
by factor 4. To accelerate the mask acesse we only submit the non-redundant parts
because the fast memory on a GPU is quite small. When calculating the complete masks
outside the GPU there are two different types of masks. As shown in Figure for the

Poisson kernel it is enough to transmit an eighth slice. For the other kernels we need at

20Tt is unavoidable to calculate the mask before pushing into GPU, because it is static for all pixels
and the calculation (for each pixel) is much more complex than an storage access.

29

2. The 2-Dimensional Analytic Signal

least a quarter slice for the kernel reconstruction. Furthermore the kernels ¢ and ¢Y,
respectively ¢** and ¢¥¥ are identical except for rotation. This results in a minimum

requirement of memory

1
placemin = M +2(n+ 1)n+ _n? (2.73)
2 —_—— =
T q® and ¢** L

for a given maximal kernel size of (2n + 1)2. This is a reduction to about % of the
complete number of the mask entries. However depending on the specific GPU it can be
more useful to transmit some redundant information to reduce the jumps concerning the
array access. The optimal way with respect to the speed and the image representation
is an uniform transmission of a quarter per mask without the values x = 0 or y = 0 plus

the stripe having x = 0, respectively y = 0. This results in a memory requirement of

placeqp; = é@i + 3n + L (2.74)
4?,q%,q**,q*¥ additional for g?,¢% and ¢** middle of gP

which is still a reduction to about = and accelerates the convolution-time. We imple-
mented the calculation of the analytlc signal for place,;, and placeqp in C++, OpenG[.
and GLSL. We used an NVidia GeForce 9600GS GP . The faster method (placeyt)
is restricted to a convolution of 332 pixels, the second one allows up to 652 pixels per
mask. A test on a 0.25 mega pixel image and another 1 mega pixel image gave the
in depicted frame rates. The calculations are stopped if the frame rate becomes
lower than 5 frames per second.
For placeyy, n = 16 and the smaller image, we achieved 45 frames per second, for placeps,
n = 16 and the larger image, we achieved 19 frames per second.
The calculations with the placen,;, approach takes much more time. For the larger im-
age, it effects an abortion of the calculation at n > 20. As the convolution is the most
time consuming part of the calculation, we are able to compute the analytic signals
for 19 scale intervals with n,,., = 16 in less than one second for the larger 1024 x 1024
pixel image or to compute one frame in real—tim.
The calculation of the mean value takes not longer than the calculation of the analytic
signal with n = 1 and placeyp, which is 727 frames per second for the smaller image

and 448 frames per second for the larger one.

2LOpen Graphics Library
22The complete specification of our our GPU is given in the Appendix [Bl
23In this case, real-time is defined as a frequency of 20 Hz.

30

2.4. Application of the Analytic Signal

1000 I I
ZBOL e -0 opt - 0.25 mega pixel
[min - 0.25 mega pixél
\ —B—opt - 1 mega pixel
400 ——min - 1 mega pixel

200

100f-: -+

frames / second

Figure 2.13.: Frame rates for the analytic signal calculation on two 'Lena’ - images with
512 x 512 and 1024 x 1024 pixels.

The code of the fragment shader which is the significant part of the calculation on the
GPU is listed in the Appendix [Bl

31

3. The Scale Space Segmentation Filter

In this chapter we develop a new segmentation filter which operates on the 2D analytic
signal transform. We call it Scale Space Segmentation Filterﬂ. The main scope of ap-
plication is the detection whether a pixel is part of a special texture or no. The input
is a grey scale image as in the case of the analytic signal. The output is also a grey scale
image providing the likelihood of each pixel being part of the texture. The range of this
filter is neither region based nor edge based, but pixel based in a special way. Hence,
the results are generally not connected like normal region- or edge-based segmentation
outputs nor does the segmented pixel set grow or shrink from one iteration to the next.
Another important attribute is the rotation invariance which arises with the inherited
rotation invariance of the analytic signal which is the only not single-point operation in
this filter.

As texture segmentation is a central task for computer vision, we can find a lot of differ-
ent publications concerning segmentation or detection routines. We will list some works
which are related with this thesis. There are publications about the segmentation in
general and about segmentation on medical images. There are also publications, which
describe the phase-based approach.

Brandt [4] gives a programme for the detection of the spine in his doctoral thesis. He
uses template matching and simulated annealing on the grey value input images, with
the limitation not being luminance, rotation, size or design invariant. He reaches seg-
mentation results with a true positive value between 0.75 and 0.85.

The authors of [24] propose a lung segmentation, which is based on thresholds and his-
tograms on grey scale images, the authors of [35] make a similar approach for the liver
segmentation. Kaminsky et al. publish an interactive too]H for a 3-dimensional segmen-
tation of the spine [21I], which is basically a region growing in three dimensions.

There are also some approaches using the watershed transform. The authors of [25]

expose a segmentation approach, combining the watershed transform with the region

In the following, we use the abbreviation SSSF .

2In our case, the region of interest (ROI) is given by a texture.

3An interactive segmentation tool normally needs a pre-allocation of the segmentation by the user,
before it starts to calculate the final segmentation.

33

3. The Scale Space Segmentation Filter

Figure 3.1.: Input image and reconstructed image

growing, similar to [28], [17] or [5]. Also the watershed transform was motivated by this
medical task. A spine segmentation is given in [38]. A segmentation of the brain with
the magnetic resonance tomography is given in [3], [15] and [29]. Kindler et. al [23] use
a two scale framework with an energy-driven operator and an adaption of a positioned
shape on the structure.

The field of the phase based approaches is dominated by edge-detector-based or feature-
detection-based segmentations. The authors of [19] give a phase-based edge detector.
The author of [34] presents a feature detector based on the monogenic signal, the publica-
tions [31], [16] and [I8] give solutions for phase based feature detectors using ultrasound
photographs.

This chapter is split in a short introduction and the description of the fundamental
components. Then we discuss the different possible designs of the components and their

different properties. At the end we will show some results and give an outlook.

3.1. Motivation: Exclusion of Surrounding Area

The development of the SSSF is motivated by a spine detection task. Consider a com-
puter tomography (CT) photography of a human’s upper part of the body on which we
want to locate the spine. Generally the spine and other bone structures are lighter than
softer parts. But also other structures, like synthetic objects as implants, lettering and
image boundaries can reach the same grey scale value as the bones. In a first step we

want to exclude these blockages to obtain a plainer view on the spine.

34

3.1. Motivation: Exclusion of Surrounding Area

Figure 3.2.: First image: Band pass example for att{. White: att{ inside the band pass.
Second image: Modified reconstruction for a low pass filter.

In Section 247 we introduced the reconstruction of the image using the phase ¢ and
the amplitude a. We also considered a modification using a signal b € [0, 1] which allows
us to filter noise or scratches of a photograph in dependence of the attenuation att.

Figure 3.1l depicts a normal reconstruction of an image like in (2.60]). The reconstructed
image is not totally equivalent with the source image, in particular fine details get lost.
Furthermore the image looks washed-out, as the black or white regions are discolouredH.
Figure 3.2 illustrates the power of constructing a band pass filter inside the attenuation.

In the first image in we use a simple band pass filter

1 :att®(z,y) € (tiow, thigh)
b(x,y) =) 3.1
(z) { 0 : otherwise (3.1)

This filter maps the pixels within a certain range of attenuation to one, and these with
higher or lower attenuation to zero. The considered scales are pretty smalli.

The resulting image b is an inverted edge detector for the high pass - as especially strong
edges get high amplitudes. For low amplitudes b equals a plateau detector, as low am-
plitudes go with low grey scale changes in the input image. Hence the attenuation att®

induces a simple edge detector.

4As we can only apply a finite set of different scales, we accumulate every detailed information inside
one scale interval.

°In this example we used is sy = 1 and s. = 2.

6The amplitude has similar issues as the modulus of the derivation

35

3. The Scale Space Segmentation Filter

input image

AS v y
scale Analytic Signal
. scales
function transform

Attenuation _ phases &
function X amplitudes
N——
l attenuations l

SSSF
Y

A 4
(knowledge } > Mod|f|c§t|on —PE]—> Reconstruction —->{ output image}
function

Figure 3.3.: Principal procedure for filtering inside the analytic signal scale space.

A noise detector can also be reached with (B.1)) but with values ¢, = 0 and tp;gn—tiow = €
with € being small. Noise is characterised by attenuations just greater than zero but
very small.

The second image in depicts the modified reconstruction as in (2.61]). The mapping
for b; is a high pass

1 : att‘?(:}c,y) > thigh
bi(x,y) = ! . 3.2
(z9) { 0 : otherwise (3:2)

The resulting reconstruction contains almost exclusively synthetic objects like the im-
plant and lettering, whereas the spine and the soft parts of the photograph are excluded.
We ask if there is a band pass based approach which is not only able to detect edges or
objects with extreme grey values, but every well defined texture. As we will see, this

question can be answered in a positive manner.

3.2. Components of the SSSF

The SSSF is based on band passes of the attenuation as in (B.I)) but with more degrees
of freedom to adapt the desired texture.

The flowchart in Figure 3.3 shows the main concept of this filter. The input is a grey
scale image and some knowledge about the texture information. The output image is the

modified reconstruction similar to the second image in which contains a highlighting

36

3.2. Components of the SSSF

---background-—object

number of occurrences

0 1
grey values of the output image

Figure 3.4.: Histogram of the output image with same number of object pixels and back-
ground pixels.

of the searched texture.

In the first step the amplitudes, phases and attenuations are calculated. The scale
function calculates the size of the input image and returns a number of scale inter-
vals scales. The scales and the input image are transformed with the analytic signal.
It returns phases and amplitudes which are mapped to a set of attenuations by the
Attenuation function.

The SSSF computes a set of b-signals similar to the ones in 3.2, the band pass pa-
rameters are stored in knowledge. Finally the information in b, containing the texture
information, and the phase and amplitude- signals are merged in the reconstruction
function which returns the output image.

This output image is not yet the segmented image but it is a colouration for each pixel,
which depicts the likelihood of being part of the texture or part of the background. It
is possible to stretch and move the results of the output image to obtain the scale like
in Figure A simple segmentation can be reached by applying a threshold on the
output image.

In the next sections we will explain the low-level and the higher-level components. The
low-level components are the scale function, the attenuation function and the recon-

struction. The higher-level components are the different modification functions.

37

3. The Scale Space Segmentation Filter

3.3. Low-Level Components

3.3.1. Scale Function

The scale function computes the scale intervals for the analytic signal transform. The
input images which contain the same texture class may not have the same resolution,
but if the input images have same resolution the scale function returns constant scale
intervals, independent of the input image.

The scale intervals are given by

S; = exp (z%) ie{0,...,n} (3.3)

with spac the highest coarse scale. Let h be the height of the input image and w its

width. The maximal scale s, can be estimated by
Smaz = f(y b,z w), f € {min, max, +} and a,b € R=’. (3.4)

For the spine data we use values y = 0.092,2 = 0 and f = +. We only consider the
image height/.
The resulting value for s,,., must barely cover the object diameter of the largest pattern

in the texture. In our case, this is the spine body which is not exceeding sy,.x = 0.092- h.

3.3.2. Attenuation Function

The attenuation function maps the phases and amplitudes of each scale interval into
three different attenuations. In our case, the attenuation is the signal, on which the band

passes are computed. We use the attenuations att®, att® and att® which are described in

detail in (2.56]), (2.57), and (2.58).

3.3.3. Reconstruction

We will consider four different types for the modified reconstruction. The original modi-
fied reconstruction is ([B.5]). The other reconstruction types are actually derivatives of the
first one. Only the first equation leads to accurate reconstructions like in Figure B.1] by

setting b = 1. The others are exclusive for the modified reconstruction as in Figure

"We consider medical images of the spine, these images only share being photographs of the upper
part of the body. Hence the height is the only constant information of these photographs.

38

3.4. Modification Function

The considered reconstruction types read

reci(z,y;b) = é(biai008(¢i))($,y) (3.5)
recy(w,y;0) = g(biCOS(fbi))(x,y) (3-6)
recs(z,y;0) = g(bz’aACOS(@)D(%y) (3.7)
reca(z,y;b) = i(bi|cos(¢i)|)(xa?/)- (3.8)

.
I
A

3.4. Modification Function

In this section we study different types of the modification function starting with a trend
from special ones to more abstract formulations. The modification function introduces
the knowledge into the SSSF, it is the main component of the filter.

We study the band pass filter, the fuzzy band pass filter, the polynomial filter, the
general filter and the comprehensive filter. Each filter makes use of the scale function,

the three attenuation functions and the four reconstructions.

3.4.1. Band Pass Filter

The filtering via thresholds is the first and most simple filter method as it needs a really
small set of knowledge. It can be applied to each of the three attenuations and four
reconstructions. However in this first description we only consider the first reconstruction
method and the first two attenuation types.

By modified reconstruction as in Equation (3.3]) we can filter at least the kind of artifacts
which are depicted in Figure 3.l and marked in The modification function for band
pass thresholds is similar to Equation (B.2), but needs S high passes 34, and S low
passes tjoy,; fori e {1,...,S}.

Fori e {1,...,S} the function reads

b(aj‘ y) = L attz(x,y) S (tlow,iuthigh,i]
S 0 : otherwise

39

3. The Scale Space Segmentation Filter

t x t

—t high™~ Tiow © high

low

attenuation

0 scale

Figure 3.5.: Polynomial band pass. t},, and t;,,,: High pass and low pass as (B.10). t,;,,
and ¢}, : High pass and low pass as in (3.12)

low*

By using the first two attenuations we can filter scratches, borders and lettering. Also

implants can be filtered out up to a certain accuracy.
For every i € {1,..., S} with S different scale intervals the property b; depends on ¢y,
and tpign s,- These 25 thresholds define the filter characteristics.

3.4.2. Polynomial Filter

The polynomial filter equals the band pass filter but replaces the properties tjoy 1, - - - ; tiow,s
and thigh.1 — tiow,1, - - - s thigh,s — tiow,s by two polynomial functions. The degrees of the

polynomials are k1 < S and ke < S with

A .
~_ [log(s.) +log(ss) \’
bl = Zaﬂ'(g(se;) 9(s7.))

log(sc,) +log(sy,)

=T

ko /
. [log(se,) +log(sy))’
ti i_tow‘ = j - l ' 10
high, low; jz; 4 (log(scn) +log(sy,) (|

=0

4

The reduction can be useful, as the calculated thresholds often have strong coherence and

the knowledge description shrinks down to ky + ko + 2 entrie. The induced thresholds

8Note: This specification delivers a compact range of z € [0, 1].

40

3.4. Modification Function
must satisfy the constraint

0 S tlow,i S thigh,i

= OS tlow,i
A OS (thigh,i_tlow,i) (311)

because att € [0, 00).
To satisfy this constraint there are two possible ways: The first one uses a simple non-
linear mapping between the results of (3.I0) . ; and the requirement of (3.11])

~

t.; == max(0,t.;). (3.12)

Figure illustrates this mapping.

The other approach is included directly in the formula of the polynomials

k1
Li=t;evVre0,1]:) az'>0. (3.13)
1=0

This can be solved for a small number of dimensions by

= ap >0 (3.14)
— ag > 0,a1 > —ag (3.15)
k=2 — (ag>0,a0=0,a; >0)V (a2 > 0,0 <ag < as,a; > —2/apas)
Vo (ag > 0,a9 > az, a1 > —(ag + az))

V

(CLQ < 0,0,0 > 0,0,1 > —<CI,0 + CLQ)). (316)

The implementation of this approach demonstrates, that the method is more of theoret-
ical interest as the optimisation of the polynomials is much harder than the optimisation
of the other proposed filters. But we get a really small set of knowledge which can be
used to estimate the intrinsic dimension or complexity of the segmentation task.

However, after this step the threshold vector can be described by
Tpol =< Ag,1y - -5 Aky, 15 @025 - - - 5 Afey 2 > (317)

which is only of size k1 + ko + 2.

41

3. The Scale Space Segmentation Filter

—fuzzy
1 - - normal|
o
0 N
| | |
0 tlow_1 t low_2 t_high_1 t_high_2

attenuation

Figure 3.6.: Blue line: fuzzy interval as in (8.I8), red dotted line: same as normal
interval.

This reduction is independent from S, it only depends on the estimated polynomialH.
The simplest choice is k; = ko = 0 which means #;5; = tiow and thign; = thign- This
mapping is similar to (3.1]). For a vector of size k; + ky there are ky + ko — 1 different

possible combinations.

3.4.3. Fuzzy Band Pass Filter

We return to the band pass filter and expand it by using fuzzy intervals. Fuzzy intervals
are intervals with fuzzy boundaries, hence the boundaries are intervals between 0 and 1.

The most simple approach reads

w : atti(xa y) € (tlowl,ia tlowg,i)
lowag,i lowq ,i
b (l’ y) L 1 : attz(xay) S [tlmug,i)thighl,i] (3]_8)
i\ T thighy i —0tt (2,y) :
m att;(z,y) € (Lhighy,is thigha.i)
0 : atti($, y) € [07 tlouq,i] U [thighg,ia OO)

with edges (tiow,,ir tiows.i) and (thighy i, thigha,i)-
Figure 3.6 depicts the fuzzy band pass filter (as in[B.I8) and the normal band pass filter.

9Polynomials of size k; = S — 1 and k; = S — 1 obviously lead to the same vector length as the
unrestricted vector. Each unrestricted vector does not have more intrinsic dimensions, that means
there is a mapping between both, in this sense this degree is no more a true restriction.

42

3.4. Modification Function

Since the fuzzy band pass is a superset of the normal band pass we get the normal band

pass by setting

tlowl,i - tlowg,i - tlow,i (319)

thighii = thighai = Thigh,i (3.20)

which satisfies the definition (3.9) for the normal band pass.

3.4.4. General Filter

In the last sections we described filters with minimal parameter sets. The reconstruction
have been restricted by only using one band pass per scale interval and b € [0, 1]. There
is for example no possible filtering for the dual objec .
The first improvement of the general filter is the expansion of the range of b to R.
Furthermore the proposed methods only allow to filter connected attenuations at each
scale interval, as they use only one band pass. Consequently the second improvement is
the introduction of more than one band pass per scale interval.
A general scale space filter is just a discrete mapping from scale intervals s and attenu-
ations to the real numbers:

bs(z,y) : atts(z,y) — R (3.21)

For every considered pair (s, att) there is one specified value in R respectively in [—1, 1]
for the mapping.

This filter cannot be described with reasonable effort as the second value att has a po-
tentially large number of different values. In other words it has uncountable infinite
elements. To receive a discrete mapping, we must approximate the function by segment-
ing the attenuations in J disjunctive intervals, representing equivalence classes for actual
attenuations {[att{], ..., [atts]}

bs(z,y) : [att;]s(z,y) = R. (3.22)

The scale interval s is already discrete. Figure [3.7] shows such a segmentation of the
attenuation in 16 equivalence classes.

The practical approximation of the general filter highly depends on J. If the equivalence

10Let f; be a filter for object I'; on background I's, such that I'y is highlighted compared to I'; and
bt (z,y;s) > 0. The dual object of I'y is I'; and vice versa, hence the filter f for background I'y is
that which satisfies by, (x,y;s) = —by, (z,y;s) <0, hence by, (z,y;s) € [-1,0] ¢ [0, 1].

43

3. The Scale Space Segmentation Filter

il - —
o]

_]0 attenuation

Figure 3.7.: red line: mapping of a general filter having 16 attenuation-equivalence-
classes

classes are as small as the resolution of att, every attenuation value gets its own equiv-
alence class - it is not an approximation anymore.

This new filter is theoretically able to extract or accentuate every object like anatomical
regions, patterns and textures. The benefit for this filter is the fast applicability because
it yields to a single-point operator in scale space. The disadvantage is the big size of the

knowledge and the high costs for training the function.

3.4.5. Relationship Between Band Pass and General Filter

The approaches of the general and band pass filter can be combined by introducing a

maximum band pass amplitude m into the filter

with b;(x,y) as in (B.9).

The value m specifies the mapping for the general filter whereas the boundaries of the
band pass tjo, and tg, depict the boundaries of one certain equivalence class.

The general filter with J equivalence classes can be substituted by J band pass filters

with thresholds ¢, ..., fj+1. For band pass filter i it follows ¢, = ¢; and thigh = £i+1-

44

3.4. Modification Function

3.4.6. The Comprehensive Filter

Each of the considered filters works so far on one specific attenuation type and one
reconstruction function. The client has to choose the ones which have the best results
on the considered task.

There are twelve different combinations of three attenuations and four reconstruction

types. To combine these, there are several possibilities:
e Take the attenuation- and reconstruction-type of the best one - or
e calculate a segmentation based on the 12 different responses - or

e calculate a segmentation based on the 12 different attenuation- and reconstruction-

types.

The first choice returns only one combination, whereas the last two approaches combine
in fact all options. The difference between the last two approaches is: The former
approach makes twelve different separations which are particular as good as possible.
The other approach does not reveal the separation character until all mappings are done.
Certainly the performance of these approaches gets better from the first to the last one
as the second one is a superset of the first and the third is a superset of the second.

The second approach reads

T€Ceomp2(T,Y; b Z Z a(r, k)rec,(z,y; br) | — A. (3.24)
r=1 ke{a,b,c}

The first approach can be produced by setting A = 0, a(r, k) = 0 and only a(7, l%) =1
with < 'f’,l% > as the chosen combination between reconstruction type and attenuation

type. The third approach reads

T€Ceomp.3(T, Y5 b Z Z rec,(x,y; byx) | — A. (3.25)

r=1 ke{a,b,c}

1 The second and the third approach are equivalent except the third approach is less restricted during
optimisation.

45

3. The Scale Space Segmentation Filter

y y

AS » SSSF —b[filtered image]—b Cost function

A A

[knowledge]<—>| Update function |<—[cost]

Figure 3.8.: Simplified training loop to optimise knowledge ©.

This can be transformed into the second approach as the factor a(r, k) is contained in b, 4,

4
reccomp,fﬂ(l‘) Y; b) = Z Z T@CT(IL', Y; br,k) - A

r=1 ke{a,b,c}

— Z Z a(r, k)rec,(z, y; by pa(r, k)~) -A

r=1 ke{a,b,c} i
=0Or Kk

- Teccomp,Z(:L‘a Y; b) (326)

In this thesis we implicitly always use the third approach reccomp s as it returns better

results than the other two approaches.

3.5. Training of the SSSF

After we discussed the different kinds of filters and the principal functionality of this
approach we consider the development of a knowledge set ©. As every image class needs
its own knowledge set, we must train it accordingly to the image class before applying

it. Therefore we use a recursive optimisation process:
1. Guess solution ©;
2. Compute the cost for solution ©;
3. Quit or repeat process controlled by cost

This training loop is depicted in B.8l The process initially starts with an empty knowl-
edge ©; = (). The filtered image on this initial knowledge becomes 0.

46

3.5. Training of the SSSF

The cost function compares the filter results with a target mask containing a colouration
in object and non-object. The output of the cost function is the scalar: cost € [0, 1].
Finally the update function changes the knowledge to minimise the cost of the filtered
image of the next iteration. Globally the training loop must be steered by the use of a
cost-based exit condition.

In the next sections we will evaluate different 1- and n-dimensional cost functions. Af-

terwards we look at the update functions of the filters.

3.5.1. 1-Dimensional Cost Functions

We start with the derivation of simple cost functions, based on the difference between
filtered image and object-mask. Later we will expand it to more dimensions which
improves the results of the update function.

We start with the discussion of first order’ separation-based functions. These functions
return a value which depicts the separation of object and non-object in the filtered
image.

When searching the knowledge for one specific filter method, we must evaluate the
filtered image by comparing it to some target image. This cost function normally returns
the difference between filtered and target image, which must be minimal for the best
filter. Positive points are object points and negative points are non-object points.

The proper choice of the separation sep between object and non-object obviously decides
about the cost, a change of sep influences the ratio between true positive and negative
points. Figure 3.9 illustrates this relationship: The index sep-X marks the boundary
between negative and positive test points.

The target image consists of zeros for non-object points and ones for object points. The
set of positive points is {pos}, the negative set is {neg}. In this section rec(p) simply
describes the grey value of the reconstructed image at point p, but not the reconstruction

function itself. To assure the speed of the evaluation function we set
sep = M (M (rec{pos}), M(rec{neg})) (3.27)
with M (a,b) as the mean value of a and b.

For each positive pixel posi, ..., pos|es) and each negative pixel negy, ..., negjmeqy the

47

3. The Scale Space Segmentation Filter

L% *
| * " * N * *
‘ *
! * Hk *
K * "
! * * *
LK * X * &K * Tk
| *
SGFHK**””%#””**%”** ,,,,,,,,,,,,, * % K ?K,,,,*,,,,* ,,,,,,,,,,,, *
e * % : 5 ¥ *xx k
* % * ‘ *
x *ox* ¥ o *x
o * * *
= - *,
m I
> * * e
> * * X 1
p—
o | 4 * % * *
* * ‘
* * ¥ * i
pos. and neg. test points sep-X

Figure 3.9.: Exemplary filtered signal. Lower left quadrant: true negative, upper right:
true positive, upper left: false positive, lower right: false negative.

cost function reads

0 :rec(pos;) > se
costy(rec, pos;) = (v _) b (3.28)
1 :otherwise
0 :rec(neg;) < se
costy,(rec, neg;) = (g)< sep . (3.29)
1 :otherwise
The cost function for the complete set is
eostl st (rec, pos;) . ..
costp(rec, {pos}) = Z K =true positive value (3.30)
P [{pos}|
Yy costy, (rec, neg;)
costy(rec,{neg}) = =true negative value. (3.31)

P [{neg}|

The costs costp and costy are in the interval [0,1]. The value cost = 0.5 depicts no
separation, 0 is the best separation for the considered object and 1 is the best separation
for the dual of the objec

the mapping

4, but the worst for the object itself. The compound cost is

(costp(rec, {pos}), costy(rec, {neg})) — [0, 1]. (3.32)

I2The dual is the inversion between object and non-object. The dual of the object is the non-object.

48

3.5. Training of the SSSF
We use the cost functions

COStmean (1€C, {pos}, {neg}) = 0.5(costp(rec, {pos}) + costy(rec, {neg})) (3.33)

which is a special case of

cost, (rec, {pos}, {neg}) = costp(rec,{pos})p+ costy(rec, {neg})(1l —p)
— €|costp(rec, {pos})p — costn(rec,{neg})(1 — p)|
with e, p € [0, 1]. (3.34)

Another simple cost function is given by

COStmax(rec, {pos}, {neg}) = max(costp(rec, {pos}), costy(rec, {neg})). (3.35)

The first most simple evaluation mapping is Equation (3.33). This has the drawback
to optimise only the easier side, the difference between costp and costy can become
large. Equation (B:34]) is an expansion of (8.33]) by introducing € € [0, 1] as a measure of
disparity between costp({pos}) and costy({neg}), and p € [0, 1] to control an one-sided
optimisation. This cost function can be useful when aiming for a low false-negative or
low false-positive value. A better approach, when aiming for an equivalent optimisation
is the cost function costp.,. With this function both values grow uniformly as the

optimisation only considers the worse value.

3.5.2. Multi-Dimensional Cost Functions

To combine n different cost functions we define the multi-dimensional cost function. An
n-dimensional cost function is a mapping from n different 1-dimensional cost functions:
costy, . .., cost, to the scalar cost € [0, 1] with

Ay costy Ay costy

t = tn)...)). .
Cos 1—|—A1(Al + 1+A2(A2 + (COS n))) (3 36)

The value cost; has the highest relevance, whereas cost,, is least significant. The value A,
is the smallest distance between two different evaluations of cost;, this difference is the
grid size of cost;, which is only available if cost; is a discrete mapping.

To simplify the construction of multi-dimensional cost functions, we will restrict the test

points to a subset with |{pos}| = |{neg}|.

49

3. The Scale Space Segmentation Filter

Calculation of A for the 1-Dimensional Cost Functions

The cost functions introduced in Section B.5.1] are already discrete:

Let rec; and recy be two different reconstructions of the same input image with

cost(recy, {pos}, {neg}) > cost(recs, {pos}, {neg}).

=cost(recy) =cost(recz)

At least one value of cost p(rec;, {pos}) or costy(rec;, {neg}) must improve from the first

to the second reconstruction rec;. Let without loss of generality

costp(recy, {pos}) > costp(recs, {pos})

:cost;:(recl) :cost;r(recg)
and
[{pos}|
costy,(recy, pos;) costy(recs, pos;)
cost,(recy) — costy(recy) = P -
' " ; [{pos}| [{pos}|
1
> ——— = A, 3.37
ool 50

With N = |{neg}| = [{pos}| and

cost v (rec;) := cost(rec;, {neg}) (3.38)

it follows]]
costy(recy) > costy(recs) = Npeg = ——— = — = A . 3.39
N(1) N(2) g |{neg}| N P ()

The smallest difference A for a cost function cost(-) € {costp(-), costy(-)} is given by

Acost = min{Yeost| Teost > 0 A Teost = cost(recl) — cost(recy)}

= [cost(recy) > cost(recs) = n , Acst = cost(recy) — cost(recs)]. (3.40)
eN

Now it is possible to compute A for costpean and costa.c. The equation for cost,., reads

Teosty, = max(costp(recy),costy(rec;)) — max(costp(recy),costy(recs))
N cost (recy,-) cost (reco,-) _ 1
_ Z {PVN} 1, N {PVN} 29 Z S (341)
— N N N
1
Acos‘cmaX = min<Tcostmax) == N (342)

20

3.5. Training of the SSSF

Let € = 0, hence cost,, . can be simplified by reducing it to the first term of (3.34). Acost,,

reads

Yeost,o = (costp(reci)p+ costy(rec;)(1 —p))
—(costp(recy)p + costy(recy)(1 — p))

= plcostp(rec;) — costp(recy)] + (1 — p)[costy (recy) — costy(recs)]
pj (A=p)k p(—k) +k

= = ith 5 Z
N + N N , with j, k €
ged(m,n) m
=~ - c
Acostp’o = min(’rcostno) = nN " b Q (343)
b :p ¢Q

with ged(m,n) as greatest common divisor of m and n. Obviously the discretisation
of cost, o is only possible for p € Q.

Let p = 0.5, it follows
1

2N

As we solved A for costpa and coStmean, We can combine it with the 1-dimensional

= ACOStmea,n . (344)

A(:Ost(),g,,() -

second order cost functions.

Second Order Cost Functions

We will specify five different second order cost functions which can be used to accelerate
the optimisation process inside the update function. The first two cost functions are
based on the band pass design of the knowledge. Let |m| be the modulus of the maximum
amplitude of the band pass interval, w = tpigh —tiow > 0, |Mmax| @ maximum value of |m|

and Wy, a maximum value of w. The first two cost functions read

cost®. = % (3.45)
max max
cost® = 1-— [w) (3.46)
wmaxmmax

The function cost®

min

whereas cost® delivers lower costs if the surface area grows.

max

returns lower costs if the surface area of the band pass contracts,

The other three cost function are based on the filtered image similar to the 1-dimensional

cost functions in Section B.h.1l These functions are based on the absolute distance

51

3. The Scale Space Segmentation Filter

between object and non-object. With d = |M ({pos}) — M ({neg})| the functions read

1
td = -1 4
1
td = 4
costs oxp(d) (3.48)
1
td = | 1] 3.49
R e) (349

d

max

The function cost? . returns lower costs for d — 0, cost

min

returns best results for d = 2.

optimises d — oo and costglot

As the cost functions are not discrete, we have to discretise them, since we want to

combine them with the other lower cost functions.

Let
costy € {costoy,, Costy,, coste, . costd . costd }. (3.50)
The discretisation of cost; reads
! €N (3.51)
— =n :
A
— cost
costy = A| L (3.52)

The value c/osTf is the discrete equivalent of cost;. With f = (gsTf, costy as in (3.50)

and g € {costmean, COStmax } the resulting 2-dimensional cost function is

g (costg
L+ A, A,

cost s, = + cost). (3.53)

02

3.5. Training of the SSSF

3.5.3. Update Function: Adaption of the Knowledge

The update function is responsible for finding the optimal adaption of the knowledge ©.
In our case:

argmin cost(rece, {pos}, {neg}) (3.54)
o

with recg as the application of knowledge © on the image. The optimisation itself is

done by the algorithm described below.

Nelder-Mead Method

The Nelder-Mead metho needs a start vector vy and tries to calculate the global

optimum vector. If the vector range is of dimension d, the Nelder-Mead method reads:

e Take d linear independent seeds wvy,...,vy; Rename it according to the costs

cost(v;) such that vy has the maximum cost; begin loop:

— Calculate centre of gravity v for all points except vy.

— Set a = [= 1; begin loop:
* v = vy + fa(d — vo)
 if cost(v') < cost(vy) then increase o
* elseif cost(v') > cost(vg) then decrease o, f = —1
* else decrease «
 if cost(v’) does not change anymore, quit loop.

— replace vy with v’ and rename vectors according to their costs.

— if cost(v') = cost(vg), quit loop.
e return vy

The steps in the inner loop are called the reflection for « = § = 1, expansion for a > 1
and reduction for 0 < o < 1. The method is published in [27]. Nelder-Mead is very
general, as it belongs to the class of derivative free and nonlinear optimisation methods.
As we do not know anything about the structure of our input signa we take this
general optimisation method. In our case v is a vector-like subset of knowledge O, to
calculate cost(v) we apply the knowledge concerning the vector 6, to generate an output

image 197, hence cost(v) = cost(1©v).

Balso known as Downhill simplex method or Amoeba method
14The only restriction for the input signal f reads f € L.

53

3. The Scale Space Segmentation Filter

—resulting band pass-w, ~<w < W

Figure 3.10.: Interpretation of one fuzzy band pass filter: < m,c, w, wﬁc, wy >.

Description of the Knowledge

The design of the knowledge set must satisfy the restrictions of
e a small parameter set ©, to optimise simultaneously - and
e a fast evaluation of one choice of the parameter set ©,.

The smallest entity of knowledge for a given scale interval s is in general the following
vector:

v =< c,w, wic, wh,m > (3.55)

with ¢ and w > 0 as centre and width of one band pass, wif > 0 and w} > 0 as size
of left and right fuzzy edge and m as the maximum value of the band pass. This set
(see Figure B.I0) has the same dimension as the parameter set in Figure but offers
better optimisation by the Nelder-Mead method. For each reconstruction r, attenuation
type a and scale interval s we need at least one knowledge entity v, , . In other words,

the number of parameters we get for one knowledge set is given by
|Omin| = || X |a| x |s] x |v]. (3.56)
In our case it follows |O | = 4x3x16x5 = 960. Additionally we combine n band passes

per scale interval, reconstruction type and attenuation type. So the upper boundary of

04

3.5. Training of the SSSF

the size of the knowledge set reads |Opax| = 7|Omin|. Obviously © € RI®maxl is too high
dimensional for a simultaneous optimisation which leads to an optimal solution.
We bypass the large optimisation range by optimising only one knowledge entity v
concurrently. Fach knowledge entity is separable.
Let

replace(v, m) =< v(1),v(2),v(3),v(4), m > (3.57)

be the function which replaces the fifth entry of v with m and let ©, be the knowledge
entity at position
p=<r,a,s,1> (3.58)

with r as a reconstruction type, a an attenuation type, s a scale interval and ¢ the i-th
band pass filter. Let furthermore

Q(O,p,m) = Opos D05 7 (3.59)
@replace(@p,m) :pos =p

be the replacement of the knowledge entity at position p and let

W(O,p,m) = ° pos AP (3.60)
@replace(G)p,m) 1 pos =p

be the replacement of the knowledge entity at position p and the suppression of the
other knowledge entities.
Let rec(©) be the reconstructed image induced by knowledge O, and let © = Q(O, p, m).

Hence separability means

rec(©) = rec(QO,p,0))+rec(V(0,p,m)) (3.61)
rec(2(0,p,0)) = rec(©) —rec(¥(O©,p,m))
= rec(©) + rec(¥(O, p, —m)). (3.62)

Due to this characteristic we can reduce the simultaneous optimisation to only one
entity v € R5. This equation accelerates the evaluation for one guessed knowledge set,
as only the values of one reconstruction have to be considered.

In one step, the optimisation method guesses a vector © € R5. Since a knowledge entity v

is restricted to (R, R=°, R=% R=% R) we need a mapping between 9 and v.

%)

3. The Scale Space Segmentation Filter
Let © be the guessed vector
b =< c, bW}, wF,m > . (3.63)
The mapping reads
v=<c,|wl, min(|w§c|, [@|), min(|w}], [@f),m > . (3.64)
This general knowledge description enables the configuration of every proposed filter.

Band Pass Filter

The band pass filter has no fuzzy edges and a constant value m. It follows that only the

first two parameters of the knowledge have to be trained:
ki =< c¢,w,0,0,1 > (3.65)

Hence we need a 2-dimensional optimisation function as in Listing 3.1]

1 width := 0.5;

2 for i:=1 to S do begin

3 c :=(max(att)+min(att))/2;

4 W :=(max(att)-min(att)) * width;
5 [c,w] := Opti([c,w]l,...);

6 end;

Listing 3.1: Optimisation scheme for the band pass filter

Fuzzy Band Pass Filter

The fuzzy band pass filter must also train the fuzzy edges
ko =< c,w,wgc,w;, 1>. (3.66)

This can be done by a 4-dimensional minimisation function as in Listing 3.2] but also

by two different 2-dimensional ones, which are depicted in 3.3l

General Filter

The function for the general filter is much more complex than those for the band pass

filter. We need much more values to optimise: When having J equivalence classes, we

26

3.5. Training of the SSSF

1 width := 0.5;
2 fuzzyWidth := 0;
3 for i:=1 to S do begin
4 c :=(max(att)+min(att))/2;
5 W :=(max(att)-min(att))*width;
6 [c,c,w_f_1,w_f_r] := 0pt2([c,w,fuzzyWidth,fuzzyWidth]l,...);
7 end;
Listing 3.2: First optimisation scheme for the fuzzy band pass filter
1 width := 0.5;
2 fuzzyWidth := 0;
3 for i:=1 to S do begin
4 c :=(max (att)+min(att))/2;
5 W :=(max(att)-min(att)) * width;
6 [c,w]l := Opti(lc,w]l,...);
7 [w_f_1l,w_f_r] := 0Opt3([fuzzyWidth,fuzzyWidth],c,w,...);
8 end;

Listing 3.3: Second optimisation scheme for the fuzzy band pass filter

get at least J|©,,;,| knowledge entries which is 15360 for ©,,; = 960 and J = 16.
Fortunately we must only find one parameter per knowledge entity, as the centre c.ons

and width wg.,s are given by the equivalence class
k3 =< Cconst; Weonst, Oa 07 m > . (367)

The optimisation is one-dimensional. It follows a programme as in Listing To accel-
erate the application and to get more robust results, we can create an iterative process
starting with only one equivalence class. This scheme is illustrated in Figure B.11. At
each iteration, the size of one equivalence class shrinks, whereas its number grows. The
initialisation m = 0 is skipped starting with the second iteration and replaced by the

value of the last iteration.

Advanced Band Pass Filter

With the combination of the fuzzy band pass filter and the general filter, we achieve the

best results. The knowledge entities read

ks, = <c¢w,0,0,m> and (3.68)

ks = < c,w,wgc,w;,m > . (3.69)

57

3. The Scale Space Segmentation Filter

max(att)
iteration

1 attenuation

Figure 3.11.: Iteration cycle to get optimal knowledge for b

1 m := 0;

2 w:= (max(att)-min(att))/(2*I);
3 for i=0 to I-1

4 c = min(att) + w + I*2x%w;
5 m = Rec4([m],c,w,...);

6 end;

7 end;

Listing 3.4: Optimisation scheme for the general filter

The search space becomes three-, respectively five-dimensional. The superposition of n
advanced band pass filters is superior to any other proposed filter - even for n being a

small number.

Polynomial Filter

The polynomial filter represents an exception, as the knowledge set differs from the
proposed one. We are searching the vector with size |v| = k;+ky+2 for one reconstruction

type r and attenuation type a
V= Tpol =< AQ, 1y -y Ak, 1,00,25 -+ -5 ARy 2 > - (370)

For the second degree polynomials it follows |©| = 4 x 3 x 6 = 72. For one reconstruction

type and attenuation type, the functionality is listed in[3.5l At first we optimise the high

o8

3.5. Training of the SSSF

1 % start values for low pass polynomial

2 all[0,...,k_1] := 0;

3 ' start values for high pass polynomial

4 a2[0,...,k_2] := 0;

5 for i=0:k_2

6 % optimise (i+1)-th value in polynomial a2
7 a2 := 0Opt(a2,i+1,...);

8 end;

9 for i=0:k_1

10 % optimise (i+1)-th value in polynomial al
11 al := Opt(al,i+1,...);

12 end;

Listing 3.5: Optimisation scheme for the polynomial filter

passes and then the low passes. In each optimisation process, starting with a constant
polynomial value, we let the degree grow from 0 to k; or ky respectively. In the next
loop we use the estimated vector part to obtain new start values. Let a; be the factors
of the new polynomial f and a; the factors of the last polynomial f. The mean value

of f must equal the mean value of f for a set of given intervals

T2k-1 2k

/Zaixida:: /Z&ixidx. (3.71)
i=0 i=0

1 1

The integral boundaries induce a partition of [0, 1] into k intervals with simplest par-

titioning {[0, 1], ..., [%, 1]}. There are k constraints for searching k + 1 free param-

eters, in other words, there is only one free parameter left. Another equivalent choice

is {[0, %], [0, %], ...,]0,1]}, which leads to simpler constraints. For [€ {1,...,k} the

constraints read

k

SN, VF & EsNiH 4

e U N T PR N h i 79

Zo<k) Tl /;ala:d:c /;azxdaz Z(](k) Tl (3.72)
0 = 0 = 1=

1=

The steps are the following: Set £ = 0, find ag using the optimisation method. Get seeds
for k£ = 1 using Equation [3.72

1 1

ag = /(lo dr = /(Nlo + &11‘ dr = do + ELl/Q (373)
0 0

== a = 2((10 — do) (374)

59

3. The Scale Space Segmentation Filter

Use the optimisation method with new seeds to get optimal parameters ay and aq,
continue with the same procedure by incrementing k.

For k = 2, we get

ay = 6(0,0 — &0) + aq (375)
iy = —6(ap — o). (3.76)

In the same manner for £k = 3 we get

dl = 11(0,0 — &0) + ay (377)
&2 = —27((10 - do) + ao (378)
&3 =]_8(0,0 - EI,Q) (379)

Let a = ag — ag. We get the seeds

3.80
3.81
3.82
3.83

k=0 : a=<ay>
k=1 : a=<ag,2a>

(3.80)
(3.81)
k=2 : a=<ag,6a+ ay,—6a> (3.82)
(3.83)

k=3 : a=<agy, 1la+ ay,—27a+ as,18a > .

The results obtained by this approach are very unstable and unpredictable. To improve
the behaviour we may vary the start values for the lower and higher polynomials and
select the best results. However, this method cannot gain the other proposed ones in

speed and accurac .

15 Although this approach leads to short knowledge descriptions, there is a significant drawback. The
application of the filter cannot be accelerated and the training of this filter up to same quality as
the band pass filter will take much longer.

60

3.5. Training of the SSSF

Limitations of the Update Function

When optimising the band passes separately, a band pass change is only accepted if
it decreases the cost. Hence being at position p (defined as in Equation B.58), the
reconstruction including the current knowledge entity rec(©) and the reconstruction

without the knowledge entity rec(Q2(©, p,0)) feature the relationship
cost(rec(©)) = cost(rec(2(O,p,0))) — A, A >0 (3.84)

since a band pass is only accepted if it produces a cost decrease.

A good separation is indicated by a cost value near '0’, whereas no separation is indi-
cated by a value of ’0.5’. After the training of the knowledge via for instance the band
pass method, we get n knowledge vectors for specified scale intervals, attenuation- and
reconstruction types.

For testing which values are most significant and which can be suppressed we consider
all n values for A : Ay, ..., A,.

The sum of the single cost decreases differs from the global cost decrease
Z A; # cost(rec) — 0.5. (3.85)

The sum of the individual cost decreases is only about 25% of the complete cost decrease.
In other words, the complete cost decrease is influenced by cross correlations between
two or more band passes to about 75%.

It follows that the optimum knowledge set of band pass filters must be trained in par-
allel. Since two band pass filter have a cost decrease in combination, one of them must
not uncover a cost decrease.

The dimension of one band pass filter is within the bounds of possibility to be calculated.
In our case an optimisation of all band passes in one step is too large as it produces a
search space of 2 x 3 x 4 x 16 = 384 dimension.

One the one hand, the presented approach has the benefit to be programmable and being
relatively fast, but on the other hand it has the drawback not being absolutely correct.
A change of knowledge entity v, requires the re-adaption of potentially all other knowl-
edge entities. Conversely the adaption of the other knowledge entities require a re-

adaption of v,. With a growing set of already optimised knowledge entities, the value

16The dimensions are calculated by 2 parameters per band pass, 3 different attenuation types, 4 recon-
struction types and 16 different scale intervals.

61

3. The Scale Space Segmentation Filter

of each entity converges against its optimum value. It follows that also the presented
approach yields to similar results as the optimum high dimensional parallel approach.
In other words, for growing iteration cycles in the optimisation process, the estimated

knowledge converges against the optimal one.

3.5.4. Postprocessing of the Knowledge

As already mentioned in Section B.2] we normalise © to fulfill the constraints which are
depicted in Figure 3.4
Let d = M({pos})gM({"eg}) be half of the difference between the mean value of the ob-

ject and the background points. Let ©,,; be the i-th knowledge entry for att = a,

reconstruction type r and scale interval s. The normalised knowledge O reads

~ @a 7,8, 5
@a,r,s,i = < @a,r,s,i(l)a ey @a,r,s,i(4)a #U > (386)

M
A = MUposh) (3.87)
d
This normalisation allows the application of the final segmentation with a constant
threshold ¢. Let I°“* be the normalised filtered image. The segmentation = for a thresh-

old t is a binary image with

_ 1 I(x,y) >t
=(z,y) =)=t (3.89)
—1 : otherwise

The absolute values of t satisfy the constancy relationship where ¢t = 0 always yields to a
segmentation with same false positive and false negative ratio, ¢t = 1 depicts the centre of
gravity concerning the object points and ¢ = —1 the centre of gravity of the background
points. For t # 0, the relative ration between false positive and false negative values

depends on the variances of the two curves in Figure 3.4l

62

3.6. The Multi-Filter

(mask)

Train multi-knowledge v
4 3\
mask[i] < Mask 4—[segmentation]
L J update —
A A — y
. N] | filtered _
input image }J1*| Train knowledge < . >+
imageli]
—
Y

(knowledgel[i])

Figure 3.12.: Training scheme of the multi-filter.

3.6. The Multi-Filter

The results of one SSSF is a colouration into object pixels represented by ’1’, and the
background pixels represented by ’—1’. The training mask induces a specific error which
perturbs the colouration.

In contrast to the simple SSSF | the scale space multi-segmentation filter uses n > 1
different knowledge sets ©4,...,0,. In the first step we develop ©; for the initial mask,
which already results in a segmentation =;. In step ¢ we design a new mask based on the

7 —_
-

segmentation result of the sum of all knowledge sets =* = ijl =; and the initial mask
to train only those points which are badly separated. This iteration is executed n times.
The n knowledge matrices are able to filter more information than only one knowledge
set. In particular, it obtains the filtering of difficult image regions like implants and
lettering. The advantages are better segmentations, whereas the optimisation process
takes n times longer. This process is depicted in Figure3.12. The sample implementation
is shown in Listing 3.6l

The values of maskSum depict the colouration col of the relationship between positive
and negative filtering with col = |pos|—|neg|, |[pos| the number of positive segmentations
and |neg| the number of negative segmentations. The threshold t depicts the maximal
number of true segmentations at a single position which are integrated into the training
set of the new mask. In this example we take t = 2. Pixel p is removed from the current

mask if there are 2 more adequate knowledge sets than inadequate knowledge sets for p.

63

3. The Scale Space Segmentation Filter

function MultiKnowledge(amplitude ,phase ,mask):array of knowledge
% initialise variables
N := 20;
t 1= 2;
% calculate first knowledge
knowledge[1] := TrainKnowledge(amplitude,phase,mask01d);
maskSum := ((SSSF(amplitude,phase,knowledge[1])>0)-0.5)*2;
% make N-1 iterations
for (i:=2; i<=N; i++)
% compute new mask containing 1 for new object points, 0 for new
background points and NaN for points to ignore

O © 00~ U W

11 maskNew := NaN(zeros(size(mask)));

12 maskNew ((maskSum<t)&(mask==1)) := 1;

13 maskNew((maskSum>-t)&(mask==0)):= 0;

14 % compute knowledge i

15 knowledge[i] :=TrainKnowledge (amplitude ,phase ,maskNew) ;

16 % Calculate separation:

17 maskSum:=maskSum+ (((SSSF (amplitude ,phase,knowledge[i])>0) -0.5)
*2) 5

18 end;

19 return knowledge;

Listing 3.6: Computing the multi-knowledge

In general the first five iterations do not improve the segmentation, but the cost always
shrinks down with growing iterations. An absolute saturation, in the sense that 7,4,
iterations lead to the best results, is not observabl, but the lower boundary of costs
is 0. Hence

Vo > 0: 3In: cost(rec(§L,)) < 0. (3.89)

In other words, this filter can always return the optimum segmentation for finite images

if execution time does not matter.

3.6.1. The Discrete and the Linear Multi-Filter

The result of the training function is not a single knowledge set © but an array [0, ..., 0,].
These n knowledge sets induce n different filtered images I9%, ... I, which again in-
duce the n segmentation results =,,..., =, € {—1,1}.

"There is in fact a saturation which is the minimal number of iterations we need to create a satisfying
filter with cost = 0. For a training mask with N = |{pos}| + |[{neg}| pixels the upper boundary is
given by N. This saturation is however not useful, as the information received from this specific
training image is at most a subset of the information induced by the texture. This ’illusional’
saturation can easily be generated by setting n < N.

64

3.6. The Multi-Filter

. . . . &.Z . ,&,E
To summarise these signals, there is a discrete approach =7;. and a linear approach =

with

3

~

BL, = = (3.90)
i=1
=2 = L3 o (3.91)
wm N (3
=1
To receive the final segmentation =%, we map = in {—1,1} by
1 == z,y) >0
=(x,y) = @) >0 (3.92)
—1 :otherwise

The Equation (3:91)) yields to a linear mapping, the filtered images are simply sum-
marised, we can also obtain élzm by summarising the knowledge entities.
Let b(©;) be the reconstruction factor matrix for ©; and rec(z, y; b(0;)) the reconstruc-

tion for ©;. =) satisfies the relationship

) N
B = Z c(x,,b(0))

N
1
= ¥ Z Z Z rec,(x,y; bk (0:)) | — A,
=1 | r=1 k&{a,b,c}
1 N 1 N
= ¥ ZZ Z rec,(x,y; b, 1(0;)) _NZAi
i=1 r=1 ke{ab,c} i=1
——
A
4
O;
- Z Z Tecrxyv zlbrk(N)) - A
r=1 ke{ab ——————
br k(%)
= rec(z,y,0(0%)) (3.93)

with 1 as the division of the maximal band pass amplitude of each knowledge entry

in ©; by divisor N - just as in Equation (3:86]).
It follows that the expansion to linearity leads to the same formula as the normal re-

construction, which only needs one offset and up to N overlapping intervals. In other

65

3. The Scale Space Segmentation Filter

|© training setx-complete set
T T

L L
15 2.0 25 30 35 4.0 45 5.0
size of the training set in 10

Figure 3.13.: Mapping between size of the training set and its costs.

words, we get an elegant implementation of the general ﬁlte.

Both approaches have different advantages. The discrete filter (8.90) is better trained
since it is the sum of N potentially different filters. The linear filter (3.91)) has similar
characteristics up to a certain degree, whereas being intrinsically only one filter. It fol-

lows that the linear filter is faster to apply in contrast to the discrete one.

3.7. Application of the SSSF

In the last section we described the theory of the SSSF . The final parametrisation of
the filter can only be found by different test runs on a real segmentation task. Therefore
we will develop the filter properties on a spine segmentation task. The input images are
of the same class as the image in Section B.I] but contain the complete spine.

In this subsection we will consider the training set size and the optimal choice for the
scale space. Later we will evaluate the proposed filters and the proposed cost functions

to be able to define optimal presets for a given task.

66

3.7. Application of the SSSF

3.7.1. Evaluation of Training Set Sizes

When training the filters, the size of the training set impacts the results and the eval-
uation time of the optimisation procedure. Due to the performance improvement, the
training set is only an equidistant subset of all possible training points with the same
size for object and background points. The task is to find an optimum size. With grow-
ing training set sizes, the optimisation on the training set becomes harder and its cost
grows, whereas the application of the estimated knowledge becomes better. An optimal
training set size is the one which barely satisfies the quality induced by the difference
between the costs for the training set and the costs for the complete image.

Figure 3.13] shows a mapping between the size of the training set, tested for sizes 10,
102, ..., 10° and taken from three different images of this classification. The number
of test points of these 3 images is approximately 10%7. The costs for the training set
increases and the costs for the complete set decreases. The distance between the costs
of the training set and the complete set reaches its minimum at 10°. The minimum
costs for the complete set is reached between 103® and 10%. Above this point, the costs
for the complete set increases which can be explained as it is restricted by the cost on
the training set. It follows that a larger training set size does not lead necessarily to
better band pass filters. Sometimes it also generates drawbacks for the optimisation
function. The optimum size depends on the motive of the image and also on the mask.
In our case, a good choice is a value between 1035 and 10*. In Figure B.I3 we used
the cost function cost,... The used mask and the highest maximum scale, which will
be discussed below, is certainly also responsible for the costs, but only for the absolute

value and not for the relative development of the training set sizes.

3.7.2. Evaluation of the Maximum Scale

As already mentioned, another important property is the highest maximal scale s,,4;.
If the maximal scale is too large - much larger as the object size - the costs increase,
as the significant data is too small in relation to the complete data. In the training
images and the test images, we calculated the mean size of the texture in pixels d. In
this example, d is the width of the spine. The relative scale s, is a factor to calculate
the highest maximum scale

Smaz = A * Syel- (3.94)

18t is not possible to apply this mapping to linearity for every example. The loss of segmentation
quality from =%, to =, is often too large.

67

3. The Scale Space Segmentation Filter

‘ 08,0605,08+5 =10%s =12 s =14 s =16

I I I I I I I
0.28 O o o
| % |
0.26- 4
O -
L N |
024 ul . 4
8 L Q |
o *
0.22- -
- + + O 5 ¥ é -
0.20- * o O .
\ 5 A
[- % 9‘@ D —
0187 | | | | | T | | i
1.5 2.0 2.5 4.0 4.5 5.0

_ 30 35
size of the training set in 10
Figure 3.14.: Mapping as in Figure B.13] but restricted to the costs for the complete set.

We tested 6 different values for s, from 0.6 to 1.6. The results are displayed in Fig-
ure 314l The lowest costs are reached between 103 and 10%. The curves are very com-
parable in quality, concerning the relative scale the lowest costs are reached at s, = 1
and s,.,; = 1.4, whereas also the relative scales collapse more for too high training set
sizes than the others. The values for s,.; = 0.6 have commonly too high costs, whereas
the values for s,,, = 1.4 and s,,; = 1.6 seem to be robust, as they have only a small

variance between 10 and 10*® and have also quite good costs.

3.7.3. Optimum Masks

The third property for a good segmentation is the choice of the mask. We want to sep-
arate the objects and the background, in our case, we want to separate the spine from
the background. Therefore we use a mask with spine pixels represented by ’1’ and back-
ground pixels represented by ‘0’ (see Figure B.I5l plot 1). It follows that the estimated
knowledge accentuates the spine against the background. This could be sufficient, if the
costs were close to '0’. However, this simple mask leads to costs far from ’0’, but still
below '0.5".

When using different knowledge types with different masks, one can also promote the
quality of the segmentation. The second mask in Figure which is evaluated is "1’ at
these positions, where the first mask is 1’ too. It is ’0’ only around the spine. This leads

to a better separation on the left and right side of the spine. In this way we design a set

68

3.7. Application of the SSSF

Figure 3.15.: 2 different masks with red=1, black=0, turquois=NaN: a) mask for finding
the spine b) mask for getting a better segmentation at spine borders c)
base image

of knowledge filters which are combined together, or which are combined with regional
information.

Different masks are combined to train the segmentation especially for problematic re-
gions. The first mask in Figure is used to locate the spine centre as the position
of the horizontal mean value on one line. The second mask in Figure isolates the
exact borders of the spine. The combination of these two masks with an one-row region-
growing algorithm solves the spine segmentation problem. We start in the spine centre,
induced by the first mask, and we stop at the borders, retrieved from the second mas .
The filters do not use any topological or regional information. Hence this filter leads to
better segmentations when combining it with this regional information, as e.g. the spine

is connected and it is similar to a watershed from top to bottom.

3.7.4. Evaluation of the Filter Types

For the next test runs we take the photograph and training masks from Figure [3.16. For
the evaluation of the different filter types we take the 2-dimensional cost function costy,,

with f = coStmean and g = cost? ; (see Equation 3.53).

19The general segmentation problem for one connected object in the middle of the image also follows this
region growing approach by using a mask for the object and n others for the borders by accentuating
the border itself more and more.

69

3. The Scale Space Segmentation Filter

Figure 3.16.: Test image for the next examples, mask to train the spine allocation and
mask to train the allocation of the spine borders.

Parametrically a filter train scheme contains three different variables:
1. The adaption of centre and width of a band pass.
2. The adaption of the left and right fuzzy edges.
3. The adaption of the maximum value for the band pass amplitude.

There are seven meaningful types of combination, depicted by the 3-dimensional binary
vector: [001],[010], ..., [111].

Each adaption starts with a maximum value m = {—1,1}, centre ¢ = 0.5 and width
w = 0.35 which are normalised to the interval, and fuzzy edges wﬁf = wj = 0. For
types ([0 - -]) ten different equivalence classes are chosen and the abort criterion for the
main loop is weakened by factor 100.

The results are given in Figure B.I71 The number of applied improvements varies
from 390 to above 10*. The general filter-based approaches ([0 - -]) need too many
improvements, hence too much optimisation time. The fuzzy edge adaption based opti-
misations ([11-]) generate lowest costs, the other approaches ([10-]) are worse, but need

shorter optimisation time.

70

3.7. Application of the SSSF

© ©
= =

first order cost
o
'_\

[001] [110] [011] [111] [010] [101] [100]
filter kind

001 110 011 111 010 101 100
[001] (110] [011] filtérk}nd [010] [101] [100]

Figure 3.17.: Evaluation of the cost function. First row: first order costs. Second row:
Improvements until abortion.

3.7.5. Evaluation of the Cost Functions

The evaluation of the first order cost function is done by the usage of the 2-dimensional
cost function costy g, with g = cost?,, f € {cOStmean, COStmax } and filter type ([101]) (see
Figure B.19).

The cost function costyean i superior in time and quality.

In we proposed 5 different second order cost functions. For the evaluation purpose,
these cost functions are combined with costymean as the first order cost function and filter
type ([111]). The results are depicted in Figure B.I8

The first order costs for the first three functions are quite similar, whereas the third
function cost®, takes the shortest optimisation time. We can drop the last three func-
tions, as they are worse concerning costs. A significant feature for the choice of the cost
function can also be the number of improvements. Concerning this characteristic the
knowledge-based evaluations (max,¢) and (min,) are superior even to the empty cost

function (—).

71

3. The Scale Space Segmentation Filter

0.145

o
'_\
a

o
'_\
a

o
[EEY
w

first order cost

o
[EEN
w
I
I

0.13

(opt,d) (min,d) (max,t) (min,t) | (max,d) -
second order cost functions

(opt,d) (min,d) (max,t) (min,t) (max,d) -
second order cost functions

Figure 3.18.: Evaluation of the second order cost function including the empty second
order cost function (-). First order costs and improvements until abortion.

rank | kind cost | improvements
1 mean | 0.1600 718
2 max | 0.1792 1534

Figure 3.19.: Cost functions costpean and costay

3.7.6. Final Presets

The final implemented presets are tested with 30, 000 positive and 30,000 negative test
points on the input image and the first mask of Figure B.I6. The execution time is
growing with descending the costs. The second plot in depicts the ratio between
its execution time and the execution time of the preset ’dirty.

Only preset ’best’ leads to the optimum which is close to the value of 'optimal’. The oth-
ers are automatically interrupted inside the search loop, because the costs-improvement

got, too close to zero.

20The execution time for the preset ’dirty’ is 23 seconds on this machine. A Compaq Presario A900
Notebook PC: A 32-Bit Intel Core 2 Duo CPU T5450 with 2 x 1.66 GHz and 2GB RAM. The
Matlab version is 7.6.0.324 (MATLAB R2008a).

72

3.7. Application of the SSSF

0.1 dirty basic fast optimal best huge
final presets
>17
()
E 40
8 30
X
(@)
_g 20
K
[10—
dirty basic fast optimal best huge
final presets

Figure 3.20.: Evaluation of the final filter presets. First order costs and execution time
relative to preset 'dirty’.

3.7.7. Evaluation of the Multi-Filter

Figure B.2T] shows a segmentation on the first test image. We applied both masks,
the spine detection and the spine-border detection mask. The segmentations of both
filters show the following: Red or dark blue represent positive or negative responses of
both filters, light blue denotes a positive response only of the spine-border filter and
yellow is the colour only for a positive response of the spine filter. The first plot is
the segmentation after the first iteration, the second after ten iterations and the third
after 100 iterations.

The used presets are ’dirty’ for the spine segmentation and "basic’ for the spine-border
segmentation. The train data contains only the information of this image, therefore
the absolute results become very good. If we only consider the relative improvement
of the 100 iterations in we are superior to the best standard approach with the
10th iteration (see also second image in B.21]), and reach a cost value of 0.0357 for
the spine detection with the worst optimisation preset ’dirty’ and 0.0229 for the spine-

73

3. The Scale Space Segmentation Filter

Figure 3.21.: Improvement of the multi-filter: example for 2 multi-knowledge filters in-
duced by mask 1 and mask 2.

border detection with the second worst preset ’basic’. This segmentation is depicted
in the last image of Figure B.2Il Because of the fast, but in particular highly costing
optimisation types (see also first image in B:21]), the process needs 10 iterations to gain
the segmentation results of the best optimisation type ’best’. But the improvement is
still obvious: The execution time for the multi-filter with n iterations is restricted by n
times the execution time of the used preset. If we use the fastest preset we get better

results as any other single application already in the same execution time as preset 'fast’.

74

3.8. Results

3.8. Results

The complete code for the implementation of the training and application for the filter
is given in the Appendix [A.2

In this section we will give examples for different stand-alone SSSF -applications. These
filter results are still a pre-stage to a final segmentation filter, as it is not combined with

other image processing techniques which include topographical or local informatio.

3.8.1. Application on Spine Photographs

For the demonstration on spine photographs, we use different training set sizes.
1. One training image
2. Three training images
3. 14 training images

Each training set is trained for the normal spine detection and the spine-border detection.
The knowledge adaption of the training images is shrinking down with the growing
training set size, whereas the applicability is growing. This development is obvious as
more training images contain more variances of the texture representation.

The cost graphs in Figure have similar developments. The adaption for the spine-
border detection becomes worse than the adaption for the spine detection. In the first
iterations the costs come with a high oscillation. The length of oscillation is induced by
the training set size. At the first plot the oscillation lasts for the first 10 iterations, in
the second, it lasts for the first 20 iterations and in the third it takes 50 iterations. Also
the amplitude of this oscillation is growing with growing training set size.

The final spine segmentation results meet in most cases the expectations, since the filter

results are of good quality.

21 The design of a final filter, i.e. for spine segmentation or liver volume estimation can be developed on
these filter results by the use of opening and closing operators, combined with 1- or 2-dimensional
region-growing or energy-minimising approaches, respectively.

I6)

3. The Scale Space Segmentation Filter

—spine detection
---spine—border detectign

= N N
al o al
£ 2 X

cost / separation
=
o
2

1 10 20 30 40 50 60 70 80 90 10C

" —sbine detection
3004 ---spine—border detection

cost / separation
= N N
[(6)] o u
2R X

10%
5%
| | | | | | | | |
1 10 20 30 40 50 60 70 80 90 10C
Iiteration
509 ‘ - 5
| —spine detection
45%7;} ,,, ---spine—border detectign
NN
O —

cost / separation

|
1 10 20 30 40 . 50 60 70 80 90 10C
iteration

Figure 3.22.: The graphs of the costs for training improvements and different training

set sizes. First row: costs for 1 training image, second row: costs for 3
training images, third row: costs for 14 training images.

76

3.8. Results

Figure 3.23.: Filter application on 4 of 14 training images. Upper row: Results of the
two masks. Dark blue or orange = positive or negative responses of the
both filters. Green = only positive response of the spine border detection,
light blue = only positive response of the spine detection. Red line =
training-mask.

77

78

The Scale Space Segmentation Filter

stehend

Figure 3.24.: Images 2, 4 and 6.

stehend

3.8. Results

Figure 3.25.: Images 3, 8 and 10.

79

3. The Scale Space Segmentation Filter

stehend

stehend

Figure 3.26.: Images 11, 12 and 13.

80

3.8. Results

stehend

Figure 3.27.: Difficult images: 28, 31 and 36.

81

3. The Scale Space Segmentation Filter

R

stehend

Figure 3.28.: Difficult images: 53, 69 and 90.

82

3.8. Results

—liver detection
i -~ -liver-border detectig
P e RRREEEEEEE -

=)

N
o
X

cost / separation
[B=Y
a
N

=
3
=

5%

0 \ \ \ \ \ \ \ \ \
0 1 10 20 30 40 50 60 70 80 90 10C

iteration

Figure 3.29.: The graphs of the costs for training improvements of the liver segmentation.
We used 10 different training images.

3.8.2. Application on Liver CT-Photographs

Another difficult medical computer vision task is the segmentation of the liver in a stack
of computer tomography data. The liver is a huge object on the left side in the images.
As its shape varies, the current working segmentation routines always need human’s pre
segmentation. However, our presented results are only applications of the filter and not
a liver segmentation approach itself.

For the demonstration of our method on liver photographs, we trained it on the pho-
tographs 14,24, ...,104 and tested it on 14,18, ...,106.

The results are depicted from Figure B.30 to Figure B.33

The segmentation of the liver can be essentially upgraded by the use of interconnections
between two slices. A two dimensional region growing approach could lead to a satisfying
final segmentation. Another upgrade can be made by the consideration of not only the
x — y-projection, but the projections in x — z and y — z direction, too. The knowledge
adaption for the liver images becomes better than the knowledge adaption for the spine
images (see Figure 3.29) as the images are more similar and of identical size.

The results of this image class is of the same quality as other current approaches (see
also [26]).

83

3. The Scale Space Segmentation Filter

Figure 3.30.: Every fourth slice of a ct-stack. First and third row: Segmentations as for
the spine detection. Second and fourth row: Input images as for the spine
detection. Slices 14,18,...,34

84

3.8. Results

Figure 3.31.: Slices 38,42, ...,58

85

86

The Scale Space Segmentation Filter

Figure 3.32.: Slices 62,66, ..., 82

3.8. Results

Figure 3.33.: Slices 86,90, ...,106

87

3. The Scale Space Segmentation Filter

3.9. Conclusion and Outlook

The proposed filter technique has some positive properties. Once having amplitude and
phase signals for certain scale intervals we can train a segmentation for a special tex-
ture, such as in this example the spine or liver. The technique is relatively stable and
the false-positive or false-negative error can be suppressed via a weighted evaluation
function. As the segmentation result is in R and not in {0, 1} as classical segmentation
routines, it provides a measurement for each pixel being part of the texture or not.
Another advantage is the attribute being a single-point mapping, since each point is
evaluated itself. It follows, that after the application of the analytic signal, there is
no further object description necessary. As the filter is constant for each point, it can
be applied very fast, for example on a GPU pixel-shader. Therefore, the filter can be
executed in parallel, or in other words, in O(1) on an adequate hardware. We showed,
that the calculation of the analytic signal can be done in less than one second for a 1
mega pixel image. The calculation of the SSSF for n = 100 iterations takes at most
t = 2.4 seconds on the same system, since t = n x 384 x msecond. Hence we are
able to compute one image in about three seconds on this GPU.

The next advantage concerns the false segmented points. When having some more
knowledge about the considered structure, like for example some tightness or connec-
tivity, we can expand the regions by considering the densities by convolving the result
with a mask to get the mean value, which simulates the tightness.

Normal segmentations are region- or edge-based. This approach is nearly independent
as it is a single-point mapping. We can find masks, which induce region based segmen-
tations as the proposed spine segmentation and these which induce edge based ones as
simple edge detectors based on the phase for small scales. In other words, this approach
can be used for every kind of pixel highlighting and is therefore most abstract.

The properties of this filter are beside its potential of a high acceleration, the rotation
invariance, luminance invariance and high adaptivity to any structure.

The filters only use the phases and amplitudes of the input image, therefore the filters
are applied in parallel. Future work will deal with an expansion of the filter with a serial
component, since the input signal for the phase and amplitude of filter ¢ is the result
of filter ¢ — 1. This approach leads to much better results even if the training of this
filter set lasts much longer: it requires fast hardware and good software. It looks like a
neuronal network, where each neuron gets an image, computes the analytic signal and
applies the filter to get the output image having same size and range as the input image.

In the last chapter we show the quality of the filter by applying a final spine detection.

22The time for 9 pixel accesses is 448 frames / second, we only need 1 pixel access and we are able to
compute 4 slots in parallel. In our implementation the size of one SSSF is maximal 384.

88

4. Design of a Spine Detector

In this chapter we will expand the results of the SSSF to the design of a final spine
segmentation, which segments the spine from the background. This allows us to compare
the proposed method with other spine segmentation programmes. We only design a
very simple post processing of the spine segmentation, which underlines the power of
the SSSF itself. First we consider, how medics solve this task. Afterwards, we consider

the problem again from the programmer’s point of view.

4.1. Image Processing from the Medical Point of View

For a human being it is typically no problem to segment the spine and spine bodies.
Hence, they start immediately to measure the distortion. We only consider anterior-
posterior photograph which allow only a detection of the scoliosis in horizontal direc-
tion when watching from ahead. The most common measure for describing this kind of
scoliosis is the Lippman-Cobb angleH.

Figure [4.1] illustrates the calculation of the Lippman-Cobb angle. The first two figures
(available at [45]) show the mapping from photographic data to scheme.

Consider the curve of the spine as a linear function fypine : R = R, 2 = fipine(v). The lo-
cation of the Lippman-Cobb angle p’ ., is the local maximum (most right) or minimum

(most left) point in fipine. The angle itself is the maximum angle of the derivative f]

between the two adjacent extreme points. Hence n angles aq, ..., «a, for n 42 sampsl?;l;
points p2.,., ..., ptl are given by
{pgobbv e ap?:bllo = {{0, Ovpzobbv e ,p?(?bt, Ymax; Ymax) |
Vie{2,...,n—1}:plpy <pf:obb/\fs,pine =0} (4.1)
Vie{l,...,n} i = {farctan(fie(y1) — arctan(fne(42))|
vy = argmin ([0, W)l € P’ v 1} (42)

Y

LAP radiographic projections of the spine
Zalso known as ’Cobb’s angle’, which was introduced in 1935.

89

4. Design of a Spine Detector

Copyright (5 2005 Skoliose-Info- Forum.de
GHU Free Documentation Licenze 1.2

Figure 4.1.: Measuring the Lippman-Cobb angle: local spine photograph, corresponding
scheme and general scheme for the Lippman-Cobb angle

with ¢, the maximum pixel coordinate in y—direction. The i-th Lippman-Cobb angle
is given by af.,, = |al.

Figure [4.1] illustrates the calculation. A spine curve is called decompensated if
> a;#0. (4.3)
i=1

The example from 1] (available at [46]) has values a; = 42°, ap = —89° and «ag = 47°,
this spine is called ‘compensated’ since the sum of the angles as Zi’ a; = 0.

In medical diagnostics the locations must be declared in addition to the angles. There-
fore spine bodies are partitioned into 5 groups from the top to the bottom cervical
vertebraﬂ, thoracicH, lumbarH vertebras, sacrumH and tailbond/. For scoliosis, generally
only the spine bodies Cy, ..., L5 are of relevance. These are 21 bodies, the radiograph
is normally cut inside the cervical spine. The thoracic spine can be detected by holding
up the ribs. The crossover between thoracic and lumbar spine is variable, because some

individuals have 13 rib pairs.

¢y, ... Cs
Ty, T
°Li,..., Ls, sometimes also (T}, ...,T13) and (L1,..., Ls)
65, ... S5

Tat all 4 segments

90

4.2. Programmer’s Approach

[Exclude borders H Extract stripe enclosing the spine centre H Select mean-line in the stripeJ

Figure 4.2.: Segmentation flow chart leading from input image to spine body segments.

There is another approach for measuring the scoliosis by using the midpoints of the
vertebras called the Risser-Ferguson method. Robinson at al. have showed the equiva-
lence of both methods in [32]. A more detailed introduction can be found in [30] and a
compact overview to further methods is available in [33].

It is equivalent to select the upper and lower plates of the vertebras or the midpoints of
each vertebra, as there is a mapping between the Risser-Ferguson and Lippman-Cobb
method.

4.2. Programmer’s Approach

The spine segmentation is the main task for an automatical system in contrast to the
human approach. The principal proceeding is depicted in Figure [4.2]

The first step is the exclusion of everything, which does not contain any information,
such as white border or noise. In the case of the spine segmentation this is an exclusion
of some area on the left and the right sides. The second step extracts a stripe enclosing
the spine centre. In the resulting neighbourhood it is easier to find the edges of the
spine. The last step finally delivers the curve of the spine. This is the function fypine
as described in Section [l After that, the calculation of the Lippman-Cobb angle is a
trivial task. In the images to the results of the steps are marked. The result of
the first step is the segmentation of the light blue area from the dark blue area. The
stripe enclosing the spine centre is orange, the mean-line is yellow. Additionally the
contours of the spine are marked with a red line.

It is important to note that every arrow between the boxes in is afflicted with
a special probability for finding the right mapping concerning the secondary task, as
generally in computer vision the approximated function is a mapping between the input
image and the conclusion, which goes along with an enormous reduction of dimensions,
by simultaneously not reducing the intrinsic dimensions concerning the goal.

There are obviously many different other possibilities to join the task from Figure [£.2]
but we will only consider this approach.

The Figures to show the results of the SSSF. The results of the first mask
which only contains the object itself, are used for fulfilling the first two steps. The main

91

4. Design of a Spine Detector

function inside these steps is the application of the analytic signal which determines the
phase ¢. The value cos(¢) is reaching its maximum in the centre of the spine. This is
cut out and expanded to get the stripe enclosing the spine centre.

For the next step we restrict the results of the spine-border detection to the stripe
enclosing the spine. We calculate again cos(¢) and apply some opening and closing
procedures [37]. We get a highlighting, based on the spine-border detection and the
stripe.

As the spine is tubular, we apply a track operator with a size of the mask equal to the
spine width, in the next step. Its flattened result is already close to the optimum.

For the calculation of the scoliosis the segmentation of the spine bodies is not required.

The computer code of our approach is depicted in [A.3l

4.3. Results

We show the results of our final segmentation function which only uses the phase, the
calculation of the mean value, some noise deleting functions like opening and closing
and the blob searc.

4.3.1. Relation to other Spine Segmentation Filters

With these simple pre-processing techniques, we already reach good segmentation re-
sults. Applying active shape models, simulated annealing or the watershed transform
could improve our results additionally. The percentage of overlapping of our final seg-
mentation is only afflicted with a positive error of 5% and a negative error of 3%.
Beside, Brandt [4] splits down the segmentation of the spine in good and bad images
and in upper parts and lower parts. He accomplishes a positive error and negative error
of about 10% for images of the best quality. For images with worst quality he gains
errors of 25%. However, he is not plotting any result images.

Also the average error of other spine segmentation approaches is near 10% (see also
chapter 5 in [4]).

A common issue for comparing results is the fact, that many segmentation results are
only given in tabular form and furthermore in millimetre, but not in the percentage
of the overlap between estimated and computed results. Most of the approaches we

described in the introduction of Section [use the energy minimisation and the region

8The blob search is the search for connected areas with same grey values.
9The positive error varies between 2.6% and 7%, the negative error varies between 1.7% and 4%.

92

4.3. Results

growing approach, but need a human made calibration of the start values for each image.
With this filter, we got a robust, fast, powerful and general segmentation tool which is
superior to standard active shape or simulated annealing approaches at factor 3 — 5.
The SSSF is neither region- nor edge-based: the colouration of our approach is more
robust than these approaches, as it cannot be influenced by one false decision in the
segmentation process which is not intrinsically successive.

Since the major part of our method is the computation of the SSSF, our approach
still takes about three seconds per 1 mega-pixel image. The calculation of the post-
processing after the SSSF does not contain any time consuming methods. In this sense,

our approach is not only more accurate than any other method, but also very fast.

4.3.2. Conclusion

We demonstrated that we are able to exceed the state-of-the-art approaches with easy
segmentation techniques like computing mean values, dilation, erosion and the calcula-
tion of the phase. Applying a more powerful postprocess on our filtered signals could
improve the results further on.

Our approach is superior to region- and edge-based segmentations, as the pixel based ap-
proached cannot be influenced by false decisions outside the current pixel. We designed
a spine segmentation, which is up to 3 — 5 times more precise than the currently known
approaches. We showed that our method is also applicable to difficult images which are
images with implants covering the spine. The approach takes about three seconds per
image, as the post-processing after the calculation of the SSSF does not contain any
time consuming methods and the calculation of the input signals is possible in about

three seconds.

93

4. Design of a Spine Detector

Figure 4.3.: Image 36. Left: Segmentation-steps. Right: Input and output of our func-
tion. The errors are: false negative — 7%, false positive — 1.7%.

94

4.3. Results

Figure 4.4.: Image 53: False negative — 3.4%, false positive — 4%.

95

4. Design of a Spine Detector

Figure 4.5.: Image 90: False negative — 2.6%, false positive — 2.8%.

96

Bibliography

1]

2]

3]

[4]

[5]

(6]

7]

8]

9]

E. H. Anderson, C. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden. Pyramid
methods in image processing. RCA Engineer, 29:33—41, 1984.

D. H. Ballard and C. M. Brown. Computer Vision. Department of Computer
Science, University of Rochester, 1982.

R. Beare and G. Lehmann. The watershed transform in ITK - discussion and new
developments. Department of Medicine, Monash University, Australia and Unité de
Biologie du Développement et de la Reproduction, Institut National de 1a Recherche

Agronomique, Jouy-en-Josas, France, 2006.

A. S. Brandt. Vollautomatische Segmentierung von lateralen Wirbelsdulen-
rontgenogrammen: Auswertung und Analyse. PhD thesis, Rheinisch-Westfilische
Technische Hochschule Aachen, Medizinische Fakultat, 2005.

C. Chevrefils, F. Chériet, G. Grimard, and C.-E. Aubin. Watershed Segmentation
of Intervertebral Disk and Spinal Canal from MRI Images. LNCS, 4633:1017-1027,
2007.

M. Felsberg. Monogenic Signal and Scale-Space - CVL. Re-
trieved April 12, 2010, from http://www.cvl.isy.liu.se/research/ima/

monogenic-signal-and-scale-space.

M. Felsberg. monogenic.zip/@monogenic/private/create DOP.m. Retrieved April
12, 2010, from http://www.isy.liu.se/ mfe/monogenic.zip.

M. Felsberg. Low level image processing with the structure multivector. Technical
report, Christian-Albrechts-Universitit Kiel, Institut fiir Informatik, 2002.

M. Felsberg and G. Sommer. The multidimensional isotropic generalization of
quadrature filters in Geometric Algebra. In 2nd International Workshop on Al-
gebraic Frames for the Perception-Action Cycle, AFPAC 2000, Kiel, 2000.

97

http://www.cvl.isy.liu.se/research/ima/monogenic-signal-and-scale-space
http://www.cvl.isy.liu.se/research/ima/monogenic-signal-and-scale-space
http://www.isy.liu.se/~mfe/monogenic.zip

Bibliography

[10] M. Felsberg and G. Sommer. The monogenic signal. IEEE Transactions on Signal
Processing, 49:3136-3144, 2001.

[11] M. Felsberg and G. Sommer. The monogenic scale-space: A unifying approach to
phase-space. Journal of Mathematical Imaging and Vision, 21:5-26, 2004.

[12] M. Felsberg and G. Sommer. The Monogenic Scale Space on a Rectangular Domain
and its Features. International Journal of Computer Vision, 64:187-201, 2005.

[13] O. Fleischmann. Local Signal Analysis by Generalized Hilbert Transforms in Con-
formal Space. Master’s thesis, Christian-Albrechts-Universitit Kiel, Institut fiir
Informatik, 2008.

[14] W. T. Freeman and E. H. Adelson. The Design and Use of Steerable Filters. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13:891-901, 1991.

[15] J. M. Gauch. Image segmentation and analysis via multiscale gradient watershed
hierarchies. IEEFE Transactions on Image Processing, 8:69-79, 1999.

[16] V. Grau, H. Becher, and J. A. Noble. Phase-Based Registration of Multi-view
Real-Time Three-Dimensional Echocardiographic Sequences. LNCS, 4190:612 —
619, 2006.

[17] V. Grau, A. Mewes, M. Alcaniz, R.Kikinis, and S. Warfield. Improved Watershed
Transform for Medical Image Segmentation Using Prior Information. IEEE Trans-
actions on Medical Imaging, 23:447-458, 2004.

[18] V. Grau and J. A. Noble. Adaptive Multiscale Ultrasound Compounding Using
Phase Information. LNCS, 3749:589 — 596, 2005.

[19] C. Grigorescu, N. Petkov, and M. A. Westenberg. Contour and boundary detection
improved by surround suppression of texture edges. Image and Vision Computing,
22:609-622, 2004.

[20] B. Jéhne. Digitale Bildverarbeitung. Springer Berlin, 2002.

[21] J. Kaminsky, P. Klinge, T. Rodt, M. Bokemeyer, W. Luedmann, and M. Samii.
Specially adapted interactive tools for an improved 3D-segmentation of the spine.
Computerized Medical Imaging and Graphics, 28:119-127, 2004.

[22] R. P. Kanwal. Linear integral equations. Birkhauser, 1997.

98

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

Bibliography

T. Kindler, R. Wolz, C. Lorenz, A. Franz, and J. Ostermann. Spine Segmentation
Using Articulated Shape Models. LNCS, 5241:227-234, 2008.

C. Lei, L. Xiaojian, Z. Jie, and C. Wufan. Automated lung segmentation algorithm
for CAD system of thoracic CT. Journal of Medical Colleges of PLA, 23:215 — 222,
2008.

G. Mittelhdufer and F. Kruggel. Fast Segmentation of Brain Magnetic Resonance
Tomograms. In Computer Vision, Virtual Reality and Robotics in Medicine, 1995.

Y. Nakayama, Q. Li, S. Katsuragawa, R. Tkeda, Y. Hiai, K. Awai, S. Kusunoki,
Y. Yamashita, H. Okajima, Y. Inomata, and K. Doi. Automated Hepatic Volumetry
for Living Related Liver Transplantation At Multisction CT. Radiology, 240:743—
748, 2006.

J. A. Nelder and R. Mead. A Simplex Method for Function Minimization. The
Computer Journal, 7:308-313, 1965.

H. Nguyen and Q. Ji. Improved watershed segmentation using water diffusion and
local shape priors. In IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2006.

O. F. Olsen and M. Nielsen. Multi-Scale Gradient Magnitude Watershed Segmen-
tation. In LNCS, 1997.

D. Pate. Radiologic Techniques for Evaluating Scoliosis. Dynamic Chiropractic,
8:1-4, 1990.

K. Rajpoot, A. Noble, V. Grau, and N. Rajpoot. Feature Detection from Echocar-
diography Images Using Local Phase Information. In Proceedings of the 12th Annual
Conference on Medical Image Understanding and Analysis, 2008.

E. F. Robinson and W. D. Wade. Statistical assessment of two methods of measuring
scoliosis before treatment. Can Med Assoc Journal, 129:839-841, 1983.

J. Sample. International Digital Technologies, Inc. Retrieved November 24,
2009, from http://www.xraydigitizing.com/www.xraydigitizing.com/reports/bio_

report.html.

A. Sedlazeck. Local Feature Detection by Higher Order Riesz Transforms on Images.
Master’s thesis, Christian-Albrechts-Universitit Kiel, Institut fiir Informatik, 2008.

99

http://www.xraydigitizing.com/ www.xraydigitizing.com/reports/bio_report.html
http://www.xraydigitizing.com/ www.xraydigitizing.com/reports/bio_report.html

Bibliography

[35] K.-S. Seo, L. C. Ludeman, S.-J. Park, and J.-A. Park. Efficient Liver Segmentation
Based on the Spine. LNCS, 3261:400-409, 2004.

[36] G. Sommer. Skriptum: Signaltheoretische Grundlagen der Bildverarbeitung. Tech-
nical report, Christian-Albrechts-Universitit Kiel, Institut fiir Informatik, 2006.

[37] G. Sommer. Skriptum: Stochastische, topologische und geom. Grundlagen von
Computer Vision. Technical report, Christian-Albrechts-Universitit Kiel, Institut
fiir Informatik, 2009.

[38] L. Vicent and P. Soille. Watersheds in Digital Spaces: An Efficient Algorithm Based
on Immersion Simulations. IEEE Transactions on pattern analysis and machine
intelligence, 13:583-598, 1991.

[39] L. Wietzke, O. Fleischmann, and G. Sommer. 2D Image Analysis by Generalized
Hilbert Transforms in Conformal Space. In ECCV (2), 2008.

[40] L. Wietzke and G. Sommer. The 2D Analytic Signal. Technical report, Christian-
Albrechts-Universitat Kiel, Institut fiir Informatik, 2008.

[41] L. Wietzke and G. Sommer. The Relation of Inverse Problems and Isotropic 2D
Signal Analysis. In Mathematics in Signal Processing 8, 2008.

[42] L. Wietzke and G. Sommer. The Signal Multi-Vector. In Journal of Mathematical
Imaging and Vision, 2010.

[43] L. Wietzke, G. Sommer, and O. Fleischmann. The Geometry of 2D Image Signals.
In CVPR, 2009.

[44] D. Zang. Signal Modeling for Two-Dimensional Image Structures and Scale-Space
Based Image Analysis. PhD thesis, Christian-Albrechts-Universitdt Kiel, Institut
fiir Informatik, 2007.

[45] Cobb’s angle. Retrieved November 24, 2009, from http://www.e-radiography.net/
radpath/c/cobbs-angle.htm.

[46] Scoliosis cobb.svg. Available at http://de.wikipedia.org/w/index.php?
title=Datei:Scoliosis_cobb.svg\&oldid=52441366.

100

http://www.e-radiography.net/ radpath/c/cobbs-angle.htm
http://www.e-radiography.net/ radpath/c/cobbs-angle.htm
http://de.wikipedia.org/w/index.php?title=Datei:Scoliosis_cobb.svg &oldid=52441366
http://de.wikipedia.org/w/index.php?title=Datei:Scoliosis_cobb.svg &oldid=52441366

List of Figures

3.1. Motivation(1)

39 Motivation(2

3.3, Filtering with the SSSE o000
M&Mﬂm@

3.8. Training loopfor & L

3.9. Cost calculation on the filtered imagdo o\ ot

3.10. Description of @

3.16. Two different masks(2)

101

List of Figures

3.18. Evaluation of

3.19. Cost functiong

13.20. Evaluation of final presets

ine detectio

3.23. Spine examples(1)
3.24. Spine examples(2)

3.25. Spine examples(3)
3.26. Spine examples(4)

3.27. Spine examples(5

3.28. Spine examples(6

120 C b o liver dotentiod

3.30. Liver examples(1)

3.32. Liver examples(3)

3.33. Liver examples(4)

4.3. Spine detection example(1

4.5. Spine detection example(3

A.1. Output of listing@

A.2. Output of listing
A.3. Output of listing

102

Appendix A.

Code

A.1l. Analytic Signal

Sample Code

© 0 N O Ut s W N

e e e e el e
SO s W N = O

17

Listing A.1: MainScaleExample.m

function scaleImage = MainScaleExample ()
% scaleImage = MainScaleExample ()
% Author: Felix Thomsen

% Example to understand the code structure

% take a synthetic image with orientation = pi/8, scale = 10 and
% amplitude=1:
image = SynthImage (100,[1;pi/8;0;10],1);

% take 2-dimensional analytic signal scale space with depth =16 and maximal
% coarse scale = 100

[amplitude ,phase,scales] = Al1AS(image ,16,100);

% compute the main scale with the standard approach

scaleImage = MainScale (amplitude ,phase,scales ,1);

% plot the result:

surf (scalelmage) ;

103

Appendix A. Code
Calculation of the Analytic Signal

Listing A.2: AS.m

function [orientation,phase,amplitude,apexAngle]=...
AS (image ,fineScale,coarseScale ,nMax)

% [orientation ,phase,amplitude ,apexAngle ,attenuation]=
% AS(image ,fineScale,coarseScale ,nMax)

Author: Felix Thomsen

% calculates the 2-D Analytic Signal on image with fineScale and
% coarseScale and a maximal mask size nMax

% default: fineScale = 1; coarseScale = 100; nMax = 16;

© o N O Ut s W N
=

AR R R B R R W W W W W W W W W oW NN NN NN NN NN = = e e = e
SR WO R O B0 g DR DD =D © 00 O WN =D © NSO WN = O

if nargin<1
error(’need at least 1. parameter image’);
end
if nargin<2
fineScale = 1;
end
if nargin<3
coarseScale = 100;
end
if nargin<4
nMax = 16;
end
[kP,kX,kY,kXX ,kYY,kXY,dx] = create_AK (fineScale,coarseScale ,nMax);
% image preprocessing
if (ndims(image)==3)
img =double (rgb2gray (image)) ;
else
img = double (image);
end
% convolutions
f_p = convolution (img,kP,dx);
f_x = convolution (img,kX,dx);
f_y = convolution (img,kY,dx);
f_xx = convolution (img,kXX,dx);
f_yy = convolution (img,kYY,dx);
f_xy = convolution (img,kXY,dx);
% signal calculation
f_pm = 0.5 .x(f_xx -f_yy);
f_s = 0.5 .x f_p;
f_plus = f_xy;
e = sqrt(f_pm.~2 + f_plus.~2)./abs(f_s);
q = (f_x."2 + f_y."2) .x 2 ./(1+e);
phase = atan2(sqrt(q),f_p);
orientation = atan2(f_y,f_x);

o~
3

104

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

A.1. Analytic Signal

epsilon = 0.001;

orientation (orientation >(2*pi-epsilon)) = 0;

amplitude sqrt (real(f_p.~2 + q)) .*0.5;

apexAngle = real(acos(sqrt(f_y."2+f_x.~2)./abs(f_s)));

end

% Create kernels and convolution

function [kP,kX,kY,kXX,kYY,kXY,dx]= create_AK (fineScale,coarseScale ,maxN)
% calculates convolution mask size for static error = 5

% if calculated size>maxN -> take smaller imprecise size

% calculate convolution size n for parameter E=error

E = 2;

n = coarseScale * E;

dx = ceil(n / maxN);

n = floor(n / dx);

[x,y] = meshgrid(-n:n,-n:n);
coarseScale = coarseScale / dx;
fineScale = fineScale / dx;

% KernellFS, KernelilCS, Kernel2FS, Kernel2CS
ssFS = fineScale ~2;
ssCS = coarseScale ~2;

zZ = Xx.72+y.72;

kernellFS =1 ./ (2 * pi .* (ssFS + z).-(3/2));
kerneliCS = 1 ./ (2 * pi .*x (ssCS + z).~(3/2));
kernel2FS = (2 * pi) .* (z.~2) .*((ssFS+z).~(3/2));
kernel2CS = (2 #* pi) .*x (z."2) .*((ssCS+z)."(3/2));

control = (kernel2FS ~= 0);

kernel2FS (control) = -(fineScale .* (2 * ssFS + 3.xz(control))...
- 2.%x(ssFS + z(control)).~(3/2))./ kernel2FS (control);
kernel2CS (control) = -(coarseScale .* (2 * ssCS + 3.*z(control))...

- 2 .%(ssCS + z(control)).~(3/2))./ kernel2CS (control);

% kernels kP,kX,kY,kXX,kYY,kXY

kP = freeDC(fineScale .* kernellFS - coarseScale .* kerneliCS);
kX = freeDC(x .*(kernellFS - kerneliCS));

kXX freeDC(x."2 .* (kernel2FS - kernel2CS));

kXY = freeDC(x.*y .x (kernel2FS - kernel2CS));

kY = kX?’;

kYY = kXX?;

end

function kernelB = freeDC(kernel)

kernelB = kernel - mean(kernel(:));

105

Appendix A. Code

99 end

100

101 function img = convolution (img,convKernel ,bdx)
102 % img = convolution (img,convKernel ,hbdx)

103 7%

104 7% Comnvolutes image img with mask convKernel similar to

105 % conv2(img,convKernel ,b ’valid’)

106 % dx in {1,2,...} specifies the offset between pixels.

107 % mask convKernel needs odd size and 1 =width/height

108 % if n = size(convKernel ,l), the convolution result equals a normal
109 % convolution with a kernel of size

110 % m = (n-1) * dx +1

111 % Example : n = 11, dx = 2 -> m = 21

112 % for mean-value calculation one needs a pre-convolution mask of size dx.
113

114 7 generates for dx=2 4 images with following structure for width=5,
115 7% height=6:

116 % image (1,1) | image (1,2)
117 % 1,1 - 3,1 - 5,1 | 2,1 - 4,1
118 % 1,3 - 3,3 - 5,3 | 2,3 - 4,3
19 % 1,5 - 3,5 - 5,5 | 2,56 - 4,5
120 % - - e e oo
121 % image(2,1) | image (2,2)
122 % 1,2 - 3,2 - 5,2 I 2,2 - 4,2
123 % 1,4 - 3,4 - 5,4 | 2,4 - 4,4
124 % 1,6 - 3,6 - 5,6 | 2,6 - 4,6

125 % with x,y as pixel(x,y) from image img
126 n = (size(convKernel ,b1) -1)/2;

127 7 Mean-value calculation

128 if dx>1

129 img =padarray (padarray (img’,floor (dx/2),’replicate?’)’,...
130 floor (dx/2),’replicate?);

131 flattenN = floor (dx/2) *2+1;

132 flattenMask = ones(flattenlN);

133 if mod(dx,2) == 0

134 flattenMask (:,1) = flattenMask (:,1).* 0.5;

135 flattenMask (:,end) = flattenMask (:,end) .*x 0.5;
136 flattenMask (1,:) = flattenMask (1,:).*x 0.5;

137 flattenMask (end,:) = flattenMask(end,:).*x 0.5;
138 end

139 flattenMask = flattenMask ./ sum(flattenMask (:));
140 img = conv2(img,flattenMask,’valid?’);

141 end

142

143) width and height calculation

144 img = padarray(padarray(img’,n*dx,’replicate’)’,n*dx,’replicate’);
145 [height ,width] = size(img);

146 ii = 1:1:dx;

147 w = ceil ((width-ii+1)./dx);
148 h = ceil ((height-ii+1)./dx);
149

106

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

© 0 N O Ut R W N

e e e
TR W NN = O

A.1. Analytic Signal

% generate and convolute dx*dx image parts
cImages = zeros(h(1)-(n*2),w (1) -(n*2) ,dx,dx);
for ih=1:1:dx
for iw=1:1:dx
curImage = zeros(h(1),w(1));
hh = 1:1:h(ih);
ww = 1:1:w(iw);
curImage (hh,ww) = img((hh-1) .%dx+ ih,(ww-1) .*xdx+ iw);
cImages (:,:,ih,iw) = conv2(curImage(:,:),convKernel,’valid’);
end

end

% write back convolution results
img = zeros (height - (n*dx*2) ,width - (n*xdx*2));
for hh=1:1:height -(n*dx*2);

for ww=1:1:width -(n*dx*2);

img (hh,ww) = cImages (ceil(hh./dx),ceil(ww./dx),...
mod ((hh-1) ,dx)+1,mod ((ww-1) ,dx)+1) ;

end

end

end

Listing A.3: AIIAS.m

function [amplitude,phase,scales] = AllAS(image,depth,maxScale)

% [amplitude ,phase ,scales] = All1AS(image,elements ,maxScale)

% Author: Felix Thomsen

% calculates logarithmic scale space on image concerning the 2D-Analytic

% signal with depth elements, coarseScale (depth) = maxScale

% and fineScale (1) = 1

[h,w] = size(image);

logdiff = log(maxScale)/depth;

scales = exp(log(l):logdiff:log(maxScale));

amplitude = zeros(h,w,depth);

phase = zeros(h,w,depth);

for i=1:depth
fprintf (’i= %d, fineScale=%f, coarseScale=%f\n’,i,scales(i),scales(i+1))
[or ,phase(:,:,i),amplitude (:,:,i)]= AS(image,scales(i),scales(i+1));

end ;

107

Appendix A. Code

Attenuation Based Procedures

Listing A.4: Attenuation.m

1 function attenuation = Attenuation (amplitude,phase,scales ,kind)
2 7} attenuation = Attenuation (amplitude ,phase,scales , kind)

3 % Author: Felix Thomsen

4 % calculates attenuation with kind in {1,2,3}

5 [h,w,d] = size(amplitude);

6 attenuation = zeros(h,w,d);

7 switch kind

8 case 1;) attenuation kind= ’a’

9 for dd=1:d

10 attenuation(:,:,dd) = amplitude(:,:,dd)..

11 ./ (log(scales(dd+1))-log(scales(dd)));

12 end ;

13 case 2;) attenuation kind= ’b’

14 amplitude = amplitude .* abs(cos(phase));

15 for dd=1:d

16 attenuation (:,:,dd) = amplitude(:,:,dd)..

17 ./ (log(scales(dd+1))-log(scales(dd)));

18 end ;

19 case 3;) attenuation kind= ’c¢c’

20 phase = cos(phase);

21 for dd=2:d-1

22 wr = log(scales(dd+2))-log(scales(dd));

23 wl = log(scales(dd+1))-log(scales(dd-1));

24 attenuation(:,:,dd) = 1 - (abs(phase(:,:,dd)-phase(:,:,dd-1))*wr...
25 + abs(phase(:,:,dd)-phase(:,:,dd+1))*wl) ./ (2*(wl+wr));
26 end ;

27 otherwise; 7 no action

28 end;

%

© 0 N O Ut R W N
=

e e e el e
SO s W N = O

108

Listing A.5: MainScale.m

function [scaleImage ,maxAtt] = MainScale (amplitude,phase,scales ,kind)

[scaleImage ,maxAtt] = MainScale (amplitude ,scales ,scaleKind, phase)

Author: Felix Thomsen

calculates the scale with highest attenuation (main scale)
kind in {1,2,3,43}
with 1-3 = highest attenuations with kind 1-3

4

= combination of 1 and 2

[h,w,d] = size(amplitude);
scaleImage= zeros(h,w);
maxAtt = zeros(h,w);

if kind==4) combined method

cut0ff = 0.5;

[scaleImageA ,maxAttA] = MainScale (amplitude ,phase,scales,1);
threshold = maxAttA .*xcut0ff;

clear scalelmagel;

clear maxAttA;

A.1. Analytic Signal

17 attl = Attenuation (amplitude ,phase,scales,1);

18 att2 = Attenuation (amplitude,phase,scales,2);

19 for i=1:d

20 [maxAtt ,scaleImage] = Update (maxAtt,scalelmage,att2(:,:,i),...
21 attl(:,:,i)>threshold,(scales(i)+ scales(i+1))/2);

22 end ;

23 else Y attenuations 1,2,3

24 att = Attenuation (amplitude,phase,scales,kind);

25 iStart = 1 + (kind==3);

26 iEnd = d - (kind==3);

27 for i=iStart:iEnd

28 [maxAtt ,scaleImage] = Update (maxAtt ,scalelmage,att(:,:,1i),...
29 true(size (maxAtt ,1) ,size(maxAtt ,2)),(scales(i)+ scales(i+1))/2);
30 end ;

31 end;

32 end

33

34 function [maxAtt,scalelmage] =Update (maxAtt ,scaleImage,curAtt,indices ,scale)
35 betterAtt = indices & false;

36 betterAtt (indices) = curAtt(indices)>maxAtt (indices) ;

37 scaleImage (betterAtt) = scale;

38 maxAtt(betterAtt) = curAtt(betterAtt);

39 end

Synthetic Test Image

Listing A.6: SynthImage.m

1 function image=SynthImage (size,parameter ,n)

2 % image=SynthImage (size,parameter ,n)

3 % Author: Felix Thomsen

4 I Creates a test image, which consists of n sine waves with

5 % amplitudes ,orientations ,phases and scales

6 if nargin~=3

7 error (’need size,parameter = [amplitudes;orientations;phases;scales] and n?’);
8 end

9 am = parameter (1,:);

10 or = parameter (2,:);

11 ph = parameter (3,:);

12 sc = parameter (4,:);

13 delta = pi ./ (sc .* 2);

14 image = zeros(size);

15 for i=1:1:n

16 [x,y] = meshgrid (0:delta(i):(size-1)*delta(i) ,0:delta(i):(size-1)*delta(i));
17 image = image + am(i) .* cos(x .* cos(or(i)) + y .* sin(or(i)) + ph(i)) + am(i);
18 end

109

Appendix A. Code

A.2. Scale Space Segmentation Filter

Sample Code
Listing A.7: CreateKnowledgeExample.m

1 function [knowledgeD,b knowledgeE] = CreateKnowledgeExample ()

2 % [knowledge0 ,knowledgeE] = CreateKnowledgeExample ()

3 % Author: Felix Thomsen

4 7, Example to understand the code structure

5

6 % Load training data for the spine images 1,5:

7 [trainDataD,trainDataE] = LoadTrainDataSpine([1,5]);

8

9 % Load training scheme with preset ’fast’:

10 trainScheme = LoadTrainScheme(’fast’);

11

12 % Train knowledge with 20 iterations for the spine object and the

13 7/, edges:

14 knowledge0 = TrainMultiKnowledge(trainData0,trainScheme ,20);

15 knowledgeE = TrainMultiKnowledge (trainDataE,trainScheme ,20);
Listing A.8: ApplyKnowledgeExample.m

1 function filteredSignal = ApplyKnowledgeExample (knowledge)

2 % filteredSignal = ApplyKnowledgeExample ()

3 % Author: Felix Thomsen

4 7, Example to understand the code structure

5

6 % Load one test image number 30:

7 [amplitude ,phase ,mask,image,scales] = LoadTestImageSpine (30);

8

9 % Apply the knowledge to the signal:

10 filteredSignal = ApplyMultiFilter (amplitude ,phase,scales,h knowledge);

11

12 7 plot the result:

13 subplot (1,2,1);

14 imagesc(filteredSignal);

15 subplot (1,2,2);

16 1imagesc(filteredSignal >0);

110

A.2. Scale Space Segmentation Filter

Create Train Data

Listing A.9: CreateTrainData.m

1 function [trainData,count] = CreateTrainData(am,ph,mask,sc,count)

2 9 [trainData,count] = CreateTrainData(am,ph,mask,sc,count)

3 % Author: Felix Thomsen

4 I Creates train data for knowledge training, needs amplitude, phase, scales
5 7% and mask having zeros for negative points, ones for positive points and
6 % any other value for points to ignore. Optional parameter count as maximal
7 % training set size.

8 % Result: count = size of positive and negative training set

9 % trainData.limits: maximal and minimal attenuations

10 % trainData.signals(pixel,scale,i)

11 % i odd: positive set, 1 even: negative set

12 % i in {1,...,6}: attenuation kind(ceil(i/2))

13 % i in {7,...,14}: reconstruction kind(ceil ((i-86)/2))

14 scales = size(sc,2) -1;

15 maxCountPos = sum(mask(:)==1);

16 maxCountNeg = sum(mask(:)==0);

17 if nargin < 5

18 count = min(maxCountPos ,maxCountNeg);

19 else

20 count = min([count ,maxCountPos ,maxCountNegl);

21 end;

22 trainData.signals = zeros(count,scales ,14);

23 trainData.limits = zeros(3,2,scales);

24 7}, take indices

25 [h,w] = size(mask);

26 indicesPos = FindIndices (find(mask==1),count ,h,w);

27 indicesNeg = FindIndices (find(mask==0),count,h,w);

28 ¥ attenuation

29 for at=1:3

30 att = Attenuation (am,ph,sc,at);

31 trainData .signals (:,:,at*2-1) GetTrainingSignal(att,indicesPos);

32 trainData .signals (:,:,at*2) GetTrainingSignal(att,indicesNeg);

33 end;

34 7, reconstruction basis

35 for r=1:4

36 rec = GetRecBasis (am,ph,r);

37 trainData .signals (:,:,(r*2)+5) = GetTrainingSignal(rec,indicesPos);
38 trainData .signals (:,:,(r*2)+6) = GetTrainingSignal(rec,indicesNeg);
39 end;

40 % limits

41 for at=1:3

42 for s=1:scales

43 trainData.limits(at,1,s) = min(min(trainData.signals(:,s,(at*2-1):(at*2))));
44 trainData .limits (at,2,s) = max(max(trainData.signals(:,s,(at*2-1):(at*2))));
45 end;

46 end;

47 end

111

Appendix A. Code

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

© o0 N O Ut o W N~

N i el e i e e e
= O © 00 N O Ok W N = O

function indices = FindIndices (indicesIn,count ,h,w)

% results indices with size(indices)=(count ,2)

% indices(:,1) = x-coordinate, indices(:,2) = y-coordinate
% where indicesIn is 1

indices = zeros(count,1);

factor = size(indicesIn,1)/count;

for i=1:count

indices (i) = indicesIn (round(i * factor));
end ;
indices2 = zeros(h,w);
indices2 (indices) = 1;
[indicesY,indicesX] = find(indices2==1);
indices = zeros(count,b2);
indices (:,1) = indicesY;
indices (:,2) = indicesX;
end
function tSignal = GetTrainingSignal(signal,indices)
% results tSignal with size(tSignal) = (count,scales)
% where the points are defined by the indices
number = size(indices ,1);
tSignal = zeros (number ,size(signal,b3));

for i=1:number

tSignal(i,:) = signal(indices(i,1),indices(i,2),:);

end ;
end
Listing A.10: AddTrainData.m
function [trainData,count] = AddTrainData(trainDataln,signalCount ,am,ph,mask,sc)
% [trainData,count] = AddTrainData(trainDataln,signalCount ,am,ph,mask,sc)

% Author: Felix Thomsen
% adds train data trainDataln for signalCount different images to new
% train data using am,ph,mask,sc, where each training data set has same size

% count/(signalCount +1)

countIn = size(trainDatalIn.signals ,h,1);
scales = size(trainDataln.signals ,2);
count = ceil(countIn/signalCount);
[trainDataNew ,countNew] = CreateTrainData(am,ph,mask,sc,count);
if count "= countNew

countIn = min(countNew*signalCount ,countIn);

trainDataln .signals = ReduceTrainDataSize(countIn,trainDataln.signals);
end ;
count = countIn+countNew;
trainData .signals = zeros(count,scales ,14);
trainData .signals (1:countIn,:,:) = trainDataln.signals(:,:,:);
trainData.signals ((countIn+1) :(countIn+countNew) ,:,:) = trainDatalNew.signals;
trainData .limits = trainDataNew.limits;
for j=1:3

for s=1:scales

112

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

© o N O Ut W N

e e e e e
DO W N = O

© o N O Ut s W N

= = =
N = O

trainData .limits (j,1,s)
trainDataln.limits (j

trainData .limits (j,2,s)

A.2. Scale Space Segmentation Filter

min(trainDataNew.limits(j,1,s),...

1,8));

max (trainDataNew.limits(j,2,s),...

trainDataln.limits(j,2,s));

end ;
end ;
end
function signals = ReduceTrainDataSize(countNewIndices ,signalsIn)
countIn = size(signalsIn,1);
scales = size(signalsIn,2);
signals = zeros(countNewIndices ,scales ,14);
factor = countIn / countNewIndices;

for i=1:countNewIndices

signals (i,:,:) = signalsIn(round(i * factor),:,:);
end ;
end
Listing A.11: TransformMask.m
function tMask = TransformMask(mask,offsetIn,offsetOut)

% tMask = transMask (mask,offsetIn,offset0Out)

% Author: Felix Thomsen

% transforms mask by only maintaining positive points

inside the range defined by

% offetIn and negative points inside the range defined by offsetOut. Each

% offset is defined by x-axis distance to the border between positive and

% negative points. The mask has to consist of one positive vertical strand.

% A value bigger than the maximal range of a region is cut down to the maximal

% valid value.
tMask = double (mask);
if (offsetIn~=0)

tMask (imerode (mask,strel (’square’,(offsetIn*2)+1))==1) = -1;

end ;

if (offsetOut ~= 0)

tMask (imdilate (mask,strel(’square’,(offsetOut*2)+1))==0) = -1;

end ;

Listing A.12: GetBOneScale.m

function bOneScale = GetBOneScale(at,knowledgeEntry)

% bOneScale = GetBOneScale(at,knowledgeEntry)

% Author: Felix Thomsen

% calculates b-Matrix for one scale interval with

% size(bOneScale) = size(at) and

% knowledgeEntry = [c,w,w_f~1,w_f r,m]

if (knowledgeEntry(3)<=0) && (knowledgeEntry (4) <=0)

bOneScale = GetBandPass (at,knowledgeEntry);

else

bOneScale = GetBandPassFuzzy(at,knowledgeEntry);

end ;

if knowledgeEntry(5) "=1

113

Appendix A. Code

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

© o0 N O Ut s W N~

—_ e e =
AW N~ O

© o0 N O Ut s W N~

=
= o

bOneScale = bOneScale.*knowledgeEntry(5);
end ;

end

function bOneScale = GetBandPass (at,knowledgeEntry)

bOneScale = zeros(size(at));

k =[knowledgeEntry (1) -knowledgeEntry(2) ,knowledgeEntry (1) +knowledgeEntry(2)];

bOneScale ((k(1)<at) & (at<k(2))) = 1;

end

function bOneScale = GetBandPassFuzzy(at,knowledgeEntry)

bOneScale = zeros(size(at));

k = [knowledgeEntry(1)- knowledgeEntry(2) - knowledgeEntry(3),... 7 posi
knowledgeEntry (1) - knowledgeEntry(2) + knowledgeEntry(3),... % pos2
knowledgeEntry (1) + knowledgeEntry(2) - knowledgeEntry(4),... 7’ pos3

knowledgeEntry (1) + knowledgeEntry(2) + knowledgeEntry(4)]; % pos4
bOneScale (k(1)<at & at<k(2)) = (at(k(l)<at & at<k(2)) - k(1))./(k(2)-k(1));
bOneScale (k(2)<=at & at<=k(3)) = 1;
bOneScale (k(3)<at & at<k(4)) = (k(4) - at(k(3)<at & at<k(4)))./(k(4)-k(3));

end

Listing A.13: GetRecBasis.m
function recBasis = GetRecBasis (amplitude ,phase,kind)
% recBasis = GetRecBasis (amplitude ,phase,kind)

% Author: Felix Thomsen
% Calculates reconstruction basis using amplitude and phase for
% reconstruction kind = kind in {1,2,3,4%}

switch kind

case 1; recBasis = amplitude .* cos(phase);

case 2; recBasis = cos(phase);

case 3; recBasis = amplitude .*x abs(cos(phase));
case 4; recBasis = abs(cos(phase));

otherwise ;
error (’wrong kind in GetRecBasis: kind=%i’,kind);
recBasis = Nal;

end ;

Listing A.14: Load TestImageSpine.m

function [am,ph,mask,im,sc,maxSize] = LoadTestImageSpine (number)
% [am,ph,mask,im,sc] = LoadTestImageSpine (number)
% Author: Felix Thomsen
% Loads signals for the spine photographs
% number in {1,...,95%}
maskX = 0;
maskY = 0.092;
depth = 15;
if number <10
imSource = [’spine/b0’,int2str (number),’.tif’];

maSource = [’spine/m0’,int2str (number),’.tif’];

114

12
13
14
15
16
17
18
19
20
21
22
23
24

© 0 N O Ut W N

I N B e o S S S S
—_ O © 0 N O Utk WwWw N = O

© 0 N O Ut s W N

=
= o

A.2. Scale Space Segmentation Filter

else
imSource = [’spine/b’,int2str (number),’.tif’];
maSource = [’spine/m’,int2str (number),’.tif’];
end ;

sprintf (imSource)

im = imread (imSource);

im = double(im(:,:,1))./255;

mask = imread (maSource);

mask = (double(mask(:,:,1))./100)>1;

maxSize = maskY*size(im,1l)+maskX*size(im,2) ;

[am,ph,sc] = Al11AS(im,depth,maxSize);
am(isnan(am))=0;

ph(isnan(ph))=0;

Listing A.15: Load TrainDataSpine.m

function [trainDatal,trainDataE] = LoadTrainDataSpine (numbers)
% [trainData0,trainDataE] = LoadTrainDataSpine (numbers)
% Author: Felix Thomsen

% generates train data for specific images and masks

% numbers = {number(1),...,number (n)}, number (i) in {1,...,95}
length = size(numbers ,1)*size(numbers ,2);

count = 140000/ 1length;

[am,ph,mask,im,sc,maxSize] = LoadTestImageSpine (numbers (1));
mask2Number = ceil(maxSize/6) ;

trainData0 = CreateTrainData(am,ph,mask,sc,count);

trainDataE = CreateTrainData(am,ph,...

TransformMask (mask ,mask2Number ,mask2Number),sc,count) ;
clear am ph sc im

for i=2:length

[am,ph,mask,im,sc,maxSize] = LoadTestImageSpine (numbers (i));
mask2Number = ceil(maxSize/6) ;
trainData0 = AddTrainData(trainData0,i-1,am,ph,mask,sc);

trainDataE = AddTrainData(trainDataE,i-1,am,ph,...
TransformMask (mask ,mask2Number ,mask2Number) ,sc);

clear am ph sc im

end ;

Listing A.16: Load TestImageLiver.m
function [am,ph,mask,im,sc,maxSize] = LoadTestImagelLiver (number)
% [am,ph,mask,im,sc] = LoadTestImagelLiver (number)

% Author: Felix Thomsen
% Loads signals for the liver photographs

% number in {11,...,107} or {202,...,298%}
maskX = 0;
maskY = 0.1;

depth = 15;
if number <100
imSource = [’liver/stackl/image0’,int2str (number),’.tif’];

maSource = [’liver/stackl/m0O’,int2str (number),’.tif’];

115

Appendix A. Code

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

© o0 N O Ut B W N~

I N I N R i e T S ST
N —m O © 00 N O Ot b= W N = O

elseif number <200

else

end ;

sprintf (imSource)

im =
im =
mask

mask

maxSize

imSource

maSource

imSource

maSource

[?liver/stackl/image’,int2str (number),’.tif’];

[’liver/stackl/m’,int2str (number) ,’.tif’];

[?liver/stack2/image’,int2str (number),’.tif’];

[?’liver/stack2/m’,int2str (number),?’.tif’];

imread (imSource) ;

double (im(:,:,1))./255;

imread (maSource) ;

(double (mask(:,:,1))./100) >1;

= maskY*size(im,1)+maskX*size(im,2) ;
A11AS (im,depth ,maxSize) ;

[am,ph,sc] =

am(isnan(am))=0;

ph(isnan(ph))=0;

Listing A.17: LoadTrainDataLiver.m

function [trainData0,trainDataE] = LoadTrainDatalLiver (numbers)

% [trainData0 ,trainDataE] = LoadTrainDataliver (numbers)

% author:

% generates

Felix Thomsen

train data for specific images and masks

% numbers = {number (1),...,number(n)}, number (i) im {11,...,107%}
% {202,...,298}

length = size(numbers ,1) *size(numbers ,2);

count 100000/ length;

[am,ph,mask,im,sc,maxSize] = LoadTestImagelLiver (numbers (1));
mask2Number = ceil (maxSize/4);

trainData0 = CreateTrainData(am,ph,mask,sc,count);

trainDataE = CreateTrainData(am,ph,...

clear am ph sc im

TransformMask (mask ,mask2Number ,mask2Number) ,sc, count);

for i=2:1length

end ;

116

[am,ph,mask,im,sc,maxSize] = LoadTestImagelLiver (numbers(i));
mask2Number ceil(maxSize/4);

trainData0 = AddTrainData(trainData0,i-1,am,ph,mask,sc);
trainDataE = AddTrainData(trainDataE,i-1,am,ph,...

TransformMask (mask ,mask2Number ,mask2Number),sc);

clear am ph sc im

or

A.2. Scale Space Segmentation Filter

Create Training Scheme

© o N O Ut s W N

B R B R B R i W W W W W W W oW W oW RN NN NN NN NN =R e e = e
T O R DR = O O OO RE XK =~ O D@ 00 R WN = D © 0 N0 U R W N = O

Listing A.18: LoadTrainScheme.m

function trainScheme = LoadTrainScheme(optimizeKind)

trainScheme = LoadTrainScheme(optimizeKind)
author: Felix Thomsen
Loads data for a training scheme

optimizationKind = [’huge’|’best’|’optimal ’|’fast’|’basic’|’dirty’]

if nargin==

optimizeKind = ’’;
end ;
found = true;
trainScheme .maxImprovements = 2000;
trainScheme .minImprovement = 107-5;

if strcmp(optimizeKind ,’huge?)

n=10;

kF = zeros(5,n%*2);

for i=1:n
kF(:,i) = [(i-0.5)/n,0.5/n,0,0,-1];
kF(:,i+n) = [(i-0.5)/n,0.5/n,0,0,1];

end ;

parametersi = [0,0,1,0.5];

parameters2 = [0,0,1,5,0.5];

trainScheme .minImprovement = 10°-6;

trainScheme .maxImprovements = 10000;

elseif strcmp(optimizeKind ,’best?’)

kF = [0.5,0.35,0,0,1;0.5,0.35,0,0,-1]";
parametersi = [1,1,0,0.5];
parameters2 = [1,1,0,5,0.5];

elseif strcmp(optimizeKind ,’optimal’)

kF = [0.5,0.35,0,0,1;0.5,0.35,0,0,-1]";
parametersi = [1,1,0,0.5];
parameters2 = [1,1,0,5,0.5];

trainScheme .maxImprovements = 1000;

elseif strcmp(optimizeKind,’fast’)

kF = [0.5,0.35,0,0,1;0.5,0.35,0,0,-1]";
parametersl = [1,1,1,0.5];
parameters2 = [1,1,1,2,0.5];

trainScheme .maxImprovements = 500;

elseif strcmp(optimizeKind ,’basic’)

kF = [0.5,0.35,0,0,1;0.5,0.35,0,0,-1]";
parametersi = [1,0,1,0.5];

parameters2 = [1,0,1,5,0.5];
trainScheme .minImprovement = 107-4;

trainScheme .maxImprovements = 500;

elseif strcmp(optimizeKind,’dirty?)

kF = [0.5,0.35,0,0,1;0.5,0.35,0,0,-1]";
parametersl = [1,0,1,0.5];
parameters2 = [1,0,1,5,0.5];

trainScheme .minImprovement = 10~-4;

117

Appendix A. Code

48 trainScheme .maxImprovements = 100;

49 else fprintf(’LoadTrainScheme: Undefined optimize kind - use ’’fast’’ instead.\n?’)
50 trainScheme = LoadTrainScheme(’fast?’);

51 found = false;

52 end;

53 if found

54 trainScheme .knowledgeFunction = kF;

55 trainScheme .parametersl = parametersl;
56 trainScheme .parameters2 = parameters2;
57 end;

1-Dimensional Cost Functions

Listing A.19: Evaluate.m

function [cost,cV] = Evaluate (rec,kind)

% [cost,compareVector] = Evaluate (rec,kind,parameters)

% author: Felix Thomsen

% calculates eval for rec and kind in [-100,100] with p=mod(kind,1) and
epsilon = (kind-mod(kind,1))/100 eval_2 is evaluated if kind=0

% eval -> 1 => good value

% cost > 0 . Be rec_1 better rec_2 -> cost(rec_2)-cost(rec_1)>=1

% rec(:,1) = positive points, rec(:,2) = negative points

© 0 N O U W N =
==

% cost = l-eval

10 % compareVector = [sep,1/delta,M(rec{pos}),M(rec{neg}), eval{pos},eval{neg}]
11 if nargin == 1

12 kind = 0;

13 end;

14 ¢V = zeros(6,1);

15 for i=1:2

16 cV(i+2) = mean(rec(:,i));

17 end;

18 ¢cV(1)= mean(cV(3:4));

19 cV(5) = mean(double(rec(:,1)>cV(1)));

20 cV(6) = mean(double(rec(:,2)<=cV(1)));

21 if kind== %eval_2

22 cost = 1-min(cV(5:6));

23 cV(2) = size(rec,1);

24 elseif (kind~=0) && (abs(kind)<100) %eval_1

25 p = mod(kind,1);

26 epsilon =(kind-p)/100;

27 cost = 1 - (cV(B)#*p+cV(6)*(1-p)-epsilon*abs(cV(5)*p-cV(6)*(1-p)));
28 % take a mathematical false value due to performance of
29 % postprocessing , only correct for kind = 0.5

30 % right value: [m,n] = divident&Divisor (p)

31 % delta = ged(m,n) / (n * size(rec,1));

32 cV(2) = 2 * size(rec,1);

33 else error(’Evaluate: Undefined evaluation kind: %f’,kind);
34 end;

118

© o N O Utk W N

e e e e e e
0 N O Ut W N = O

A.2. Scale Space Segmentation Filter

Listing A.20: EvaluateRec.m

function cost = EvaluateRec (rec,mask,kind)
% cost = EvaluateRec (rec,mask ,kind)
% Author: Felix Thomsen
% Calculates cost for a reconstructed image and a mask containing 1 for
% object and 0 for background. Value ’kind’ is as in Evaluate.
pos = (mask==1);
neg = (mask==0);
sep = 0.5;
evalP = sum(((rec(:)>sep)&pos(:))) / sum(pos(:));
evalN = sum(((rec(:)<=sep)&neg(:))) / sum(neg(:));
if kind== Ycost_{max}
cost = 1-min(evalP,evall);
elseif (kind~=0) && (abs(kind)<100) Ycost_{p,epsilon}
p = mod(kind,1);
epsilon =(kind-p)/100;
cost = 1 - (evalP#p+evalN*(1-p)-epsilon*abs(evalP*p-evall*x(1-p)));
else error(’Evaluate: Undefined evaluation kind: %f’,kind);

end ;

119

Appendix A. Code

Train Knowledge

© o N O Ut s W N

B R B R B R i W W W W W W W W W oW N NN NN NN NN =R e e = e e
T O R DR = O 0 OO RE BR =~ O D 00 R WN = D0 N0 U W N = O

Listing A.21: TrainKnowledge.m

function [knowledge,cost,newRec] =TrainKnowledge(trainData,trainScheme ,bknowledge)
% [knowledge ,cost,newRec] =TrainKnowledge(trainData,trainScheme ,knowledge)

% author: Felix Thomsen

% computes knowledge, cost>0 and final reconstruction

% needs trainData, optional trainScheme and optional start knowledge

items = size(trainData.signals ,1);
scales = size(trainData.signals ,2);
signalsOpt = zeros(items,3,2);

if nargin<2

trainScheme = LoadTrainScheme();
end ;
kF = trainScheme .knowledgeFunction;
maxKnowledgeEntries = size(kF,2);

if nargin<3
knowledgeEntriesIn = zeros(5,scales,3,4,maxKnowledgeEntries);
else
knowledgeEntriesIn = knowledge .entries;
end ;
knowledgeEntries=initialiseKnowledge (trainData .limits ,kF,knowledgeEntriesIn);
for at=1:3
for scale=1:scales
signalsOpt (:,1,1:2) = trainData.signals(:,scale,(at*x2-1):(at*2));
signalsOpt (:,2,1:2) = trainData.signals(:,scale,(at*2+5):(at*2+6));
for rec=1:4
for kE=1:maxKnowledgeEntries
curKnowledge = knowledgeEntries(:,scale,at,rec,kE);
if curKnowledge (6) >0
signalsOpt = updateSignals(signalsOpt,curKnowledge);
end ;
end ;
end ;
end;
end ;
cost = 0.5;
offset=0;
improvements = 0;
unusedLoops =0;
maxLoops = scales*maxKnowledgeEntries*3%4;
at = 0;
rec = 0;
scale =0;
kE = 0;
improvement = ones(1,100);
printSteps = 100;
print = true;
% Main loop

while (improvements <trainScheme .maxImprovements)&&...

120

A.2. Scale Space Segmentation Filter

(unusedLoops <maxLoops) && (mean(improvement)>trainScheme .minImprovement)

[at,rec,scale ,kE] = increaseloop(at,rec,scale,kE,scales ,maxKnowledgeEntries);
signalsOpt (:,1,1:2) = trainData.signals(:,scale,at*2-1:at*2);

signalsOpt (:,2,1:2) = trainData.signals(:,scale,rec*2+5:rec*2+6);
curKnowledge = knowledgeEntries(:,scale,at,rec,kE);

curLimits = trainData.limits(at,:,scale);

if curKnowledge (6)==0 7 inactive

curSignalsOpt = signalsOpt;

[curKnowledge ,curOffset,curCost ,found] =...
TrainKnowledgeEntry(curKnowledge (1:5) ,zeros (5,1),...
curSignalsOpt ,curlLimits,trainScheme .parametersil);

else

curSignalsOpt = resetSignals(signalsOpt,curKnowledge);

[curKnowledge ,curOffset ,curCost ,found] =...

TrainKnowledgeEntry (curKnowledge(1:5) ,curKnowledge(1:5),...
curSignalsOpt ,curlLimits,trainScheme .parameters2);

end ;

if curCost<cost

unusedLoops = 0;

improvement (2:100) = improvement (1:99) ;

improvement (1) = cost-curCost;

else

unusedLoops = unusedLoops+1;

end ;
if found && (curCost <=cost)

improvements = improvements + 1;

if print && (mod(improvements -1,printSteps)==0)
fprintf (?%i:\tcost*100=%f,\td*10°5=)f, \timprx10-5=J%f,\tloop=%i\n’,...

improvements ,curCost *100, (cost-curCost)*100000, ...
(mean(improvement)-trainScheme .minImprovement)*100000, unusedLoops)
end;

cost = curCost;

offset = curOffset;

signalsOpt = updateSignals(curSignalsOpt ,curKnowledge);

knowledgeEntries(1:5,scale,at,rec,kE) = curKnowledge(1:5);

knowledgeEntries (6,scale,at,rec ,kE) = knowledgeEntries(6,scale,at,rec,kE)+1;

end ;
end ;
if print
if (improvements >=trainScheme .maxImprovements)
fprintf (’Exit code=1. Maximal number of iterations reached.\n’)
fprintf (°%i:cost*100=%f’,improvements ,cost*100)
elseif (mean(improvement)<=trainScheme .minImprovement)
fprintf (’Exit code=2. Too less improvement .\n’)
fprintf (*%i:cost*100=%f\n’,improvements ,cost*100)
else

fprintf (’Exit code=0. Regular exit.\n’)

fprintf (?%i:cost*100=%f\n’, improvements ,cost*100)

end ;
end ;

newRec = zeros(items,2);

121

Appendix A. Code

99 newRec(:,1:2) = signalsOpt (:,3,1:2);
100 newRec = newRec - offset;

101 % create final knowledge

102 knowledge .entries = zeros(5,scales,3,4,maxKnowledgeEntries);

103 for at=1:3

104 for rec=1:4

105 for scale=1:scales

106 for kE = 1: maxKnowledgeEntries

107 k = knowledgeEntries(:,scale,at,rec,kE);

108 % add only valid knowledge entries

109 if (k(6)"=0)&&(k(2)>0)&&(k(5)~=0)

110 knowledge .entries (1:5,scale ,at,rec ,kE) = k(1:5);

111 end ;

112 end ;

113 end ;

114 end ;

115 end;

116 knowledge .offset = offset;

117 [knowledge ,newRec] = normaliseKnowledge (knowledge ,newRec);

118 end

N A e e i
120) outsourced methods for TrainKnowledge

D R A e e

122 function [at,rec,scale,kE]l=increaseLoop(at,rec,scale,kE,scales ,maxKnowledgeEntries)
123 % Increases loop parameters. You are able to abort the loop with regular
124 J instructions and get plainer code.

125 kE = mod(kE,maxKnowledgeEntries)+1;

126 if kE==

127 scale = mod(scale,scales)+1;
128 if scale==

129 rec = mod(rec,4)+1;

130 if rec==

131 at = mod(at,3)+1;
132 end ;

133 end ;

134 end;

135 end

136

137 function knowledgeEntries = initialiseKnowledge(limits ,knowledgeFunction,...
138 knowledgeEntriesIn)

139 % maps old knowledge entries to new ones.

140 % if old knowledge ~= empty : knowledge entry = old knowledge entry
141 % otherwise: knowledgeFunction ,limits -> knowledge entry

142 [foo,scales ,fo02,f003,maxKE] = size(knowledgeEntriesIn);

143 knowledgeEntries = zeros(6,scales,3,4,maxKE);

144 maxKE2 = size(knowledgeFunction ,2);

145 for scale=1:scales

146 for at=1:3

147 for rec = 1:4

148 for kE=1:maxKE

149 k = [knowledgeEntriesIn(:,scale,at,rec,kE);1];

122

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

if (k(5)==0)

curlimits

A.2. Scale Space Segmentation Filter

(k(2)==0)

limits(at,:,scale);

kE2 = min(maxKE2 ,kE) ;

k(1) = curlLimits (1) + knowledgeFunction(1l,kE2)...
* (curLimits (2)-curLimits (1));

k(2) = knowledgeFunction(2,kE2)...

* (curlLimits (2) -curLimits (1));

k(3:4) = knowledgeFunction(3:4,kE2) *k(2);
k(5) = knowledgeFunction(5,kE2);
k(6) = 0;
end ;
knowledgeEntries(:,scale,at,rec ,kE) = k;
end ;
end ;
end ;
end ;
end

function signalsOpt = updateSignals(signalsOpt,knowledgeEntry)

% applies knowledgeEntry
for i=1:2

signalsOpt (:,3,1i) = signalsOpt (:,3,i) +...
signalsOpt (:,2,1i) .* GetBOneScale(signalsOpt (:,1,i),knowledgeEntry(1:5));

end ;

end

function signalsOpt = resetSignals(signalsOpt,knowledgeEntry)

% subtracts knowledgeEntry

signalsOpt = updateSignals(signalsOpt,[knowledgeEntry(1:4) ;-knowledgeEntry(5)]1);

end

function [knowledge ,rec] = normaliseKnowledge (knowledge ,rec)

% "normalises" knowledge with

% mean(recPos) = 1, mean(recleg)

= -1

scales = size(knowledge .entries ,2);

mKE = size(knowledge .entries ,5);

factor = 2/(mean(rec(:,1))-mean(rec(:,2)));

rec = factor.*rec;

for scale=1:scales
for kE=1:mKE

for at=1:3

for recKind=1:4

entry = knowledge .entries (:,scale,at,recKind ,kE);

knowledge .entries (5,scale ,at,recKind ,kE)= entry(5)*factor;

end ;
end;
end ;
end ;

offset = knowledge .offset;

knowledge .offset = offset*xfactor;

end

123

Appendix A. Code

P B A e

202 7 Train knowledge entry

DI A e e e

204 function [knowledgeEntry ,offset,cost,found] =...

205 TrainKnowledgeEntry (knowledgeEntry ,knowledgeEntry0ld ,signals ,limits ,parameter)
206 7/ [knowledgeEntry ,offset,cost,found] =...

207 TrainKnowledgeEntry (knowledgeEntry ,knowledgeEntry0ld ,signals ,limits ,parameter)

208 7 signals(:,1,1) = atPos, signals(:,1,2) = atleg,

209 7 signals(:,2,1)= recBasisPos, signals(:,2,2)= recBasisNeg,
210 7 signals(:,3,1) = rec0ldPos, signals(:,3,2) = recOldNeg

211 % limits (1) = minAt, limits(2) = maxAt

212 J, knowledgeEntry = startKnowledge

213) parmeter = [b,f,m,evTypel ,evType2]

214 % cost : costl + cost2/delta2

215 7/ knowledgeEntry(1:5) = [c’,w’,f_w~1l’,f_w-r’,m’]

216 % -> knowledgeNew = [c’,w’,f_w~1l’,f_w-r’,m’] .* “[b,b,f,f,m] +
217 % [ec,w,f_w~l,f_w"r,m] .* [b,b,f,f,m]

218 type = parameter (1) + 2%parameter (2) + 4*parameter (3);

219 parameterSize = size(parameter ,2);

220 evType = parameter (4:parameterSize);

221

222 startCost = getStartValues(signals ,evType,limits ,6 knowledgeEntry01d);
223 maxFunEvals = 20;

Y R e
225 % Optimization

P T A T e
227 switch type

228 case 1; 7 100 bandpass

229 value = fminsearch (@(minimiser)...

230 costFunction(signals ,evType ,startCost,limits,...

231 [minimiser (1:2) ;knowledgeEntry(3:5)]),knowledgeEntry(1:2),...
232 optimset (’MaxFunEvals ’> ,maxFunEvals ,’Display’,’off’));

233 knowledgeEntry(1:2) = value(1:2);

234 case 2; 7 010 fuzzy

235 value = fminsearch (@(minimiser)costFunction(signals ,evType,...
236 startCost ,limits ,[knowledgeEntry (1:2) ;...

237 minimiser ;knowledgeEntry(5)]) ,knowledgeEntry(3:4),...

238 optimset (’MaxFunEvals ’> ,maxFunEvals ,’Display’,’off’));

239 knowledgeEntry(3:4) = value(1:2);

240 case 3; 7 110 bandpass, fuzzy

241 value = fminsearch (@(minimiser)...

242 costFunction(signals ,evType ,startCost,limits,...

243 [minimiser (1:4) ;knowledgeEntry(5)]) ,knowledgeEntry(1:4),...
244 optimset (’MaxFunEvals ’>,maxFunEvals ,’Display’,’off’));

245 knowledgeEntry (1:4) = value(1:4);

246 case 4; 7 001 maxValue

247 value = fminsearch (@(minimiser)...

248 costFunction(signals ,evType ,startCost,limits,...

249 [knowledgeEntry (1:4) ;minimiser]) ,knowledgeEntry(5),...

250 optimset (>MaxFunEvals ’> ,maxFunEvals ,’Display’,’off’));

251 knowledgeEntry(5) = value;

124

A.2. Scale Space Segmentation Filter

252 case 5; J 101 bandpass, maxValue

253 value = fminsearch (@(minimiser)...

254 costFunction(signals ,evType ,startCost,limits,...

255 [minimiser (1:2) ;knowledgeEntry(3:4) ;...

256 minimiser (3)]),[knowledgeEntry (1:2);knowledgeEntry(5)],...
257 optimset (’MaxFunEvals ’> ,maxFunEvals ,’Display’,’off?));
258 knowledgeEntry (1:2) = value(1:2);

259 knowledgeEntry(5) = value(3);

260 case 6; 7 011 fuzzy, maxValue

261 value = fminsearch (@(minimiser)...

262 costFunction(signals ,evType ,startCost,limits,...

263 [knowledgeEntry (1:2) ;minimiser]) ,knowledgeEntry (3:5) ,...
264 optimset (’MaxFunEvals ’> ,maxFunEvals ,’Display’,’off?));
265 knowledgeEntry (3:5) = value(1:3);

266 case 7; % 111 bandpass, fuzzy, maxValue

267 value = fminsearch (@(minimiser)...

268 costFunction(signals ,evIype,startCost,limits,...

269 minimiser) ,knowledgeEntry ,...

270 optimset (’MaxFunEvals ’> ,maxFunEvals ,’Display’,’off?));
271 knowledgeEntry = value;

272 otherwise; 7 no change

273 end;

274 knowledgeEntry = map2validKnowledge (knowledgeEntry ,limits);

275 ev = costFunction(signals ,evType,startCost,limits ,knowledgeEntry);
276 [cost,compareVector] = CallEvaluate(signals ,knowledgeEntry ,evType (parameterSize -3));

277 offset = compareVector(1);
278 found = (ev<=0);

279 end

P A e e e
281 ¥ knowledgeEntry design constraints

P A A e e

283 function knowledgeEntry = map2validKnowledge(knowledgeEntry ,limits)
284 J, Computes valid knowledgeEntry using knowledgeEntry and limits
285 % c¢c,m in R, w,w_f~l,w_f~r in R>=0

286 4 w_f~l<w, w_f r<w

287 height = abs(knowledgeEntry(5));

288 maxHeight = 10;

289 minHeight = 0.01;

290 if height ~=0

291 height = max(min(height ,maxHeight) ,minHeight);

292 end;

293 knowledgeEntry(5) = sign(knowledgeEntry(5)) * height;

294 knowledgeEntry(2:4) = abs(knowledgeEntry(2:4));

295 knowledgeEntry(3) = min(knowledgeEntry(2) ,knowledgeEntry(3));
296 knowledgeEntry(4) = min(knowledgeEntry(2),knowledgeEntry(4));
297 1lower = knowledgeEntry (1) -knowledgeEntry(2)-knowledgeEntry(3);
298 higher = knowledgeEntry(1)+knowledgeEntry (2)+knowledgeEntry(4);
299 if (lower>1limits(2))||(higher<limits (1))

300 knowledgeEntry (1) = (limits (1)+1limits(2))/2;
301 else
302 lower = knowledgeEntry(1)-knowledgeEntry(2)+knowledgeEntry(3);

125

Appendix A. Code

303 higher = knowledgeEntry(1l)+knowledgeEntry(2)-knowledgeEntry(4);

304 if lower < limits (1)

305 knowledgeEntry(3) = 0;

306 end ;

307 if higher > limits (2)

308 knowledgeEntry(4) = 0;

309 end ;

310 lower = knowledgeEntry (1) -knowledgeEntry(2)+knowledgeEntry(3);

311 if lower < limits (1)

312 center=(knowledgeEntry (1) +knowledgeEntry(2) -knowledgeEntry (3)+1limits (1))/2;
313 width=(knowledgeEntry (1) +knowledgeEntry (2) +knowledgeEntry(3) -1limits (1)) /2;
314 knowledgeEntry (1) = center;

315 knowledgeEntry(2) = width;

316 end ;

317 higher = knowledgeEntry(1l)+knowledgeEntry(2)-knowledgeEntry(4);

318 if higher > limits(2)

319 center=(knowledgeEntry (1) -knowledgeEntry(2) +knowledgeEntry (4)+1limits (2))/2;
320 width=(-knowledgeEntry (1) +knowledgeEntry (2) +knowledgeEntry (4)+1limits (2))/2;
321 knowledgeEntry (1) = center;

322 knowledgeEntry (2) = width;

323 end ;

324 end;

325 knowledgeEntry(2:4) = abs(knowledgeEntry(2:4));

326 end

R A e e e

328 7/ cost functions for trainKnowledgeEntry

R I A e e

330 function [cost,deltalnv]=EvaluateCVOrKE(compareVector ,knowledgeEntry ,limits ,evType)
331 7 computes evaluation based only on knowledgeEntry design and limits for
332 % evType in {i1=minimise ,2=maximisel}

333 7 computes evaluation based only on compareVector for

334 7/ evType in {3=minimise ,4=maximise ,b5=near 2} distance between positive
335 7 and negative points

336 % supplies empty evaluation for evType =0

337 maxHeight= 10;

338 maxWidth = limits(2)-limits (1) ;

339 distance = abs(compareVector(4)-compareVector(3));

340 deltalInv = 10000;

341 switch evType

342 case 0; % no action

343 cost = 0;

344 deltalnv = 1;

345 case 1; % minimise

346 cost = abs(knowledgeEntry(5)*knowledgeEntry(2))/ (maxHeight *maxWidth);
347 case 2;) maximise

348 cost = abs(knowledgeEntry(5)*knowledgeEntry(2))/-(maxHeight *maxWidth)+1;
349 case 3; /minimise

350 cost = abs(1/exp(distance)-1);

351 case 4; YJmaximise

352 cost = 1/exp(distance);

353 case 5;) distance near 2

126

A.2. Scale Space Segmentation Filter

354 cost = abs(1/exp(abs(distance-2))-1);

355 otherwise ;

356 error (’EvaluateCVOrKE: Undefined evType: %f’,evType);
357 end;

358 9 discretise cost:

359 cost = (floor(cost*deltalInv))/deltalnv;

360 end

361

362 function [cost,compareVector] = CallEvaluate(signals ,h6knowledgeEntry ,evType)
363 % calls Evaluate by firstly computing all relevant parameters

364 rec = zeros(size(signals ,1),2);

365 for i=1:2

366 rec(:,i) = signals(:,3,1i) +...

367 signals (:,2,1i) .*GetBOneScale(signals (:,1,1i) ,knowledgeEntry(1:5));
368 end;

369 [cost,compareVector] = Evaluate (rec,evType);

370 end

371

372 function startCost = getStartValues(signals ,evType,limits,knowledgeEntry)

373 ¥ computes start costs to optimize from

374 knowledgeEntry = map2validKnowledge (knowledgeEntry ,limits);
375 n = size(evType ,2);

376 startCost = zeros(n,1);

377 [startCost (n),compareVector] = CallEvaluate(signals ,6knowledgeEntry ,evType(n));
378 for i=1:mn-1

379 startCost (i) = EvaluateCVOrKE(compareVector ,knowledgeEntry ,limits ,evType(i));
380 end;

381 end

382

383 function [cost,costValues]=costFunction(signals ,evType,startCost,limits,...

384 knowledgeEntry)

385 I n-dimensional cost function:

386) cost = costl-startCostl + deltaInv2(cost2-startCost2 +
387 % deltaInv3(...(costn-startCostn)...))

388 I cost <0 -> better value, cost>0 worse value

389 % most right evType stands for evaluation in CallEvaluate
390 % all others for EvaluateCVOrKE

391 knowledgeEntry = map2validKnowledge (knowledgeEntry ,limits);
392 n = size(evType ,2);

393 <costValues = zeros(n,1);

394 [costValues (n),compareVector] = CallEvaluate(signals ,6 knowledgeEntry ,evType(n));
395 <cost = costValues (n)-startCost (n);

396 deltalnv = compareVector(2);

397 for i=n-1:-1:1

398 cost = deltalnv * cost;

399 [costValues (i) ,deltalInv] =...

400 EvaluateCVOrKE(compareVector ,knowledgeEntry ,limits ,evType(i));
401 cost = cost + costValues (i) - startCost (i);

402 end;

403 end

127

Appendix A. Code

Train Multi-Knowledge

trainScheme

author: Felix

© o0 N O Ut s W N
=

if nargin<2

10 trainScheme = LoadTrainScheme();

11 end;

12 if nargin<3

13 maxIterations = 100;

14 end;

15 items = size(trainData.signals ,1);

16 scales = size(trainData.signals ,2);

17 newItems = ceil(items/3);

18 curCosts = ones(maxIterations ,1);

19 % first knowledge

20 [curMultiKnowledge (maxIterations),curCosts (1),curRec] =...

21 TrainKnowledge (trainData,trainScheme) ;

22 curMultiKnowledge (1) = curMultiKnowledge(maxIterations);

23 binaryRecPos = [(curRec(:,1)>0)-0.5,(1:items) *];

24 binaryRecNeg = [(curRec(:,2)<=0)-0.5,(1:items)’];

25) optimisation - loop

26 for iteration=2:maxIterations

27 sortedPos = sortrows (binaryRecPos ,1);

28 sortedNeg = sortrows (binaryReclNeg ,1);

29

30 % take only these indices which have bad segmentation issues.

31 curNewItems = min(newItems ,max(ceil(sum(binaryRecPos(:,1)<=1)%1.5),...
32 ceil(sum(binaryRecNeg(:,1)<=1)%1.5)));

33 %take indices from sorted Vectors

34 curSignals = zeros(curNewItems ,bscales ,14);

35 for i=1:curNewItems

36 for j=1:7

37 curSignals (i,:,j*2-1)=trainData.signals (sortedPos (i,2),:,j*2-1);
38 curSignals (i,:,j*2)=trainData.signals (sortedNeg(i,2) ,:,j*2);
39 end ;

40 end ;

41 limits = trainData.limits;

42 curTrainData.signals = curSignals;

43 curTrainData.limits = limits;

44 curMultiKnowledge (iteration) = TrainKnowledge (curTrainData ,trainScheme);
45 curRec = ApplyFilter2(trainData,curMultiKnowledge(iteration));

46 binaryRecPos(:,1) = binaryRecPos(:,1) + (curRec(:,1)>0)-0.5;

47 binaryRecNeg(:,1) = binaryRecNeg(:,1) + (curRec(:,2)<=0)-0.5;

128

Listing A.22: TrainMultiKnowledge.m

function [multiKnowledge ,costs,binaryRec]=TrainMultiKnowledge (trainData,...

,maxIterations)

% [multiKnowledge ,costs,binaryRec] =

% TrainMultiKnowledge (trainData,trainScheme ,maxIterations)

Thomsen

% computes set of knowledge sets: multiKnowledge , which has better issues
% concerning separation as only one knowledge set.

% uses trainData, optional trainScheme and maxIterations.

A.2. Scale Space Segmentation Filter

48 binaryRec = [binaryRecPos(:,1),-binaryRecNeg(:,1)]1;

49 curCosts (iteration) = Evaluate (binaryRec ,0.5);

50 fprintf (’TrainMultiKnowledge:%i:training set size=%i’,iteration,curNewItems)
51 fprintf (’,\t current cost*100=%f\n’,curCosts (iteration)*100)

52 end;

53 iteration = find(curCosts==min(curCosts));

54 costs = ones(iteration,1);

55 costs(l:iteration) = curCosts (l1:iteration);

56 multiKnowledge(iteration) = curMultiKnowledge(iteration);

57 for i=1l:iteration-1

58 multiKnowledge (i) = curMultiKnowledge (i);
59 end;

60 end

61

62 function rec = ApplyFilter2(trainData,knowledge)
63 % rec = ApplyFilter2(trainData,knowledge)

64 % author: Felix Thomsen

65 % applies the knowledge set on trainData

66 % very similar to ApplyFilter (am,ph,sc,knowledge)

67 % rec(:,1) = positive points, rec(:,2) = negative points

68 items = size(trainData.signals ,1);

69 scales = size(trainData.signals ,h2);

70 maxKnowledgeEntries = size(knowledge .entries ,5);

71 rec = zeros(items,2);

72 recBasis = zeros(items ,2,scales);

73 att = zeros(items ,2,scales);

74 for recKind=1:4

75 recBasis (:,1,:) = trainData.signals(:,:,(recKind*2)+5);

76 recBasis (:,2,:) = trainData.signals(:,:,(recKind*2)+6);

7 for at=1:3

78 att(:,1,:) = trainData.signals(:,:,at*2-1);

79 att(:,2,:) = trainData.signals(:,:,at*2);

80 for kE=1:maxKnowledgeEntries

81 for scale=1:scales

82 knowledgeEntry = knowledge .entries(:,scale,at,recKind ,kE);
83 if (knowledgeEntry(5) "=0) && (knowledgeEntry(2) >0)
84 rec = rec+GetBOneScale(att(:,:,scale),knowledgeEntry)...
85 .*xrecBasis (:,:,scale);

86 end ;

87 end ;

88 end ;

89 end ;

90 end;

91 rec = rec-knowledge.offset;

92 end

129

Appendix A. Code

Apply Scale Space Segmentation Filter

© o0 N O Ut R W N

NN NN NN NN NN = === = = = =
© 00 N O U W N R O W oo NN Ul R W N = O

Listing A.23: ApplyFilter.m

function rec = ApplyFilter (am,ph,sc,knowledge)
% rec = ApplyFilter (am,ph,sc,knowledge)
% author: Felix Thomsen
% applies the knowledge set on amplitudes am, phases ph, scales sc
[h,w,scales] = size(am);
rec = zeros(h,w);
maxKnowledgeEntries =size(knowledge .entries ,5);
attenuations = zeros(h,w,scales,3);
for kind=1:3
attenuations(:,:,:,kind) = Attenuation (am,ph,sc,kind);
end ;
for recKind=1:4
recBasis = GetRecBasis (am,ph,recKind);
for at=1:3
att = attenuations(:,:,:,at);
for kE=1:maxKnowledgeEntries
for scale=1:scales

% extract one knowledge entry

knowledgeEntry = knowledge .entries(:,scale,at,recKind ,kE);

% if knowledge entry contains any information

if (knowledgeEntry(5) “=0) && (knowledgeEntry(2)>0)
b = GetBOneScale(att(:,:,scale),knowledgeEntry);
rec = rec + b.xrecBasis(:,:,scale);

end;

end ;
end ;
end ;
end ;

rec = rec-knowledge .offset;

130

A.2. Scale Space Segmentation Filter

Listing A.24: ApplyMultiFilter.m

function [binaryRec,rec] = ApplyMultiFilter (am,ph,sc,multiKnowledge)

% [rec,binaryRec] = ApplyMultiFilter(am,ph,sc,multiKnowledge)

% author: Felix Thomsen

% applies several filters on signals am,ph and sc

rec = sum(rec_1,...,rec_n), binaryRec=sum((rec_1>0)-0.5,...,(rec_n>0) -0.5)

knowledgeDepth = size(multiKnowledge ,1)*size(multiKnowledge ,2);

© o N O Ut s W N
=

[h,w,scales] = size(am);
rec = zeros(h,w);
binaryRec = zeros(h,w);
10 attenuations = zeros(h,w,scales ,3);
11 recBasises = zeros(h,w,scales ,4);
12 for at = 1:3
13 attenuations(:,:,:,at) = Attenuation (am,ph,sc,at);
14 end;
15 for rec = 1:4
16 recBasises (:,:,:,rec) = GetRecBasis (am,ph,rec);
17 end;
18 for depth = 1:knowledgeDepth
19 fprintf (°F:%i\t’,depth)
20 if mod (depth,10)==
21 fprintf (’\n?’)
22 end ;
23 maxKnowledgeEntries = size(multiKnowledge(depth).entries ,5);
24 curRec = zeros(h,w);
25 for rec=1:4
26 recBasis = recBasises(:,:,:,rec);
27 for at=1:3
28 att = attenuations(:,:,:,at);
29 for kE=1:maxKnowledgeEntries
30 for scale=1:scales
31 knowledgeEntry = multiKnowledge(depth).entries...
32 (:,scale,at,rec,kE);
33 if (knowledgeEntry(5) "=0) && (knowledgeEntry(2) >0)
34 b = GetBOneScale(att(:,:,scale),knowledgeEntry);
35 curRec = curRec + b.*recBasis(:,:,scale);
36 end ;
37 end ;
38 end ;
39 end ;
40 end ;
41 curRec = curRec - multiKnowledge(depth).offset;
42 rec = rec + curRec;
43 binaryRec = binaryRec + (curRec>0) -0.5;
44 end;

45 fprintf (’\n?’)

131

Appendix A. Code

A.3. Spine - Detection

Sample Code

Listing A.25: SpineDetectionExample.m

1 function [spineCentre,spine] = SpineDetectionExample (knowledgeO ,6knowledgeE)
2 % spineCentre = SpineDetectionExample (knowledge0 ,knowledgeE)
3 % Author: Felix Thomsen

4 7, Example to understand the code structure

5

6 7% Load one test image number 30:

7 [amplitude,phase ,mask,image,scales] = LoadTestImageSpine (30);
8

9 7% Apply the knowledge sets to the signal:

10 recO0 = ApplyMultiFilter (amplitude ,phase,scales,knowledge0);
11 recE = ApplyMultiFilter(amplitude,phase,scales,knowledgeE);
12

13 7/ Take first reduction:

14 region = GetRegion (rec0);

15

16 7/ Take further reduction:

17 closerRegion = GetCloserRegion(recE,region);

18

19 7% Take final segmentation:

20 [spine,spineCentre] = FinalSegmentation(closerRegion ,recE);
21

22 7}, plot the result:

23 [he,we] = size(mask);

24 im2 = zeros(he,we,3);

25 im2(:,:,1) = im .*(TransformMask(mask,3,3)==-1)+(TransformMask(mask,3,3) "=-1);
26 im2(:,:,2) = im .*(TransformMask(mask,3,3)==-1);

27 im2(:,:,3) = im .*(TransformMask(mask,3,3)==-1);

28

29 im3 = double(spine) ./2 + double(mask)./4;

30 im3(imdilate (spineCentre ,strel(’square’,5))==1) = 1;

31 subplot (1,2,1);

32 imshow (im2);

33 subplot (1,2,2);

34 imshow (im3);

35 colormap (jet);

132

A.3. Spine - Detection

Helper functions

© o N O Ut s W N

B R S R B R i W W W W W W W oW W oW NN NN NN NN NN = s e e = e e e
T o R D= O O OO RE BR =, O @ 00 R WM = D0 N0 U WN = O

Listing A.26: FindBlobs.m

function [binImage ,maxTallness] = FindBlobs (binImage)
% [binImage ,maxTallness] = FindBlobs (binImage)
% Author: Felix Thomsen

% Searches connected objects with the mehtod ’Tallness’

[h,w] = size(binImage);
maxTallness = 0;
for yy=1:h
for xx=1:w
if binImage (yy,xx) == 1
[tallness ,binImage] = Tallness (binImage,yy,xx,’links’);
maxTallness = max(tallness,maxTallness);
end ;
end ;
end ;
binImage = -binlmage;
end
function [tallness,signal] = Tallness (signal,posy,posx,dir)

% [tallness,signal] = Tallness (signal ,posy,posx,dir)

% Author: Felix Thomsen

% searches connected objects with Tschebycheff neighbourhood at position
% posy,posx in the binary image, directed in ’links’|’rechts’.

[h,w] = size(signal);

signal = double(signal);

% Freeman coded direction : left up = 0, up = 1 etc.

if strcemp(dir,’links?)

direction = 6; J left down
else 7 ’rechts’ = right
direction = 2; J right up;
end ;
dirLeft = ((direction==6)*2)-1; % at ’links’->1, at ’rechts’->-1

lookUpDir = [-1 0 1 1 1 0 -1 -1;
4 -1 -1 0111 01;

startpos = [posy,posx];
pos = startpos;
savePos = pos;

% Wize of the window:
deepIndices = [pos(1l),pos(1l),pos(2),pos(2)];
% mark start position

signal (pos (1) ,pos(2)) = signal(pos (1) ,pos(2))

+ (pos(2) == 1 || signal(pos(1l),pos(2)-1)==0)...
+ (pos(2) == |l signal(pos(1),pos(2)+1)==0)*2;
pos(:) = savePos(:) + lookUpDir(:,direction+1);

looked = 0;
toLookRightStartPos = true;

% Run around the object at the borders

while (pos(1)~=startpos (1) || pos(2)“=startpos(2) || toLookRightStartPos)&&

looked <8

133

Appendix A. Code

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85

© o N O Ot o W N

—
o

if pos(1) == startpos (1) && (pos(2)==startpos(2)+dirLeft)
toLookRightStartPos = false;

end ;

if pos (1) >=1 && pos(2)>=1 && pos(1l)<=h && pos(2)<=w && signal(pos (1) ,pos(2))>0
deepIndices = [min(deepIndices (1),pos(1)),max(deepIndices (2),pos(1)),...

min(deepIndices (3) ,pos (2)) ,max (deepIndices (4) ,pos(2))];
if signal(pos(1),pos(2))==
signal (pos (1) ,pos(2)) = signal(pos(1),pos(2))

+ (pos(2) == 1 || signal(pos(1l),pos(2)-1)==0)...
+ (pos(2) == |l signal(pos(1),pos(2)+1)==0)*2;
end ;
savePos = pos;
direction = mod(direction+2,8);

looked = 0;
else
direction = mod(direction-1,8);
looked = looked + 1;
end ;
pos(:) = savePos(:) + lookUpDir (:,direction+1);
end ;
% add elements
tallness = 0;
open = false;
s2 = signal(deepIndices (1) :deepIndices (2) ,deepIndices (3):deepIndices (4));
for yy = 1l:deepIndices (2)-deepIndices (1)+1
for xx = 1:deeplIndices (4)-deepIndices (3)+1
if s2(yy,xx)>1
open = (s2(yy,xx)==2);
end ;
if (s2(yy,xx)==1 && open)|I|s2(yy,xx)>1
tallness = tallness+1;
s2(yy,xx) = NalN;
end ;
end ;
end ;

s2(isnan(s2)) = -tallness;

signal (deepIndices (1) :deepIndices (2) ,deepIndices (3) :deepIndices (4)) = s2(:,:);

end

Listing A.27: BorderTransform.m
function positions = BorderTransform(image ,bdir)
% positions = BorderTransform(image ,dir)

% Author: Felix Thomsen

% extracts the borders, hence vertical edges in binary signal image.

[h,w] = size(image);
image = double(image);
positions = nan(h,w);
maxPos = 0;

if nargin==

dir = 1;

134

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

© 0 N O Utk W N

I T e e e e e
S © 00 N OOt W NN = O

A.3. Spine - Detection

end ;
if dir==
sW= 2;
eW= w;
dW =1;
else
sW = w-1;
eW = 1;
dWw = -1;
end ;
for hh = 1:h
c = 1;
pos = 0;
for ww=sW:dW:eW
if (¢ == 0)
if image (hh,ww)==
pos = pos+l;
maxPos = max (maxPos ,pos);
positions (hh,pos) = ww;
c = 1;
end ;
else 7 c=1
¢ = image (hh,ww);
end ;
end ;
end ;
positions = positions (:,1:maxPos);
Listing A.28: Height Transform.m
function image = HeightTransform(image)
% image = HeightTransform(image)

% Author: Felix Thomsen
% maps the grey-values of the pixels in one row to the order in [0,1].
% Hence the highest pixel in one row becomes 1 the lowest becomes 0, etc.

image=transform (transform (image));

end
function trans = transform(image)
[h,w] = size(image);

%find n heighest pixels per row:

trans = zeros(h,w);

line = zeros(w,2);

for hh=1:h
line(:,1) image (hh,:);
line(:,2) (0:w-1) ./(w-1);
ss = sortrows (line,1) ;

trans(hh,:) = ss(:,2);

end ;

end

135

Appendix A. Code
Spine-Segmentation Functions

Listing A.29: GetRegion.m

1 function region = GetRegion(recD)

2 % region = GetRegion (recD)

3 % Author: Felix Thomsen

4 7 tries to drop about the half of the background pixels,

5 % which do not contain the object

6 h=size(rec0,1);

7 atomic = h/240;

8 s1 = imopen(HeightTransform(recD)>0.8,strel(’square’,2));

9 [or,ph] = AS(sl,atomic#*8,atomic*16,25) ;

10 phase = HeightTransform(cos(ph));

11 1line = (phase>0.85);

12 [binImage ,t] = FindBlobs (line);

13 1line = (binImage==t);

14

15 posR = BorderTransform(line,b2);

16 posL = BorderTransform(line,1l);

17 centres = (posR(:,1)+posL(:,1))./2;

18 1line(:,:) = 0;

19 for hh=1:h

20 if “isnan(centres (hh))

21 line(hh,ceil(centres (hh))) = 1;

22 end ;

23 end;

24 region = imdilate(line,strel(’square’,ceil(atomic*40)));
Listing A.30: GetCloserRegion.m

1 function closerRegion = GetCloserRegion(recE,region)

2 % closerRegion = GetCloserRegion(recE,region)

3 % Author: Felix Thomsen

4 J, excludes some more background

5 h =size(recE,1);

6 length = h/36;

7 edge = recE.*xregion;

8 s1 = imopen(HeightTransform(edge)>0.85,strel(’square’,2)) .*region;

9 sprintf (’AS1°)

10 [or,ph] = AS(s1,length,length*2,25);

11 phase = cos(ph);

12 phase(region==0) = -2;

13 phase = HeightTransform(phase);

14 1line = (phase>0.9);

15

16 [binImage,t] = FindBlobs (line);

17 line = (binImage==t);

18

19 region2 = imdilate (line,strel(’square’,ceil(h/12)));

20

136

21
22
23
24
25
26
27
28

© 0 N O Ut W N

B W W W W w W W oW W Ww RN NN DN NN NN NN == = e =
S © 00 N OO R WN R O © 000NN O U RWN RO O 000NN Ut W N~ O

12 =
edge?2
si

s2 =

A.3. Spine - Detection

ceil(h/500) ;

= recE.*region2;

imopen (HeightTransform(edge2) >0.85,strel (’square’,2)) .*xregion2;

imdilate (imerode (s1,strel (’square’,12)),strel(’square’,12%3));

sprintf (’conv’)

s3 =

close

conv2(s2,ones(ceil(length/2))./(length/2) "2, ’same’);
rRegion = (s3>0.2);

Listing A.31: FinalSegmentation.m

function [spine,centre] = FinalSegmentation(closerRegion ,recE)

% [spine,centre] = FinalSegmentaton(closerRegion ,recE)

% Author: Felix Thomsen

% computes the final spine-centre

% and
% fal
[h,w]

a region ’spine’, which is used for the computation of the
se positive and false negative error

= size(recE);

atomic = h/240;

signal = closerRegion .* recE;

sl
s2 =

line

delta

conv2(signal ,ones(ceil (18*atomic),ceil (18%atomic))./(ceil (648%atomic)),’same’);

HeightTransform(sl) .*xcloserRegion;
= nan(h,2);
= 1.2/w;

for hh=1:h
if (hh>1)

e

lastValue = line(hh-1);
weight = zeros(1l,w);
for i=1:w
weight (i) = 1-abs(lastValue-i)*delta;
end;
values = s2(hh,:) .xweight;
1lse
values = s2(hh,:);

end ;

£
1

end ;

sl =

= find(values==max(values) ,1,’first?’);

ine (hh)=£f(1);

zeros (h,w);

for hh=1:h

s

end ;

close
signa
s3 =

spine

meanS

1(hh,ceil(line(hh))) = 1;

stRegion = imdilate (sl,strel(’square’,ceil(atomic*18)));
12 = closestRegion .* signal;
imclose (signal2 ,strel(’square’,ceil (atomic*6)));

= (s3>0) .*xclosestRegion;

ize = atomic * 12;

137

Appendix A. Code

41 s5 = nan(h,1);

42 centre = zeros(h,w);

43 12 = 1line;

44 12(12<=1) = nan;

45 for hh=1:h

46 s5(hh) = mean(l2(max(l,ceil (hh-meanSize)) :min(h,ceil (hh+meanSize))));
47 if (s5(hh)>0)

48 centre(hh,ceil(s5(hh))) = 1;
49 end;

50 end;

A.4. Samples

In the first three figures we give the output images of the implemented examples.

console inputs are the following listings:

>>

>>
2 >>

Listing A.32: Main-scale detection

scaleImage = MainScaleExample();
Listing A.33: Knowledge
[knowledgeO ,knowledgeE] = CreateKnowledgeExample ();

filteredSignal = ApplyKnowledgeExample (knowledgeD);

Listing A.34: Spine detection

[knowledgeO ,knowledgeE] = CreateKnowledgeExample ();
[spineCentre ,spine] = SpineDetectionExample (knowledge0O ,6knowledgeE) ;

In Figure we give a sample band pass.

138

The

A.4. Samples

139

Appendix A. Code

Figure A.2.: Output of listing [A.33]

140

A.4. Samples

Figure A.3.: Output of listing [A-34]

141

Appendix A Code

,SOrr
\\\\\\\\\\\\\\\{{{%{\\‘\\\\\\\\\\\\\

TN N
N %\\\QQ\\“\\\\\\\\\\\\\\

\ \\\\
~ \\\\\

\\\\\\\\ \\\\\\\\\\
\\ \\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\

elevation

| 0.06 0.04
0.08
' 0.12 0.1 '
0.14 . N

scale interval

Figure A.4.: Band passes for the first attenuation type and the third reconstruction type
of the spine border detection.

142

Appendix B.

GPU

B.1. Specifications of our GPU

The specifications of our GPU are as follows:

Vendor: NVIDIA Corporation
Version: 3.0.0
Renderer: GeForce 9600 GS/PCI/SSE2

GL_MAX_TEXTURE_UNITS: 4
GL_MAX_VERTEX_ATTRIBS_ARB: 16
GL_MAX_VERTEX_UNIFORM_COMPONENTS_ARB: 4096
GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS_ARB: 32
GL_MAX_VARYING_FLOATS_ARB: 60
GL_MAX_TEXTURE_IMAGE_UNITS_ARB: 32
GL_MAX_TEXTURE_COORDS_ARB: 8
GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS_ARB: 32
GL_MAX_FRAGMENT_UNIFORM_COMPONENTS_ARB: 2048

with

Stream-Processors: 48
Kernel-Clock: 500 MHz
Shader-Clock: 1200 MHz
Storage-Clock: 500 MHz

143

Appendix B. GPU

B.2

We list the source code of the vertex shader we used in Figure 2.13]

/7

/7

/7

© o N O Ut s W N

WON N NN NN NN NN =R e e = e
S @ % NN EWN = O © 0T WN = O

/7

w w w w
= W N =

/7

W W W w
o N O Ot
~N N N
~N N N

/7

W
o ©

{

Ll e e
T W N
N
~N N N

144

. GPU-Code

Listing B.1: placein

tensorBig.frag - as place_min

CONSTANTS :

const int MAX_HALF_N = 16;
const float PI = 3.14159265358979323846;
const float TWOPI = PI *x 2.0;

VARIABLES :

uniform sampler2D texture;

uniform vec4 kernelPoisson[MAX_HALF_N *x(MAX_HALF_N-1)/2];
uniform vec4 kernell [MAX_HALF_N *x (MAX_HALF_N-1) / 21;
uniform vec4 kernel2 [MAX_HALF_N x (MAX_HALF_N-1) / 2]1;

uniform vec4 diagPoisson [MAX_HALF_NI];
uniform vec4 diagl [MAX_HALF_NI];
uniform vec4 diag2[MAX_HALF_NI];

uniform vec2 randPoisson [MAX_HALF_N];
uniform vec2 randil [MAX_HALF_N];
uniform vec2 rand2[MAX_HALF_N];

uniform float middlePoisson;
uniform int halflN;

uniform float n;

uniform vec2 offsetFactor;
uniform float amplitudeScale;

float f_x,f_y,f_p,f_xx,f_yy,f_xy;

FUNCTION -DECLARATIONS:

vec4 AnalytikSignal();

void Convolution (vec2 coord);

PROGRAMME :

The main function calls AnalyticSignal()

void main ()

gl_FragColor = AnalytikSignal();

—————————— Signal - Calculation---------------—-—---~-—-—-~—~—~-~--

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

B.2. GPU-Code

// Analytic Signal computes the vector:
// vec4(phase,orientation,amplitude,apexAngle).

vec4d AnalytikSignal()
{

// Texture coordinates:

vec2 coord= gl_TexCoord [0].xy;

vecd ret;

// Signal computing excepts the boundary

if ((coord.x<((n+1.0)*offsetFactor.x))||(coord.x>(1.0-n* offsetFactor.x))

|1 (coord.y<(n*offsetFactor.y)) || (coord.y>(1.0- (n+1.0)* offsetFactor.y)))
{

ret = vec4(0.0,0.0,0.0,0.0);

}

else

{

// Convolution

Convolution (coord) ;

// Signal computation

float f_pm = 0.5 *(f_xx-f_yy);

float f_s = 0.5 * f_p;

float e = sqrt(pow(f_pm,2.0)+pow (f_xy,2.0))/abs(f_s);

float q = (pow(f_x,2.0)+pow(f_y,2.0))* 2.0 /(1.0+e);

float phase = atan(sqrt(q),f_p) / TWOPI + 0.5;
float orientation;;
if (phase ==0.5)
orientation = atan(f_xy,f_pm) /TWOPI +0.5;
else
orientation = atan(f_y,f_x) /TWOPI +0.5;
float amplitude = 0.5 * sqrt(pow(f_p,2.0)+q);
amplitude = pow(1.0 - 1.0 /(1.0 + amplitude) ,(1.0/amplitudeScale));
float apexAngle = (atan(sqrt(pow(f_s,2.0)-pow(f_xy,2.0)-pow(f_pm,2.0)),sqrt(pow(
f_xy,2.0)+pow(f_pm,2.0)))) /PI;

ret = vec4(phase,orientation,amplitude,apexAngle);
}
return ret;
}
void Convolution (vec2 coord)
{
//Coordinates of one element of kernellSfSc ,kernell und kernel2
2/ T
// - - - 1lut | rut - - -
7/
// - 1lu2 - - | - - ru2 -
/] - Fom e -
// - 1d2 - - | - - rd2 -
7/
// - - -1d1 | rdl - - -
7/

// Coordinates of one element of rand1SfSc,randl und rand2(r,l,d,u) or diagiSfsc,

diagl und diag2 (rd,ru,lu,ld), respectively

145

Appendix B. GPU

95
96
97
98
99
100
101
102
103
104

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

146

/- - - - - - - -
// - lu - - uwu - - ru -
/- - - - - - - -
/- - - = - - = -
// ---l--eeee-- L r---
/- - - = - - = -
/- - - - - - - -
// -1d - - d - - rd -
/- - - = - - = -
// Stored data from array kernels.
Diag..(d[Index][x..w])
// for n=6 in the lower right quadrant
Ve +
//1r3xlr0x rOy rix rily r2x r2yl|
ZAEEEEEEEEEEE Fommmmmmm e I
//1r0x1d0x dOy|kOx kOz kix kiz]
//1r0y|d0z dOw|kOy kOw kily kiwl
/71 [------- Hoomm- - + I
//1rix|k0x kOyldix diy|k2x k2z|
//1rly |k0z kOw|dlz diw|k2y k2w|
/71 I tommm--- tommm--- I
//1r2x |kix kly k2x k2y|d2x d2y|
//1r2ylklz kilw k2z k2w|d2z d2w]|
Y/ S oo oo - +
Ve +
//1 M| border’ |
ZAEEEEEEEEEEE Fommmmmmm e I
/71 | d | I
/71 b | i + kermnel |
//1 o |------ tat------ + |
/71 r | + g I |
/71 4 | I o + |
/71 e | Homm--- +nt------ |
//1l r | kx ernel + a |
/71 I | 1|
VA e e e e - +
// Convolution storage
vec4d f_pM = vec4(0.0,0.0,0.0,0.0),
f_xM = vec4(0.0,0.0,0.0,0.0),
f_yM = vec4(0.0,0.0,0.0,0.0),
f_xxM = vec4(0.0,0.0,0.0,0.0),
f_yyM = vec4(0.0,0.0,0.0,0.0),
f_xyM = vec4(0.0,0.0,0.0,0.0);
// start points of the texture coordinates

vec4 startRight ,startLeft;
startRight .xy =
startRight .zw =
startLeft .xy =
startLeft .zw =
//start points of texture

vec4 startHorizontal ,

//x,y =
coord + offsetFactor x*
coord + offsetFactor x*

coord + offsetFactor

coord + offsetFactor *

coordinates

.(k[Index][x.

up ;

//x,y = right;

.w]), Rand..(r[Index][x..y]) and

for the diagonale /kermnels
z,w = down;
vec2(1.0,2.0);
vec2(1.0,-1.0);
vec2(-2.0,2.0);
vec2(-2.0,-1.0);

for boundary

z,w = left;

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

160

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

B.2. GPU-Code

startVertikal; //x,y = up; z,w = down;
startHorizontal.xy = coord + offsetFactor * vec2(1.0,0.0);
startHorizontal.zw = coord + offsetFactor * vec2(-2.0,0.0);

startVertikal.xy = coord + offsetFactor * vec2(0.0,2.0);

startVertikal.zw = coord + offsetFactor * vec2(0.0,-1.0);

// Change of the texture coordinates per loop

// Kernel

vecd deltaX = vecd4(offsetFactor.x,0.0,o0ffsetFactor.x,0.0) * 2.0;

vecd deltaY = vec4(0.0,o0ffsetFactor.y,0.0,-offsetFactor.y) * 2.0;

//vec4d deltaKY = delta¥

// Boundaries

vec4d deltaHorizontal = vec4(offsetFactor.x,0.0,-offsetFactor.x,0.0) * 2.0;

// deltaVertikal = deltay

// Diagonals

vec4 deltaDiagRight = vec4(offsetFactor.x,offsetFactor.y,offsetFactor.x,-
offsetFactor.y) * 2.0;

vec4 deltaDiagleft = vec4(-offsetFactor.x,offsetFactor.y,-offsetFactor.x,-
offsetFactor.y) * 2.0;

const vec4 startXValue = vec4(1.0,2.0,1.0,2.0);
const vecd4d deltaValue = vec4(2.0);

vecd yValue = vec4(1.0,1.0,2.0,2.0);

vec4d xValue;

int i= 0;

for(int y=1;y<halfN;y++)

{

float yF = float(y);

startRight + yF * deltaV;
vec4d coordLl = startLeft + yF * deltaY;

vec4 coordR1

vec4d coordR2 = startRight + yF * deltaX;
vecd coordL2 = startLeft - yF * deltaX;
yValue += deltaValue;
xValue = startXValue;
for (int x=0;x<y;x++)
{
// Read texture
vec4 textureRUl = texture2D (texture,coordRl.xy).zwxy;

vec4 textureRD1

texture2D (texture ,coordRl.zw) .xyzw;

vec4 textureRU2 = texture2D (texture,coordR2.xy).zxwy;

vec4d textureRD2 texture2D (texture ,coordR2.zw) .xzyw;

vec4 textureLUl = texture2D (texture,coordLl.xy).wzyx;
vec4d texturelLDl = texture2D (texture ,coordLl.zw).yxwz;
vec4 textureLU2 = texture2D (texture,coordL2.xy).wyzx;

vec4d texturelLD2

texture2D (texture ,coordl2.zw) .ywxz;

vec4 xSquareValue = xValue * xValue;

vec4d ySquareValue = yValue * yValue;

// Convolution

147

Appendix B. GPU

194 f_pM += (textureRD1 + textureLDl + textureRUl + textureLUl

195 + textureRD2 + textureLD2 + textureRU2 + texturelLU2) * kernelPoisson[i];

196 f_xM += (xValue * (textureRD1 - textureLDl + textureRUl - textureLU1l)

197 + yValue * (textureRD2 - textureLD2 + textureRU2 - texturelLU2)) * kernell[il];

198 f_yM += (yValue * (textureRD1l + textureLDl - textureRUl - textureLUl)

199 + xValue * (textureRD2 + textureLD2 - textureRU2 - texturelLU2)) * kernelil[i];

200 f_xxM += (xSquareValue * (textureRD1 + textureLDl + textureRUl + textureLUl)

201 + ySquareValue * (textureRD2 + textureLD2 + textureRU2 + texturelLU2)) =*
kernel2[i];

202 f_yyM += (ySquareValue * (textureRD1 + textureLDl + textureRUl + textureLU1l)

203 + xSquareValue * (textureRD2 + textureLD2 + textureRU2 + texturelLU2)) =*
kernel2[i];

204 f_xyM += (textureRD1l + textureLD1l + textureRUl + texturelUl

205 + textureRD2 + textureLD2 + textureRU2 + textureLU2)* xValue * yValue *
kernel2 [i++];

206 // actualise indices

207 coordR1 += deltaX;

208 coordLl -= deltaX;

209 coordR2 += deltaV;

210 coordL2 += deltaY;

211 xValue += deltaValue;

212 }

213 }

214 // Convolution of boundary and diagonals
215 vec2 xyValue = vec2(1.0,2.0);

216 xValue= vec4(1.0,2.0,1.0,2.0);

217 yValue= vec4(1.0,1.0,2.0,2.0);

218 for(i=0;i<halfN;i++)

219 {

220 // Read texture

221 vec2 textureR = texture2D (texture,startHorizontal.xy).xy;

222 vec2 texturelL = texture2D (texture ,startHorizontal.zw).yx;

223 vec2 textureU = texture2D (texture,startVertikal.xy).zx;

224 vec2 textureD = texture2D (texture ,startVertikal.zw).xz;

225 vec4 textureRU = texture2D (texture ,startRight .xy).zwxy;

226 vecd textureRD = texture2D (texture ,startRight .zw).xyzw;

227 vecd textureLU = texture2D (texture ,startleft.xy).wzyx;

228 vec4 textureLD = texture2D (texture ,startleft.zw).yxwz;

229 // Convolution

230 f_pM.xy += (textureR+texturelL+textureU+textureD) * randPoisson[il];

231 f_pM += (textureRU+textureRD+textureLU+texturelD) * diagPoisson[i];

232 f_xM.xy += xyValue#* (textureR-texturelL) * randi[il;

233 f_xM += xValue * (textureRU+textureRD - textureLU - textureLD) * diagl[il];

234 f_yM.xy += xyValue * (textureD-textureU) * randi[i];

235 f_yM += yValue * (texturelLD + textureRD - textureLU - textureRU) * diagi[il;

236 f_xxM.xy+= xyValue * xyValue * (textureR+texturel) * rand2[i];

237 f_xxM += xValue * xValue * (textureRD + textureRU + textureLD + textureLU) * diag2
[il;

238 f_yyM.xy+= xyValue * xyValue * (textureU+textureD) * rand2[il;

239 f_yyM += yValue * yValue * (textureRD + textureRU + textureLD + textureLU) * diag2
[il;

148

B.2. GPU-Code

240 f_xyM += (textureRD + textureRU + texturelD + textureLU)x* xValue * yValue *
diag2[il;

241 xValue +=deltaValue ;

242 yValue +=deltaValue;

243 xyValue += deltaValue .xy;

244 startHorizontal += deltaHorizontal;

245 startVertikal += deltaV;

246 startRight += deltaDiagRight;

247 startlLeft += deltaDiagLeft;

248 }

249 //Convolution with centre point

250 f_p = texture2D (texture ,coord).x * middlePoisson;

251 // Convolution with convolution storage

252 f_p += f_pM.x+f_pM.y+f_pM.z+f_pM.w;
253 f_x = f_xM.x+f_xM.y+f_xM.z+f_xM.w;
254 f_y = f_yM.x+f_yM.y+f_yM.z+f_yM.w;

255 f_xx = f_xxM.x+f_xxM.y+f_xxM.z+f_xxM.w;

256 f_yy = f_yyM.x+f_yyM.y+f_yyM.z+f_yyM.w;
257 f_xy = f_xyM.x+f_xyM.y+f_xyM.z+f_xyM.w;
258 }

149

Appendix B. GPU

Listing B.2: placeypt

1 // tensorFast.frag - as place_opt

2 #version 120

3 // CONSTANTS:

4 const float PI = 3.14159265358979323846;

5 const float TWOPI = PI *x 2.0;

6 const int HN_MAX = 8; // N_MAX = HN_MAX*2

7 // VARIABLES:

8 uniform sampler2D texture;

9 // Precalculated Convolution kernels:

10 // fop: | f_x | f_y | f_xx |
11 // | | | | | | | I
12 // axa | -b0b | -c-y-¢ | dud |
13 // xwx | -y Oy | 000 | u |
14 // axa | -b0b | cyec | u d

15 // | | | | | | | |
16 uniform vec4 kernelFP [HN_MAX * HN_MAX]; //a
17 uniform vec4 kernelFX [HN_MAX x HN_MAX]; //b
18 uniform vec4 kernelFY [HN_MAX * HN_MAX]; //c
19

20 uniform vec4 kernelFXX [HN_MAX * HN_MAX]; //d
21 uniform vec4 kernelFYY [HN_MAX x HN_MAX]; //e
22 uniform vec4 kernelFXY[HN_MAX * HN_MAX]; //f
23

24 uniform vec2 kernelFPRand[HN_MAX]; //x

25 uniform vec2 kernelFXRand[HN_MAX]; /1y

26 uniform vec2 kernelFXXRand[HN_MAX]; //z

27

28 uniform float middlePoisson; //w

29 uniform float offsetFXX; //-ua

30

31 uniform bool odd;

32 uniform int halfN;

33 uniform float n;

34 uniform vec2 offsetFactor;

35

36 // Scale of the amplitude:

37 uniform float amplitudeScale;

38 float f_x,f_y,f_p,f_xx,f_yy,f_xy;

39

40 // FUNCTION-DECLARATIONS:

41 vec4 AnalytikSignal();

42 void Convolution (vec2 coord);

43

44 // PROGRAMME :

L I B e e
46 /) ---------- Main - Function---------omm oo
L e e T
48 void main()

49 A

150

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85

86
87
88
89
90
91
92
93
94
95
96
97
98
99

}

v

{

B.2. GPU-Code

gl_FragColor = AnalytikSignal();

e Signal - Calculation----------mmmmmmmm oo
vec4 AnalytikSignal()

// Texture coordinates:

vec2 coord= gl_TexCoord [0].xy;

vecd ret;

// Signal computing excepts the boundary

if ((coord.x<((n+1.0)*offsetFactor.x)) || (coord.x>(1.0-n* offsetFactor.x))
|1 (coord.y<(n*offsetFactor.y)) || (coord.y>(1.0- (n+1.0)* offsetFactor.y)))

{
float value = texture2D (texture ,coord) .x;
ret = vec4(value,value/2.0,value/2.0,value/2.0);
}
else
{

// Convolution

Convolution (coord) ;

// signal computing

float f_pm = 0.5 *(f_xx-f_yy);

float f_s = 0.5 * f_p;

float e = sqrt(pow(f_pm,2.0)+pow (f_xy,2.0))/abs(f_s);
float q = (pow(f_x,2.0)+pow(f_y,2.0))* 2.0 /(1.0+e);

float phase = atan(sqrt(q),f_p) / TWOPI + 0.5;
float orientation;
if (phase ==0.5)
orientation = atan(f_xy,f_pm) /TWOPI +0.5;
else
orientation = atan(f_y,f_x) /TWOPI + 0.5;
float amplitude = 0.5 * sqrt(pow(f_p,2.0)+q);
amplitude = pow(1.0 - 1.0 /(1.0 + amplitude) ,(1.0/amplitudeScale));
float apexAngle = (atan(sqrt(pow(f_s,2.0)-pow(f_xy,2.0)-pow(f_pm,2.0)),sqrt(pow(
f_xy,2.0)+pow(f_pm,2.0)))) /PI;
phase -=0.5;
phase = max(phase ,0.0);
ret = vec4(phase,orientation,amplitude,apexAngle);
float threshold = 1.0;
if (ret.x>threshold)
ret.x = 1.0;
}

return ret;

0id Convolution (vec2 coord)

// Texture storage

vec4 tRightDown ,tLeftDown ,tRightUp,tLeftUp;

151

Appendix B. GPU

100 vec2 tRight ,tLeft ,tUp, tDown;
101 // Convolution storage
102 vec4d f_pM = vec4(0.0,0.0,0.0,0.0),

103 f_xM = vec4(0.0,0.0,0.0,0.0),
104 f_yM = vec4(0.0,0.0,0.0,0.0),
105 f_xxM = vec4(0.0,0.0,0.0,0.0),
106 f_yyM = vec4(0.0,0.0,0.0,0.0),
107 f_xyM = vec4(0.0,0.0,0.0,0.0);
108 // start points of texture coordinates for the inner of the kernels

109 vec4 startRight ,startleft; //x,y = up; z,w = down;

110 startRight .xy = coord + offsetFactor * vec2(1.0,2.0);

111 startRight .zw = coord + offsetFactor * vec2(1.0,-1.0);

112 startLeft .xy = coord + offsetFactor * vec2(-2.0,2.0);

113 startLeft .zw = coord + offsetFactor * vec2(-2.0,-1.0);

114 // Change of texture coordinates per loop

115 vecd deltaOffsetY = vec4(0.0,o0ffsetFactor.y,0.0,-offsetFactor.y) * 2.0;
116 vecd deltaOffsetX = vecd(offsetFactor.x,0.0,o0ffsetFactor.x,0.0) *x 2.0;
117 vec4 coordRight ,coordLeft ;

118 int i= 0;

119 for(int y=0;y<halfN;y++)

120 {

121 float yF = float(y);

122 coordRight = startRight + yF % deltaOffsetY;

123 coordLeft = startLeft + yF * deltaOffsetY;

124 for(int x=0;x<halfN;x++)

125 {

126 // Read texture

127 tRightUp = texture2D (texture ,bcoordRight .xy).zwxy;

128 tRightDown = texture2D (texture ,coordRight.zw).xyzw;

129 tLeftUp = texture2D (texture,bcoordLeft.xy).wzyx;

130 tLeftDown = texture2D (texture,bcoordLeft.zw).yxwz;

131 // Convolution

132 f_pM += (tRightDown + tLeftDown + tRightUp + tLeftUp) * kernelFP[i];
133 f_xM += (tRightDown - tLeftDown + tRightUp - tLeftUp) * kernelFX[il;
134 f_yM += (tRightDown + tLeftDown - tRightUp - tLeftUp) * kernelFY[i];
135 f_xxM += (tRightDown + tLeftDown + tRightUp + tLeftUp) * kernelFXX[il;
136 f_yyM += (tRightDown + tLeftDown + tRightUp + tLeftUp) * kernelFYY[i];
137 f_xyM += (tRightDown - tLeftDown + tRightUp - tLeftUp) * kernelFXY[i];
138 // actualise indices

139 i++;

140 coordRight += deltaOffsetX;

141 coordlLeft -= deltaODffsetX;

142 }

143 }

144 // Convolution near boundary

145 vec4 coordRightLeft, // x,y = rechts; z,w= links;

146 coordUpDown; // x,y = oben; z,w = unten;

147 coordRightLeft.xy = coord + offsetFactor * vec2(1.0,0.0);
148 coordRightLeft.zw = coord + offsetFactor * vec2(-2.0,0.0);
149 coordUpDown .xy = coord + offsetFactor * vec2(0.0,2.0);

150 coordUpDown .zw = coord + offsetFactor * vec2(0.0,-1.0);

152

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

v
£
{

}
i

{

}

e

{

}
/

deltaOffsetX *= vec4(1.0,0.0,-1.0,0.0);

ec2 vecOffsetFXX = vec2(offsetFXX);
or (i=0;i<(halfN-1) ;i++)

// Read texture

tRight = texture2D (texture ,coordRightLeft.xy).xy;
tLeft = texture2D (texture ,coordRightLeft.zw).yx;

tUp = texture2D (texture,coordUpDown .xy).zx;

tDown = texture2D (texture ,coordUpDown.zw).xz;

// Convolution

f_pM.xy += (tRight+tLeft+tUp+tDown) * kernelFPRand[i];
f_xM.xy += (tRight - tlLeft) % kernelFXRand[il];

f_yM.xy += (tDown - tUp) * kernelFXRand[il];

B.2. GPU-Code

f_xxM.xy += (tRight + tLeft) * kernelFXXRand[i] + (tUp+tDown) * vecOffsetFXX;
f_yyM.xy += (tUp + tDown) * kernelFXXRand[i] + (tLeft+tRight) * vecOffsetFXX;

// actualise indices
coordRightLeft += deltaOffsetX;
coordUpDown += deltaOffsetY;

£ (odd)

// read texture

tRight = texture2D (texture ,coordRightLeft.xy).xy;
tLeft = texture2D (texture ,coordRightLeft.zw).yx;
tUp = texture2D (texture,coordUpDown .xy).zx;
tDown = texture2D (texture,coordUpDown .zw).xz;

// Convolution

f_pM.xy += (tRight+tLeft+tUp+tDown) * kernelFPRand[il];
f_xM.xy += (tRight - tLeft) * kernelFXRand[il;
f_yM.xy += (tDown - tUp) * kernelFXRand[i];
f_xxM.xy += (tRight + tLeft) * kernelFXXRand[il;
f_yyM.xy += (tUp + tDown) * kernelFXXRand[il];
f_yyM.x += (tLeft+tRight).x * offsetFXX;

f_xxM.x += (tUp+tDown).x * offsetFXX;

lse

// read texture

tRight = texture2D (texture ,coordRightLeft.xy).xy;
tLeft = texture2D (texture ,coordRightLeft.zw).yx;

tUp = texture2D (texture,coordUpDown .xy).zx;

tDown = texture2D (texture ,coordUpDown.zw).xz;

// Convolution

f_pM.xy += (tRight+tLeft+tUp+tDown) * kernelFPRand[i];
f_xM.xy += (tRight - tLeft) #* kernelFXRand[il];

f_yM.xy += (tDown - tUp) * kernelFXRand[il];

f_xxM.xy += (tRight + tLeft) * kernelFXXRand[i] + (tUp+tDown) * vecOffsetFXX;
f_yyM.xy += (tUp + tDown) * kernelFXXRand[i] + (tLeft+tRight) * vecOffsetFXX;

/ Convolution with centre point

153

Appendix B. GPU

202
203
204
205
206
207
208
209
210
211
212
213}

154

float middle = texture2D (texture ,coord) .x;
f_p = middle * middlePoisson;

f_xx = middle * offsetFXX;

f_yy = middle * offsetFXX;

// Convolution of convolution storages

f_p += f_pM.x+f_pM.y+f_pM.z+f_pM.w;

f_x = f_xM.x+f_xM.y+f_xM.z+f_xM.w;

f_y = f_yM.x+f_yM.y+f_yM.z+f_yM.w;

f_xx += f_xxM.x+f_xxM.y+f_xxM.z+f_xxM.w;

f_yy += f_yyM.x+f_yyM.y+f_yyM.z+f_yyM.w;

f_xy

f_xyM.x+f_xyM.y+f_xyM.z+f_xyM.w;

	Introduction
	The 2-Dimensional Analytic Signal
	Preliminaries
	The Analytic Signal
	The 2-Dimensional Analytic Signal
	Application of the Analytic Signal
	Calculation of the Mask Size
	Calculation of the Offset
	The Basics of the Analytic Signal
	Expansion to Multiple Scale Intervals
	Scale Detection on Multiple Waves
	General Definition of the Attenuation
	Modified Image Reconstruction
	A Fast Implementation of the Analytic Signal

	The Scale Space Segmentation Filter
	Motivation: Exclusion of Surrounding Area
	Components of the SSSF
	Low-Level Components
	Scale Function
	Attenuation Function
	Reconstruction

	Modification Function
	Band Pass Filter
	Polynomial Filter
	Fuzzy Band Pass Filter
	General Filter
	Relationship Between Band Pass and General Filter
	The Comprehensive Filter

	Training of the SSSF
	1-Dimensional Cost Functions
	Multi-Dimensional Cost Functions
	Update Function: Adaption of the Knowledge
	Postprocessing of the Knowledge

	The Multi-Filter
	The Discrete and the Linear Multi-Filter

	Application of the SSSF
	Evaluation of Training Set Sizes
	Evaluation of the Maximum Scale
	Optimum Masks
	Evaluation of the Filter Types
	Evaluation of the Cost Functions
	Final Presets
	Evaluation of the Multi-Filter

	Results
	Application on Spine Photographs
	Application on Liver CT-Photographs

	Conclusion and Outlook

	Design of a Spine Detector
	Image Processing from the Medical Point of View
	Programmer's Approach
	Results
	Relation to other Spine Segmentation Filters
	Conclusion

	Code
	Analytic Signal
	Scale Space Segmentation Filter
	Spine - Detection
	Samples

	GPU
	Specifications of our GPU
	GPU-Code

