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The application of an elastic graph-matching approach to discriminate facial image
regions is presented. In contrast to the dynamic link architecture introduced by the
Malsburg group, our application is not an identification task but a classification task.
Therefore, our approach differs in several important aspects:

(1) the choice of the filter set,

(2) the selection of the positions of the nodes of the graph to represent the characteristic
image information,

(3) the generation of a representative reference pattern needed for the calculation of the
classifications, and

(4) a new two-step graph-matching approach based on the simulated annealing tech-
nique.

The approach was tested on facial regions taking the eye region as an example target.

A classification performance for the verification of eye regions of more than 93% was

achieved.

Keywords: Computer vision, classification, discrimination, dynamic graph matching,
image processing.

1. INTRODUCTION

The classification and the discrimination of 2-dimensional patterns or more pre-
cisely 2-dimensional projections of 3-dimensional objects are still difficult tasks in
computer vision. The high complexity of the task due to the high degree of freedom
of the problem does not allow for a general purpose approach which is universally
applicable. The difficulties arise from the variability of the patterns to be classi-
fied under real world conditions. Sometimes no invariances which unambiguously
characterize a target are present or can be computed successfully applying known
approaches. But biological visual systems perform this complex task very accurately
and effortlessly.

Successful computational approaches have to be able to cope with the high de-
gree of variability of real world input pattern which might be an arbitrary projection
of the 3-dimensional scene. In this context, the development of approaches which
search for invariances or invariant features under various projection angles and un-
known scales is still a central objective of many computer vision research groups.
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In many of the approaches reported in the literature, several, sometimes very
restrictive preconditions have to be fulfilled to ensure a successful classification. Mo-
tivated by biological visual systems neural network approaches have been developed
in the last twenty years to enable flexible and adaptive representations of complex
target patterns. But only relatively few successful solutions based on neural net-
work approaches have been reported which have been generally tested on real world
problems‘1'4"'5']5'”'19'20

The dynamic graph-matching approach developed by the Malsburg group and
which can be interpreted also as a neural network approach® 12! has presented both
a flexible and a reliable solution to integrate a high degree of variability into the
representation of a target of interest. By applying this approach the classification
task is based on the evaluation of a defined set of invariant features linked with a
framework which ensure the relative localization of the features. The relationship
between the several features is maintained by a feature representation performed
using a flexible, labeled graph. More details concerning this approach will follow in
the subsequent section.

The discrimination module developed here is used as an essential component in
building an image processing system to classify facial images.”1® Face recognition
applications have become popular in the last ten years because of the high com-
plexity of the pattern face and because of the outstanding performance of biological
visual systems in recognizing faces. But the computer based recognition of facial
images recorded under arbitrary preconditions has not been successfully solved until
now. As mentioned above, the detection of invariant features is the main obstacle
in this research field. To get past this obstacle, an attentive processing strategy
has been developed which decomposes the entire classification problem into a set
of better solvable subproblems.'® The computation of these subproblems is then
based on particular image regions which have been localized in advance and which
have been spatially limited to the extent of the underlying object (Fig. 1).7*3 The
discrimination module, the objective of this contribution, should provide a decision
about the benefit of applying more detailed and expensive analysis methods to the
located spatially-limited facial regions. In the subsequent detailed analysis step, the
exact positions of relevant keypoints or anatomical landmarks such as eye corners
and mouth corners are determined® and evaluated.!!

Firstly, the original dynamic graph-matching approach developed by the Mals-
burg group is introduced and discussed in more detail. Subsequently, the improve-
ments and redeveloped methods used for this application are named and the mo-
tivations are discussed briefly. In Sec. 2, the idea of point representation together
with the filtering scheme used in this contribution is introduced. Section 3 discusses
the details of the improved object adapted graph followed by the graph matching
in Sec. 4, which presents the cost function as well as details concerning the deter-
mination of the initial starting position and the subsequent local graph matching.
Finally, in Sec. 5, classification results are presented and discussed.
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Fig. 1. Result of the attentive region localization. The main facial regions, such as the eye, mouth,
and nose region, have been located in the first 4 localization steps. The computation is based on
a saliency representation which carries the main salient features of the facial image.

1.1. Malsburg’s Dynamic Graph-Matching Approach

In Refs. 3, 16 and 21 a dynamic graph-matching approach has been developed to
identify faces from examples represented in a database. The underlying idea of
this approach is that the representation of a face is computed at a set of particular
image positions which obviously characterize an individual (Fig. 2). A set of Gabor
wavelets is used for the descriptions of the faces at particular image positions. The
projection coefficients of these filters (called jets) contain the gray-level distribution
at the considered image points and their surrounding regions. The application of
different scaled and rotated Gabor filters at several image positions is particularly
suited to the representation of textured image structures. Therefore, the image
positions to be represented do not have to be selected so precisely. Neighboring
point descriptions (4 per neighborhood) are connected by a homogeneous grid or a
graph as demonstrated in Fig. 2 (left). The connections of the graph ensure the
spatial relationship between the point descriptions. But it should be emphasised
that a large proportion of the point descriptions or nodes of the graph are calculated
at non-characteristic image positions (e.g. in the hair, on the cheeks, or on the
forehead).

For the computation of an identification of an individual the graph is matched
stepwise to the image to be examined (Fig. 2 (right)). The aim is to compute an
optimal point correspondence between the represented nodes of the investigated
image and the stored representation. Finally, a threshold determines the success of
the identification.
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Fig. 2. Face identification applying point descriptions and graph matching. At each node of the
grid the gray-level distribution of the local surroundings is represented in the parameters of the
so-called jets (from Ref. 16).

1.1.1. Disadvantages

The main disadvantage of using the Malsburg approach for a multi class classifi-
cation problem is that the computing effort increases drastically with the number
of stored or represented classes respectively in sample images. This may decrease
the flexibility and robustness of the approach. However, this approach is designed
for the identification of images from example images stored in a database. Only
comparisons between two individuals or between two images of the same individ-
ual are computed. Therefore, only the problem of the intra-individual variability
is addressed. The inter-individual variability is used to calculate discriminations
between individuals. Hence, for a multi class problem, a new representation which
represents the class specific characteristic more than individual ones, has to be
developed.

Furthermore, we think that the point representations essentially used in this
approach should be located at characteristic image positions and not at arbitrary
image positions defined by the intersection points of a homogeneous grid. Besides
this aspect, the exact scaling of the used grid in the referred work is not addressed
satisfactorily. The consequence of the representation only at characteristic image
positions is that an object adapted graph has to be developed. Furthermore, at
the characteristic positions, more specific than textured image structures have to
be computed and represented. For this, we have selected a special filter set which
might be more suitable to represent characteristic edge and line structures than
Gabor wavelets do.

1.2. Classification of Facial Regions

A classification module which is able to discriminate between different classes of
images of facial parts is required for the image processing system developed for our
face processing application. In other words, an N-class problem has be solved. But
for the special attentive approach used in this processing system, the classification
problem can be reduced to a two-class problem because it is observed that the eye
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regions are detected reliably by the attentive localization strategy in early fixation
steps (Fig. 1).73 This means that there is an increased probability for an early de-
tection of eye regions in contrast to non-eye regions. This behavior is caused by the
highly salient features within the eye regions (more prominent edges and line seg-
ments with a more dense distribution) which is also in accordance with the behavior
of biological visual systems which fixate the eye region first.?2 This detection result
might be essentially used as a priori knowledge for the design of an efficient classi-
fier. Assuming that the probability of the detection of an eye region is high during
the first fixation step only, this detection has to be proven. Therefore, the task of
the classification module is restricted to verifying the hypothesis of the fixation of
an eye region against the fixation of a non-eye region. In a subsequent processing
step within the face-processing application, the facial regions, in particular the eye
regions, are investigated in more detail to determine exactly the position of several
anatomical landmarks.®?

1.2.1. Redevelopment of the dynamic graph-matching approach

A direct transfer of the Malsburg approach to our verification task is obviously not
possible for several important reasons. In contrast to their approach, our application
is not an identification task but a classification task. Therefore, our approach differs
in several important aspects:

1. the choice of the filter set,

2. the selection of the positions of the nodes of the graph to represent the char-
acteristic image information,

3. the multiple connection structure of the object adapted graph (irregular grid),

4. the generation of a representative reference pattern, and

5. a new two-step graph matching based on the simulated annealing approach.

As already discussed in the previous section the main reasons for the redevelop-
ments are the different kinds of classification problems that we have to tackle here.
For our application, a representation of a class of images (e.g. eye regions) is needed
which should be as independent of individual variabilities as possible. This stands
in contrast to the approach of the Malsburg group which has to represent individual
facial images. Therefore, a more uniform representation is needed which might be
found by applying object adapted graphs. Using object adapted graphs which are
adapted to the salient edge and line structures of the object, it is obvious to use also
a special filtering scheme which is specially suited to represent edge and line struc-
tures. Therefore, we have decided to apply special edge and line detection filters
rather than Gabor wavelets which are mainly suited to represent textured struc-
tures. For reasons of the object adapted graph, a new connection structure also has
to be developed because a uniform connection structure has proven to be not so
successful. The generation of a representative reference pattern is required by the
representation of a class of images in contrast to the representation of individuals.
Finally, the convergence of the graph-matching process is significantly improved by
the application of a simulated annealing approach in which different temperature
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levels ensure the graph flexibility during the final adaptation needed to find a good
approximation of a global minimum.

1.2.2. Previous investigations

The design of the model graph used is the result of several investigations compar-
ing the performance of the classification of different anatomical landmark positions.
These investigations were based on the classification of keypoints and anatomical
landmarks in the eye region as reported in Refs. 10 and 11. Based on the good
performance of the keypoint classification approach by applying point descriptions,
the hypothesis of the approach presented here is formulated. So, multiple point
descriptions or ‘nodes’ N positioned at particular characteristic image locations
Z; (j=1,...,J) and connected topologically may be sufficient for a reliable veri-
fication of a complex image pattern (Fig. 3). This results in a special graph which
is adapted to the characteristic structures of the class of objects to be classified.
Fundamental to this processing is that the point descriptions are mainly computed
at really characteristic image positions which are composed of significant edge and
line segments.

Fig. 3. The idea of connected point descriptions demonstrated at an eye region. The descriptions
at the circled keypoints and the spatial relationship between them may be sufficient to clearly
represent the underlying object.

2. POINT DESCRIPTIONS

The underlying assumption of the approach presented here is that the common
information of the class of image regions is given by a characteristic arrangement of
particular edge and line segments as well as particular junctions and intersections
(Fig. 3). To this end, a representation has to be found which encodes the underlying
edge and line structures at the considered image positions.

The point descriptions or labels L(F) are established from a set of projection
coefficients /;(¥) achieved by projecting a particular image position and its sur-
rounding region I(7) to several filters f; (f; € F).

L(Z) = fi®I(X) fori=1,...,8S. 1)

The dimension of each label L(%) is equal to the number i of applied repre-
sentation filters f;. In the following, the particular labels L used for the several
point descriptions at the different image positions Z; will be denoted by L,(#) or
abbreviated by the term ‘label of ' L; (with j = 1...J). The index Jj is related
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to a particular semantic image structure or anatomical landmark.® In other words,
this index j should be understood as a semantic index rather than as a position
dependent index related to a fixed image position.

2.1. Filter Selection

The main goal for the composition of a set F of representation filters fi is a clear
and obvious description of the image structure characterizing the common underly-
ing information of the entire class of images to be classified. Only the characteristic
image information for a reliable and robust classification of each possible image
should be encoded. Here and in the following we will understand the image struc-
ture of interest to be a characteristic arrangement of edge or line structures (as
demonstrated in Fig. 3) rather than the more general term of image texture.

Edge and line detection filters fEF, fL
1=10 §=1 §i=2 =3

Polar separable filters fF
t=4 =5 i=6 i=T7 i=8 i=9

Fig. 4. Set of filters which are applied to each node of the graph to describe the underlying
edge and line structure. First row: Gaussian edge and line detection filters (filter index i =0...3)
(o = 6). Second row: polar separable filters (filter index i =4... 9) with different angle-dependent
oscillations (m = 2, m = 3 and m = 5, respectively). For the several orthogonal partners of the
polar separable filters the original filters are turned by adding Ffori=5 F fori=7, and 15 for
i =9 to ¢. The kernel size for all filters is 27 x 27 pixel.

In general, for the task to be solved in this application, a complete description
of the considered image positions which allow for an error free reconstruction of
the complete gray-level distribution is not worthwhile. Moreover, the characteristic
edge and line information should be encoded as clearly and obviously as possible to
ensure a reliable and robust discrimination between different structures (see Fig. 5).

An additional goal which has to be considered during the choice of appropriate
filters is to achieve a high degree of similarity between the representations and
therefore, also between the filter results. Even if the edge and line structures which
are to be compared are slightly different but derived from images with a similar

®e.g. As the index for the point representation of the inner eye corner in contrast to the one for
the outer eye corner.
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Reference point (a) Similar point (b) Three different points (c)
Original eye region with marker for particular considered position(s)
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Fig. 5. Projection coefficients [proj.-coeff.] of the reference point (a) (dotted line in any case
of (d)-(g)) calculated in comparison to different image positions (b), (¢) (black line in (d)-(g)
respectively). The left eye region shows the reference point (a), the second eye region shows an
example of a test pattern with a similar underlying image structure (b), and the right eye region
shows three different examples with non similar image structures (c). The first graph (d) shows
the comparison of the reference pattern (a) to the test pattern (b). The filter results for the
edge detection filters (filter index 0, 1) are prominent while those of the line detection filters are
poor (filter index 2, 3) for both points. The filter results for the polar separable filters (filter
index 4...9) show that the orientation of the image structure is slightly different. But in general,
the main character of the represented image structure from the two compared image positions is
qualitatively the same. The second graph (e) shows the comparison with the test point inside
the iris, the third graph (f) with the test point inside the eyelashes, and the fourth (g) with the
test point on the wrinkled skin below the iris. For each demonstrated image position the derived
representation can be distinguished very reliably from the reference structure because the several
filter responses show qualitatively and quantitatively very different results. In the last case of the
wrinkled skin below the iris (¢) no clear underlying image structure can be encoded. Therefore,

the projection coefficients have very poor values (g).
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general expression, the filter responses should represent appropriately the image
structure, [compare Figs. 5(a), (b) and (d)]. That means that an invariant rep-
resentation has to be found which encodes edge and line structures with different
qualitative expressions e.g. bright edges in relation to sharp ones. Therefore, Gaus-
sian derivative edge and line detection filters are used for a reliable representation
of the edge and line structures of interest.?

To ensure a reliable representation of the image structure I(Z) at particular im-
age positions ¥ = (z,y)T, the following orientation selective edge and line detection
filters (fZ, f¥) are applied (see Fig. 4, first row):

2+2

-3

1
E = = 20
=z, 9) = g7 ze (2)
1 2','2 _l’z'.- a
Fi(z,y) = Tonod (mm-1e 2t (3)

where o is a scaling value.®

However, a representation based only on these four line and edge detection fil-
ters (fE, fE, fF, fF see Fig. 4, first row) is neither sufficient for a clear description
of any important image structure nor for a numerical calculation of the distinctive-
ness. Additional features have to be taken into account (e.g. curvatures, different
orientations, and other more complex structural information apart from the clear or
optimal edge structures) to enable a clear discrimination between all the important
image positions.

Several polar and cartesian separable filters based on Gaussian derivatives have
been investigated to find an appropriate filter set F for the representation of the local
image structures. It turned out that polar separable filters were superior to cartesian
filters. More complex filters have been investigated but they did not represent the
characteristic information as reliably as required for our classification task. They
encoded gradually increased individual features which were inappropriate for our
classification task. Also filters with too many radial or angular oscillations decrease
the representation performance.

Three polar separable filters ( ff ) which selectively catch the local energy
encoded in the surrounding region have been added to the set of representation
filters but with only a small number of angle-dependent oscillations (see Fig. 4,
second row). The polar separable filters used are defined by the following equation:

FP(r,p):=r e"zL:’ cos (me) (4)

with radius r(z, y) := \/22 + y? and angle ¢(z, y) := arctan ¥, m counts the number
of angle-dependent oscillations and o is a scaling value.

bThe use of a uniform normalization of the filter kernels (L!-norm concerning the size of the filter
template of all filters f1 .. g) in addition to a selection of a high scaling value (o = [5...8]) of the
Gaussian derivative filters will ensure the necessary comparability of the labels computed in cases
of differently expressed edge or line structures (see also Sec. 3.2.).

€Large scale edge and line detection filters are more advantageous than small ones because they
are not so selective. Therefore, they will provide comparable filtering results in cases of different
expressed edge and line structures (for more details see Refs. 13 and 18).
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3. LABELED GRAPH

Based on the labels L calculated for each characteristic image position by the filter
set F, the labeled graph G is defined as a set of nodes N = {Ny,...,N;} and a
set € of edges, where each member or element E; i denotes the edge between node
N; and node N (j # k).

G:={(WV,8)} (5)

Each node N is labeled by its position & and a S-dimensional label L:
N:={(z,L)|Z = (z,y),L = h,...lIs}. (6)

Each component /;,i = 1,..., S of the label L is the response (projection coefficient)
of the ith filter from a given set of filters F (Fig. 4).

Several nodes of the graph are connected whereby multiple edges between the
nodes are necessary to maintain the spatial relationship between the nodes (Fig. 6).
Topologically neighboring nodes are connected by edges and are labeled with the
distance.? The distance between a node N; and a node Ny is defined as the Eu-
clidean distance between their positions #; and :

dj = ||T; — &%) - (7)

3.1. Synthetic Reference Graph

A synthetic reference pattern GR, called reference graph, which is calculated from
an average of several examples is introduced to provide a representative model.
Superpositions of several individual local structures such as eye corners result in a
more robust reference pattern than a single individual one. Therefore, a number of
examples are selected manually to generate a representative reference pattern which
describes the common structure of all class members.

L@ == LR ®)
h=1

where n is the number of examples of corresponding labels th(f) of the reference
pattern related to a particular kind of landmark j (fixed). To establish also reliable
reference values for the edges between the nodes of the model graph, distance ranges
with a mean value and a standard deviation are introduced, which are also based
on the same set of n examples.

41t has been shown that for each node of a graph the number of edges should be nearly equal.
The number of edges can be reduced without any significant influence to the classification result
only for nodes which have a lower importance for the representation (e.g. the eye corners). In the
example, shown in Fig. 6, multiple connections (4-5) between the nodes are evident. This has the
advantage that the spatial relationship is saved very carefully.




DISCRIMINATION OF FACIAL REGIONS BASED ON ... 391

3.2. Similarity Function

To quantify the similarity between corresponding labels f,f and L;F the normed
scalar product of the two feature vectors is calculated as follows:
(LR, LT)

o T BV g
LS LS )

S(LEL]) = 1-

where the index B stands for the representation of the reference pattern and the
index T marks a representation of a test pattern. By defining this similarity function
the domain of the function S(&, ) lies between 0 for identical feature vectors and 2
for feature vectors with exactly opposite directions (Def(S) = [0...2]).° Another
advantage of the presented definition is that it is invariant with respect to global
changes of the image contrast and to the brightness of the image which may occur
under varying recording conditions.

Fig. 6. Adapted graph for the class of eye regions demonstrated at one sample eye region. Left:
the original image part with the model graph. Right: the enlarged graph of the eye to document
the spatial relationship between the nodes.

4. GRAPH MATCHING

To match an individual pattern GT to the reference pattern G® a two-step graph-
matching approach has been developed. But beforehand the two-step graph-matching
algorithm will be introduced, a cost function has to be defined in advance.

4.1. Cost Function

To evaluate the success or the quality of a graph-matching process a cost function
has to be formulated with which the adaptation of the graph can be quantified. The
total cost C, of a graph of a test pattern GT has two components.

4.1.1. Costs due to nodes

The first component quantifies the similarity of each label LT of the nodes of a
graph in relation to the reference labels L% based on the similarity function S [see
Eq. (9)]. In the following, this cost component will be denoted by ‘cost due to

€This issue is advantageous for an efficient and robust calculation.
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nodes’ C,,. The cost function Cy, for the similarityf (or distinctiveness) of an entire
graph is defined as the sum of the similarities of the labels L}" of all constituent
nodes Nj or as:

J
Cui=Y . SERLT)- (10)
j=1

4.1.2. Costs due to connecting edges

The second component quantifies the changes in the spatial relationship between
the nodes. All the connecting edges E; i between the nodes are evaluated and
the sum of all evaluated connecting edges gives the cost component C, due to the
connecting edges. The calculation of the cost function C, is based on the relative
length of the actual connecting edge dg:k(t) of a node pair (N;, Ni) of a test pattern
G7 just considered relative to the length of the connecting edge dfk in the reference
graph G# [see also Eq. (7)]. The component of the costs due to the connecting edges
is defined as: «
i dB —dF(t
Ce ::Z%Zf(ﬁﬁ(i) (11)

=

where K (with 1 < K;; < J) is the number of edges E; . (withk € 1,...J, j fixed)
related to the node N; and f is a monotonous increasing function (e.g. f(2) := |z]).

Finally, the total costs C, for an entire test graph GT related to a reference
graph G# are given by
Coi=Ch+ A C, (12)

where A is a weighting factor® (A > 0) to control the quality of the matching process.

4.2. Determination of the Initial Starting Position

To initialize the adaptation of the subsequent graph-matching process to a test
pattern the reference graph G# has to be shifted roughly to an appropriate starting
position in advance. This processing is necessary to enable a reliable selection of
the best starting position independent of any translation or shift of the pattern
of interest in the image part (considering both shifts in the X- and Y-directions)
(Fig. 7). During the computation of the initial starting position the shape of the
graph is kept rigid. No individual movement of the nodes of the graph is allowed
during this initial matching phase, only the scale of the graph is varied to achieve
a higher scale invariance. To do this, the model graph is scaled or better adapted
to a number of distinct sizes by keeping the general shape rigid and adopting the
point representations at the several node positions.

fThe index n of the cost function should denote the kind of costs due to the similarity between
corresponding nodes or more precisely due to the different projection coefficients li,; of the feature
vectors LT,

ELow values of A will result in strongly distorted graphs while higher values will maintain the
global relationship between the nodes.
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Fig. 7. Calculation of the best starting position for the model graph in four examples. In the first
row, two successful examples for eye regions are shown. Even if spectacles cover the eye region,
the computation of the best starting position may succeed (first row right). The computation of
the best starting position may fail if the remaining characteristic information of the eye region
is too poor, here caused by a “mimic” expression (screwed eye) (second row left). If a non-eye
region is computed (second row right) the calculation will terminate at a position with the greatest
similarity to the represented edge information.

For the determination of the initial starting position, the graph similarity C,(x;)
is calculated for all image positions in the considered test image (V# € I(#)) and the
image position with the minimum costs C,(Z) indicates the best starting position
(Fig. 7). The component of the total costs Cy due to the connecting edges is equal
to 0 (C. = 0) because the graph is moved undistorted. The same is valid when
the initial scale is varied." In other words, the determination of the initial starting
position is based only on the similarity of the point representations Cy := Cy (that
means A := 0, refer to Eq. (12)) in each case.

4.2.1. Invariance properties

A degree of rotation invariance can be integrated into the determination process if
different rotated examples of the model graph G® are used. The computation effort
increases drastically, however, if different scales are also simultaneously checked.
Therefore, in the presented realization no additional effort is made to achieve fur-
ther rotation invariance, since firstly it can be assumed that the facial regions and
in particular the eye regions are in an approximately horizontal orientation and sec-
ondly, the algorithm developed is already able to successfully detect slightly rotated
eyes (in a range of £10°) using just one horizontal model graph (Fig. 8).

h'When testing different initial scales to find the best starting position the scale of the reference
graph is also adapted so that the connection costs will remain at 0.
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Fig. 8. Invariance property of the graph-matching approach with regard to rotations. Stepwise
altered rotation angle 5° (left), 10° (middle), and 15° (right). Rotations within the range +10°
are acceptable without the need to consider any rotation of the model graph. Even in isolated
cases above this empirical threshold, the determination of the initial starting position may succeed
but the subsequent local matching may fail (right).

For the scale invariance properties of this initial determination of the starting
position it was found that size changes within a range of up to +10% are acceptable
without checking different scaled model graphs (Fig. 9).

Fig. 9. Invariance property of the graph-matching approach with regard to scale changes. Stepwise
varied scale —20% (left), —10% (middle), and +10% (right). Size changes within a range of £10%
may be acceptable without checking differently scaled model graphs. Object sizes above this
threshold will result in failures (left).

Furthermore, the approach is invariant with respect to noise. Noise levels above
1 dB are acceptable for a successful determination of the initial starting position
and for a successful computation of the subsequent local matching (Fig. 10). Even
in images with drastically added noise (SNR = 0.5 dB), the determination of the
initial starting position may succeed but the subsequent local matching may fail
(Fig. 10 (right)].

Fig. 10. Invariance property of the graph-matching approach with regard to noise. Example image
with added noise, Signal/Noise-Ratio of 2 dB (left), 1 dB (middle), and 0.5 dB (right). The
determination of the initial starting position succeeds in each case while the computation of the
subsequent local matching will fail with a SNR < 1 dB (right).
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4.3. Local Matching

After the determination of the initial starting position, the nodes of the graph are
moved relative to their neighbors to achieve an optimal correspondence to the under-
lying image structure for each constituent node. Theoretically, by moving n nodes
of a graph each independently in two directions and considering also an adapted
scale and the right orientation of the entire graph a 2n + 2-dimensional optimization
problem has to be solved. The solution of such a high dimensional problem consid-
ering on average graph sizes of more than 10 nodes, cannot be calculated exactly in
reasonable computing time.

For this optimization problem, a heuristic numerical approach is applied which
is able to determine an acceptable approximation of the optimal solution. In the
realization, a simulated annealing approach!? is employed to compute such an ap-
proximation.

4.3.1. Simulated annealing

The simulated annealing approach is a well-known method to determine efficiently
a global minimum in a high dimensional search space which approximates well the
optimal solution.' The underlying idea is adapted from a thermo-dynamic model in
molecular physics. The model describes the controlled cooling of matter dependent
on a temperature 7. At high temperatures the molecules are able to move fast
and therefore, cover greater distances. The freedom of movements of the molecules
become restricted stepwise as temperatures decrease until the matter has cooled
down completely. At the end of the cooling process there is a systematic order
between the molecules. But this is only possible if the temperature has been high
enough in advance to enable the molecules to move large distances.

Adapting this property to a high dimensional search problem, a high tempera-
ture at the beginning 7(0) allows the accommodation of stages with higher energy
levels or in other words allows local maxima to be overcome in the high dimensional
search space.! Another important aspect of this approach is that the temperature
has to be reduced gradually and in controlled decreasing steps to avoid a too sud-
den freezing of the current state. This increases the likelihood of finding a local
minimum which best approximates the optimal solution.

For each node N; an alternative position #(t + 1) is selected randomly inside a
well-defined surrounding region R (e.g. R is a 7 x 7 surrounding region) and the
expected total costs caused by the entire graph C'g(i:'(t + 1)) (expected graph) are
calculated. The cost difference AC(Z(t)) between the costs expected C,(Z(t+1)) of
the suggested position #(t+1) and the most recent previous position #(t) determines
the acceptance,

Cost difference AC; = C,y(&(t + 1)) — Co(F(2)) - (13)

If the suggested position Z(t + 1) is accepted for the node position N;(&, L),

iThe probability of making a move which may increase the cost is greater than zero. It is propor-
tional to the temperature 7.
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the next node N;., is considered by applying the same procedure; if the suggested
position is not accepted, another suggestion #(t + 2) will be selected and the testing
procedure is iterated.

To also enable an acceptance of stages with higher energies or costs, the decision
of acceptance of a suggested position is of a stochastic nature. If AC is greater than
0 (AC > 0) the probability of acceptance should be lower (but not equal to 0) than
if AC' is lower than or equal to 0 (AC < 0). The probability of acceptance p is
realized by applying a sigmoid function (Fig. 11), which is dependent on the cost
difference AC and the temperature = (equal to the Bolzmann-function).

1
1+ et
where ¢t is the time value and k is a constant factor to control the relation between
the cost difference AC and the temperature 7.

With decreasing temperatures A7, the probability of acceptance p of states
which have higher costs than the stage before is decreased.

p(AC:,T) =1~ (14)

probability

difference of costs
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Fig. 11. Probability of acceptance p of a suggested position in relation to the difference of cost
AC. For cost differences greater than 0, (AC > 0) the probability of acceptance is not equal to
0 if the temperature is high enough. This ensures that during the local adaptation process even

positions which would produce higher costs would be accepted (black line: temperature 7 = 1,
dotted line: 7 = 0.05).

Furthermore, this selection and testing procedure is iterated additionally for a
particular temperature step 7. During this iteration period, the temperature 7 is
kept fixed to find the optimal position of the nodes relative to each other. In the
realization, discrete temperature steps are used and the change of one temperature
step to the next lower one is processed if an equilibrium state is reached. This
equilibrium can be determined either by the convergence of the time-dependent
cost function or can be approximated by a number of discrete matching steps.J The

JIn the realization, a number of discrete matching steps (within a range of 100-200 steps) are
chosen because the matching can be performed with reduced computation effort by maintaining
simultaneously qualitatively comparable results.
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equilibrium state indicates the decrease in the temperature 7. The reduction in
the temperature 7 during the simulated annealing process is modeled nonlinearly
to achieve a smooth fading of the temperature® (Fig. 11) and is defined as follows.

T(t+1):=q-7(t), with 0<g<1 (15)

The starting temperature 7(0) is determined empirically. It depends on the problem
to be tackled and the scale of dependent value[s] to be optimized (cost functions
Cy, Cy, and C.) (see Fig. 12).

temperature/costs

0 260 400 600 800 1000 1200

Fig. 12. Graph showing the relationship between the gradient of temperature, costs, and the
number of steps. The running of the temperature = (black line) together with two cost functions,
total costs Cy (dotted line), and connection costs Cp (bar dotted line) shows the development
of the optimization process. The temperature starts at step t = 0 with an initial value of (0)
and decreases nonlinearly (discretely after each 100 steps). The costs increase drastically at the
beginning due to the high temperature and the rapidly increasing cost component due to the
distorted connecting edges. After a number of matching steps (ca. 300 steps) the matching process
begins converging because a new spatial order emerges. The total costs and the costs due to the
connecting edges decrease very slowly at a very low temperature until no further change occurs
indicating the termination of the matching process (1200 steps).

After a total number of matching steps, within a range of 1000-6000 steps, the
simulated annealing process converges on a local minimum. It is assumed that the
computed minimum is a good estimate of the optimal solution. The total costs
calculated for the best match are taken to verify the image regions of interest.

4.3.2. Restriction and modeling of the selection area

As mentioned before, within a well-defined surrounding region R of each node N;
of the considered image position #(t), one alternative image position Z(t + 1) is
selected. The selection is not completely randomized because the 2-dimensional

kIn the realization, values for ¢ = 0.5 up to g = 0.7 have been found to provide good results.
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random selection process is additionally modeled by a probability function. The
idea behind the probability modeling of the randomized selection is that even at
high temperatures a controlled distortion of parts of the graph should be performed.
By applying a 2-dimensional Gaussian function, positions very close to the recent
starting point ©(¢) will be selected with a higher probability than locations which
are further away. The disadvantage is that this constraint may slightly restrict
the flexibility and even the speed of the computation of the local graph-matching
process.

To optimize the computation of worthwhile candidates for new positions, anxn
surrounding area R of each node N; is defined upon which the subsequent ‘random’
selection of suggestions is based. The reason for this restriction of the selection area
is that it can be assumed that after a successful determination of the initial starting
position, the optimal image position is not very far away from the actual position.
Therefore, a range which restricts the furthest distance may enhance an efficient
selection of meaningful position candidates.

In addition to the definition of the cost function due to the connecting edges,
other constraints are needed to maintain the spatial relationship of the graph dur-
ing the local matching process. This is particularly important for object adapted
graphs as they are used in this application because of their non-homogeneous topol-
ogy. To avoid the situation that during the matching processes a particular node is
positioned where it will cause an inverted neighborhood relationship, several limita-
tions have to be defined. For example, a node which lies centrally and is surrounded
by several other nodes should maintain its central spatial relationship in each case.
With no constraints it is possible that during the graph matching the node N; is
moved to the left and subsequently its neighboring node N; lying to its left is moved
to the right so that the spatial relationship changes (node N; changing from a neigh-
bor on the left-hand side to a neighbor on the right-hand side). This may cause
unwanted distortions and additional intersections of the connecting edges with other
neighbors. Therefore, the area R in which a node may be moved is additionally
restricted by the relative positions of its direct (connected) neighbors.

These constraints avoid additional intersections of connecting edges or generally
undesired distortions of the graph but they also restrict the ‘flexibility’ of the graph-
matching processes. In contrast to the approach introduced in Ref. 16 in which
the high dimensional optimization problem is solved applying a testing scheme
comparable to a simulated annealing approach using only the temperature 7 = 0,
the approach presented here is able to efficiently produce a controlled distortion
of the graph and reliable matching results. This is only made possible by these
additional constraints.

Some results of the local-matching algorithm are demonstrated in Fig. 13. Two
examples of eye regions are shown in which the local matching has optimally adapted
the model graph to the underlying structure (compare Figs. 7 and 13, first row
each). Furthermore, two examples are shown in which the graph is not adapted to
an eye but to another facial structure (Fig. 13, second row). The graph is visibly
more distorted than the adapted graphs of the eyes. This will generate higher costs
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due to more distorted connecting edges. The total costs after completion of the
local matching procedure are significantly higher for non-eye regions than for eye
regions. The main reason is that the cost component due to the connecting edges
is significantly increased while the cost component due to the nodes converges after
the local matching at nearly the same level.

IeE—

Fig. 13. Results of the local-matching algorithm. The adaptation of the model graph to the
individual structures is shown for the images from Fig. 7. For the eye regions the local adaptation
enhances the similarity between the several point representations so that the total costs Cy will
decrease drastically (first row) by maintaining the global spatial relations between the nodes. For
non-eye regions the spatial relations will be distorted more severely which causes high costs for the
connecting edges C.. During the adaptation of non-eye regions the final costs will also decrease
but they will converge at a much higher level (second row).

5. CLASSIFICATION RESULTS

The graph-matching approach as it has just been introduced, has been tested on a
database of 36 facial image regions.! The test set was divided into three subsets:

1. Class I, subset of eye regions satisfying the preconditions™ (n = 13),

2. Class II, subset of eye regions not exactly satisfying the preconditions™ (n =
9),

3. Class III, subset of non-eye regions (n = 14).

The application of the object adapted graph requires that different preconditions
have to be fulfilled by the examples of the images to be classified. To derive or test
the limitations of the approach presented here, several images not exactly fulfilling
the preconditions have been included in the dataset. These are for example, screwed
eyes or eyes with heavy shadows so that the characteristic information which has

I'The set of test samples used is independent of the data which are used to establish the reference
graph G® introduced in Sec. 3.

MThe exact definition of the preconditions is beyond the scope of this paper but we refer the
interested reader to Ref. 13. However, the main aspects or underlying ideas of the definition used
will follow in the subsequent text.
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If the model graph had been successfully superimposed on the eye region of a
member of subclass I or II, this member remained in its class. If the determination
of the initial starting position failed, the region was added to the non-eye region
class III.

The local matching was computed for all images and the classification was per-
formed based on the set of examples. Fifteen of sixteen eye regions with successfully
superimposed model graphs were verified correctly. It is remarkable that even 4 eyes
not fulfilling completely the preconditions (members of subset II) were also verified
successfully as eyes. This gave a discrimination performance of 93.75%. Only one
eye region of subset II could not be recognized correctly. Furthermore, no non-eye
region was misclassified as an eye region.

After the reallocation and the calculation of the local matching together with
the classification, a sensitivity of 100% and a specificity of 95.5% were obtained.

The qualitative properties, sensitivity and specificity, are understood in this
context as follows: Sensitivity is the proportion of eye regions which are correctly
classified as eye regions. That is, all classified eye regions are eyes in reality and
are successfully determined during the calculation of the initial starting position
(100 — fa; fa = false-acceptance-rate) and that no non-eye region is misclassified
as an eye. Specificity is understood as the proportion of non-eyes which are not
classified as eyes that means the proportion of regions which are not classified as
eyes and are not eyes in reality (100 — f,; f, = false-rejection-rate). A graphical
summary of the classification results is presented in Fig. 14.
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Fig. 14. Success of the classification of the reallocated test set dependent on the choice of the
discrimination threshold. Between the false-rejection-rate (subset of eye regions) (black line) and
the false-acceptance-rate (subset of non-eye regions) (dotted line) the best discrimination can be
achieved if the threshold is set equal to 0.13. In this case only one eye region was misclassified
and no non-eye region was classified as an eye region.

starting position fails on an eye region the subsequent processing will run as on a non-eye regicu
and therefore, will also result in failure.
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would have to be solved as discussed in the section ‘local matching’ (Sec. 4.3). A
heuristic solution of this high dimensional problem can only be achieved if a good
initial starting position can be assumed. This leads to a vicious circle and illustrates
that an enhancement of the performance in the determination of the initial starting
position is very difficult to achieve.

One possible solution to this problem could be to integrate several components
of the degrees of freedom into even the first processing step. Some preliminary in-
vestigations have been made with different sizes of the model graph and differently
oriented graphs (compare Figs. 8 and 9). The same would be possible for indepen-
dently scaled graphs. For example, screwed eyes may be better detected during the
first processing step if the size of the graph is varied in Y-direction while the size
in X-direction is kept fixed. But such additional global distortions of the entire
graph will very quickly increase the dimensions of the search space, even for the
determination of the initial starting position so that a complete generation of the
optimal solution may rapidly become impossible.

To summarize, the quality of the entire classification module is mostly dependent
on the performance of the determination of the initial starting position. If the
determination of the initial starting position fails for an image part from the class
of interest the subsequent local matching process is not able to correct this failure.
Therefore, additional effort has to be directed towards an enhancement of this
component of the classification module. The subsequent local-matching algorithm
succeeds in each case. That means that in the case of a successful determination
of the initial starting position the subsequent adaptation is able to produce the
necessary discrimination between an object belonging to the class of interest and
an object not belonging to the class.
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