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It is well known that a combined rotation of a solid
can be conveniently described in terms of quaternion
algebra operations [6] (screw transform).

Clifford algebras (CAs) (quaternion algebra is a par-
ticular case of these algebras) arose as a result of a nat-
ural wish of mathematicians to embed a vector space
into such an algebraic structure where different classes
of linear operators would be described in terms of oper-
ations of this structure in a possibly simple form.

Currently, efficient application of CAs in computer
science.is mainly based on two factors.

First, the substantive formulation of many problems in
robotics, computer vision, etc. has either direct physical
(mechanical) origin or clear physical analogies [1, 2, 7].

Second, specific Clifford algebras are formally
employed as convenient computational models to rep-
resent the data and to improve the efficiency of some
algorithms for digital signal processing (3, 4].

In the former case, CA properties related to geomet-
ric cleamness dominate. In the latter case, structure
properties associated with the existence of a suffi-
ciently broad group of CA automorphisms are domi-
nant.

The problems of analysis and digital processing of
multidimensional signals (images) have a clear physi-
cal origin. Solution of these problems requires a con-
siderable body of computations and, therefore, needs
an efficient algorithmic support.

Let us emphasize the most significant specific fea-
ture of image transforms. If an image is interpreted as a
subset of a three-dimensional space (a pair of coordi-
nates and a function of brightness), then image trans-
forms are transforms with an invariant plane (a plane of
arguments). In other words, the coordinates of a vector
from a space associated with an image are not equiva-
lent. Due to this nonequivalence, various types of Clif-
ford algebras employed in mechanical problems sub-
stantially differ from CAs that adequately describe
image transforms. r

As demonstrated in [5], a rather broad class of
image transforms is described by a generalized screw
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transform of an eight-dimensional CA—an algebra of
second-order dualized matrices.

In this paper, we consider relations between differ-
ent groups of image transforms and representation of
these image transforms in terms of screw transforms in
the relevant CAs (in Clifford image models).

Some definitions. Consider a d-dimensional vector
space V with a basis {e, ... e,}. Let G, , . be an asso-
ciative R-algebra with a dimensionality equal to 2¢ and
a basis

{Ey. .0, eT'...e:", a,=0,1; eg =}, e,l, =e.}.
Multiplication of elements in this algebra is assumed to
be induced by the rules of multiplication of the ele-
mcntS ek:

2
e, = Br €& = —€&-
The Clifford algebra of quadratic form is
B(t), .-nty) = B,tf+...+[3‘,rj. (1)

Here, p + q + r =d, where p and g are the positive and
negative inertia indices of the form (1) and r is the num-
ber of zero B, :

Let us define the reverse S of an element

!

Z xu,...a,En,.,.a,

Wy wenn oy = 0

S =

as an R-linear continuation of the mapping

oy

= o,
Eq.,...u, =e; ..-€; -«

Screw transform of an element J € G, 4./ 1 defined as
the transform

J = _EJs+z0, zo€ Gp - ()
An image with ¢ attributes is defined as a subset of 2
(t+ 2)-dimensional affine space
[={(X,Y; Ay .0 A): (X, V)€ QcR’},

where A, =A,(X, 1), ... A, = A(X, Y) are some real
functions (image attributes, e.g., brightness, local time,
intensity of color components, etc.), and variables
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&, Y) are interpreted as the coordinates of a point in an
/// affine plane.
Let G = G},_ q.r b€ a Clifford algebra, Ar+2 js a
(¢ + 2)-dimensional affine space, and mapping ‘¥:
G —= A is defined.

The complete original {J} of an image / with
respect to ‘¥’ will be referred to as the Clifford mode] of
the image 7, and mapping ¥ will be called the interpre-
tation of the model.

The basic problem. Let T be a certain group of
transforms of an affine (X, Y)-plane:

WX N=X.Y), teT.

It is required to describe a possibly broader class of
image transforms

= (XY A, .0 A) = I' = (X, Y54}, ..., A),

such a model, and such an interpretation that screw
transform (2) yields

¥ =1 ¥ =r, x,v)=1x Y).
In this paper, we analyze some examples of the
description of image transforms in the form (2).

Example 1. Study [5] considers a group of affine
transforms of a plane, an eight-dimensional algebra

2.0.1»

1< pa

ef:l, e, =1, ef:O
and a 1-attribute image /= {X, Y. F(X, N}.
Let T be a group of affine transforms of a plane,
J = Xe,+Ye2+Fe3.
Then, forany t e T, there exists such S € G that
(X', Y') linearly depend on X, 1)
and
" linearly depends on (X, ¥: F).

In particular, explicit formulas for orthogonal trans-
forms of an (X, Y)-plane, scaling, and Frechét derivative
were obtained in [5].

Example 2. Let /be a 2-attribute image,
I'={(X7Y;A, A)b, T =A +Xe + Ye, + A,e;.

Then, upon the application of a screw transform (2),

(X', Y) linearly depend on (X, D),

A, linearly depends on (X, ¥: A s

and

A; linearly depends on (X, ¥: A 1A,

Here, A, can be interpreted as a local time in the reading
(transmission) of an image, and A, is a function of
brightness. -
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Example 3. Suppose that G = Gy.2,1 (dualized
quaternions), T is a group of projective transforms of a
plane, and

I={(XY: F(X, )} J = xo-l.-xle|+x2e2+FeJ,

where (%, : x, : x,) are the homogeneous coordinates of
the points in the projective plane and (X, ¥) are the cor-

responding inhomogeneous coordinategw ”

Example 4. Suppose that G=G, 1,36 =-1, eg =
e? = ef =0; R, G, and B are the intensities of the main
color components of an image

I'={(X,Y;R,G,B)},

= X+Ye1+Rez+Ge3+Be4,

b

-

etc.

We will thoroughly analyze the relation between the
dimensionality of invariant spaces subject to image
transformation and the si gnature (p, g, r) of the Clifford
algebra.

We will also consider a recursive process for con-
structing Clifford algebras (the generalized Cayley—
Dickson process) and examine the possibility of
describing local properties of an image in terms of a
(local) screw transform.
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