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In this contribution Dynamic Cell Structures (DCS network) are applied to classify local image structures
at particular facial landmarks. The facial landmarks such as the corners of the eyes or intersections of
the iris with the eyelid are computed in advance by a combined model and data driven sequential search
strategy. To reduce the detection error after the processing of the sequential search strategy, the computed
image positions are verified applying a DCS network. The DCS network is trained by supervised learning
with feature vectors which encode spatially arranged edge and structural information at the keypoint
position considered. The model driven localization as well as the data driven verification are based on
steerable filters, which build a representation comparable with one provided by a receptive field in the
human visual system. We apply a DCS based classifier because of its ability to grasp the topological
structure of complex input spaces and because it has proved successful in a number of other classification
tasks. In our experiments the average error resulting from false positive classifications is less than 1%.

Introduction

these keypoints cannot be detected by purely data-

The detection and exact localization of certain char-
acteristic keypoints in face images, such as the
corners of the eyes or the mouth, are relevant issues
for many applications in face recognition. In general,

driven methods. For example, the definition of an
eye corner is more a semantic or high level definition
than a low level one, i.e. it is not based solely on
the local image structure. Moreover, the local image

Fig. 1. Examples of inner eye corners to be verified. The high degree of variability between different subjects is shown.
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(a)

Fig. 2. Attentive localization of prominent facial regions based on a saliency representation [Ref. 11] (a). Result of the
detailed investigation of an eye region applying a combined model and data driven sequential search strategy [Ref. 14]

(b).

structure of an eye corner and its local neighbor-
hood shows large variations between individuals and
even between different images of the same individual
(Fig. 1).

Sequential search strategy

In previous work we have developed a sequential
search strategy which integrates appropriate model
knowledge into a local data driven processing stra-
tegy.!*!% This algorithm is based on a very flexible
and powerful filtering scheme!?
steps:

and consists of two

1. Selection of the region of interest (ROI) using
an attentive localization algorithm.

2. Detailed investigation of the selected local
region applying a sequential search strategy
to detect the included keypoints.

In the first step, motivated by the behavior of
the human visual system, the most salient regions
in facial images, such as the eye, nose, and mouth
region, are selected, applying an attentive local-
ization mechanism [Fig. 2(a)]. To this end, a
saliency representation is established in which the
most salient cues of the facial image are encoded.
In grey level face images these are prominent edge
and line structures or generally image regions with a
high degree of local energy.'® By evaluating a mul-
tiscale representation of the saliency representation

a sequential order of spatially well restricted facial
regions is obtained. A complete description of the
attentive localization of the facial regions is beyond
the scope of this paper but we refer to Ref. 11.

In the second step the selected image regions are
investigated using more sophisticated and expensive
image processing methods. The result of the detailed
analysis is the detection of a set of important facial
landmarks. In the case of the eye regions these are
the corners of the eyes, the shape and the center
of the iris, the intersections of the iris with the
eyelids and the line of the eyelid wrinkle [Fig. 2(b)].
It is based on a sequential search strategy which
uses model knowledge about the considered scene to
enable a robust and accurate keypoint detection.'*1?
This sequential search strategy relies on line and
edge information for the detection and tracking
operations. The included model knowledge allows
a stepwise verification of each state of processing.

Detection of dysmorphic facial signs

Our primary application is the detection of dysmor-
phic facial signs. Dysmorphic signs in face images
are minor anomalies which, by definition, do not
lead to functional disturbances (Fig. 3, [Ref. 24,
p. 42]). The ratios of distances between certain fa-
cial keypoints are statistically significant for discrim-
inating between the faces of normal children and



Dynamic Cell Structures for the Evaluation of Keypoints in Facial Images 29

Fig. 3. Example of a very enlarged intercanthal distance
which is a typical dysmorphic facial sign (from [Ref. 24,
p. 42]).

different classes of dysmorphic syndromes.?3:*!

Therefore, the detection of particular keypoint po-
sitions in dysmorphic facial images is of high diag-
nostic value. The localization of the keypoints needs
to be very accurate and reproducible, and should
correspond to the anatomical definition of the key-
point position. To this end, the main aim of this
investigation is to decrease the false positive clas-
sification error as much as possible. From a medi-
cal point of view, it is better not to detect a key-
point position than to detect one at an incorrect
location.

Description of problem

Due to artifacts, occluded keypoints or unpredictable
edge elements, the sequential search sometimes fails
and terminates at non-keypoint positions (Fig. 4). In
addition, every edge element considered during the

detailed processing has to be interpreted correctly to
ensure that the edge and line tracking is not mis-
led. Such sources of error, compounded by the gen-
eral complexity of the search task lead to a variety
of different failures of the sequential search strategy.
Hence, we have decided to augment our system with
a third processing stage, a verification component,
which is the topic of this contribution. Its task is to
classify the image position at which the processing of
the sequential search strategy has terminated. In the
worst case this may be any position inside the con-
sidered facial region. Examples of the many different
appearances of keypoint positions to be verified are
demonstrated in Fig. 1 taking the inner eye corner
as an example.

In summary, the trained DCS network is applied
to verify computed keypoint positions and to discri-
minate them from non keypoints. The probability
of taking a non-keypoint as a valid keypoint should
be reduced as much as possible. The combination
of the additional verification stage together with
the sequential search strategy is based on Bayes’s
theorem.

Outline

In the next section we will introduce the neural
verification stage and its combination with the se-
quential search strategy. First the basic principles

Fig. 4. Examples of detection results after applying the sequential search strategy which have terminated at non keypoint
positions for both inner eye corners. In the first case the failure is caused by the glasses and in the other case by too
diffuse edge structures in the area of the inner eye corner. These false detected keypoint positions should be excluded

applying the DCS based verification step.
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of the feature generation will be presented. Sub-
sequently the fundamental principles of dynamic
cell structures will be presented together with some
modifications to the learning rule and the insertion
and deletion of neurons. In addition, the computa-
tion of the classifications and the applied Bayesian
framework will be deseribed. In Sec. 3 we will
present experimental results from the application
of the DCS network, taking the eye region as an
example, and finally in Sec. 4 we will end with some
concluding remarks.

2. The DCS Based Verification Stage

In this section we briefly introduce DCS networks
together with some modifications developed for this
application. First we will explain the generation of
feature vectors serving as input to our classifier and
subsequently describe the design of the actual DCS
based classifier. Finally we give the theoretical jus-

tification for the presented verification stage within
a Bayesian framework.

2.1. Feature generation

The feature vectors are obtained by applying a
particular set of linear filters to the considered
image position and its local 27 x 27 neighborhood
(see Fig. 5). The projection coeflicients of this par-
ticular set of filters are taken as components of our
feature vectors. The applied filters are based on the
concept of steerable filters.!” They are essentially
used for the sequential search strategy to detect the
keypoint positions because they provide a high de-
gree of flexibility for the edge and line detection.
In addition, they are also used to select the facial
regions in the images.!"'1? Hence, the convolutions
needed have already been calculated. No additional
computing time is spent for the calculation of the
feature vectors. In the following we will briefly
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Fig. 5. Second (a) and first (b) derivative of Gaussian filter for line and edge detection. Examples of the basis functions
[(c),(d)] to steer the line (a) and edge detection filter (b) in scale and orientation. Each considered image position is
projected to 70 of these basis functions (30 for the edge detector and 40 for the line detector). The resulting projection
coefficients form the components of the feature vector. Reconstruction of the filters with 40 basis functions (e) for a line
detector or 30 basis functions for a edge detector (f). The line and edge detection filters are steered in orientation and
scale [(g),(h)]. All rotated and scaled filters are computed from a small number of basis functions [(c),(d)] which optimally

approximate any desired deformed filter.
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introduce steerable filters, for a more detailed dis-
cussion of the filtering scheme we refer the reader
to Refs. 17, 7, and 21. Examples of applications of
steerable filters can be found in Refs. 13, 14, 15, and
18.

2.1.1. Steerable filters

Steerable filters were introduced to efficiently cal-
culate the responses of filters in arbitrary orien-
tations, scales, and other deformations.!”™"2! The
reconstruction of all deformed filters F, is calculated
by a superposition formula of the following type:

N
Fa(x) =) bi(a) Ax(x) (1)

k=1

Applying this technique it is possible to generate an
infinite number of different ‘deformed’ filters (e.g.
edge and line detectors steered in scale and orien-
tation within a given interval) as a weighted sum of
only a few so called basis functions [Figs. 5(c) and
5(d)]. The number N of the orthogonal basis func-
tions Ag, (k= 1,..., N) is assumed to be small com-
pared to the number of deformed filters. Typically
N will be small (30 or 40 for example), while the
deformation parameter a can theoretically assume
an infinite number of values and many thousands in
practice (for orientation and scale). For example,
100 orientation steps and 17 distinct scales would
result in 1700 different edge or line filters in a clas-
sical filtering scheme. Two examples of deformed
filters (rotated and scaled) are shown in Figs. 5(g)
and 5(h). With steerable filters, however, this huge
number of filters is generated only by 30 (for the

(a) (b)

edge detector) or 40 (for the line detector) basis
functions with an average approximation error of
about 3% with respect to a kernel size of 27 x 27
pixels [Figs. 5(e) and 5(f)].

2.1.2. Feature vector

The projection coefficients of a considered image po-
sition within its 27 x 27 neighborhood relative to
the basis functions establish our feature vector. The
underlying assumption is that all the relevant and
necessary line and edge information is encoded by
the 70 projection coefficients of the basis functions.
The application of this set of basis functions ‘to re-
construct’ or represent the included edge and line
information results in a high reconstruction quality
in the center and a stepwise decreased resolution in
the surrounding region dependent on the distance
from the center [Fig. 6]. The overall reconstruction
quality can be enhanced by adding more basis func-
tions. This is one essential property of the employed
orthogonal basis functions which enhances the flexi-
bility and performance of the processing.

2.1.3. Properties of the representation

The projection coefficients computed at the consid-
ered keypoint positions can be compared with the
responses of receptive fields in the human visual sys-
tem. The sensitivity of the applied filters is restricted
to particular structural information from the consid-
ered image part within a limited spatial extension.
Hence, the application of the filters to particular im-
age positions as demonstrated in Fig. 6 can be viewed
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Fig. 6. Demonstration of the reconstruction properties of the filtering set at particular image positions. Two original
image parts are presented [(a), (c)] along with the reconstructions [(b), (d)] using 70 basis functions. In the left image
pair an inner eye corner is shown, in the right image pair the edge between the iris and the bulbus. The filter set is
positioned exactly at the center of the image parts (image and filter kernel size is 27 x 27 pixels). In the central regions
of the images the reconstruction is nearly complete, in the close surrounding regions it is quite acceptable (7 x 7) while
the quality decreases drastically or is reduced to an average grey value towards the image borders.
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Fig. 7. DCS are RBF networks (left) plus an additional lateral connection structure between the RBF units formed by
competitive Hebbian learning and approximately Perfect Topology preserving Feature Mapping (PTFM) (right). In the
latter, two neural units are connected if their masked Voronoi polyhedrons have a common border.

as a joint focus and analysis process restricted to only
the necessary visual cues.

However, the generated representation is not
complete, i.e. the representation is not sufficient
to reconstruct an image area or the grey value
distribution completely and error-free. Only the
most important structural information is encoded
and most of the irrelevant information is not con-
sidered. Furthermore, this representation of the
projection coefficients allows an effective and signif-
icant reduction in the amount of data, by a factor
of more than 10, compared to the original grey level
information of an image area with a size of 27 x 27
pixels.

2.2. Dynamic cell structures

The recently introduced Dynamic Cell Structures
(DCS)® represent the class of RBF-based approxi-
mation schemes which attempt to concurrently learn
and utilize Perfect Topology preserving Feature
Maps (PTFMs). DCS networks are a subclass
of Martinetz’s Topology Representing Networks
(TRN),'” defined as containing any network using
competitive Hebbian learning for building PTFMs.

The architectural characteristics of a DCS net-
work are (see Fig. 7):

1. one hidden layer of radial basis functions
(possibly growing/shrinking)

2. a dynamic lateral connection structure be-
tween these units and

3. one layer of (usually linear) output units.

Training algorithms for DCS adapt the lateral
connection structure to a PTFM by employing a
competitive Hebbian learning rule and activate and
adapt RBF units in the neighborhood of the current
stimulus, where “neighborhood” relates to the simul-
taneously learned topology.

2.2.1. Growing DCS

The Growing DCS (GDCS)® is a DCS network
which grows by inserting units according to a lo-
cal error measure and the emerging PTFM. It is si-
milar to Fritzke's GCS network® except that it
uses a PTFM instead of a fixed hypertetrahedrical
connection structure. GDCS thus addresses the
major problems of Kohonen-type SOMS, i.e. the
fixed number of neural units (GDCS incrementally
grow and shrink), the fixed and usually imper-
fect topology preserving neighborhood relation (DCS
learn and utilize PTFMs instead) and a distribu-
tion of neural units that depends solely on the input
probability distribution (in GDCS the distribution
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of neural units also depends on the local error mea-
sure which can be chosen according to the task in
hand). Finally, DCS networks can aid in automatic
class/cluster separation by searching for connected
components in the PTFM.

These properties of GDCS and their simplicity,
efficiency and superior classification performance on
a number of CMU classification benchmarks® made
them the premier choice for our classifier. Using
learning PTFMs, DCS are able to grasp part of
the topological structure of high dimensional input
spaces, and by exploiting this knowledge, they usu-
ally yield better classification results than simple
nearest neighbor or other conventional classifiers.

We use a normalized RBF interpolation scheme
and hence the output of the DCS calculates as

Z 0; b fi(|[x — pil|)

PENhF (bmu)

S rbfilllx— il

iENAhT(bmu)

(2)

y(x) =

where 7b f;(||x — p|) denotes a radial basis function ¢
with center y; and input stimulus x. The vectors o;
can be thought of as output weight vectors attached
to each rbf unit i. The radial basis functions are
strictly monotonically decreasing with rbf;(0) = 1.0
and rbf;(cc) = 0. In the experiments reported in this
article the radial basis functions have been realized
by Gaussians:

rbfi(x) = e—mx lx—uil? 3)

The neighborhood Nh* (i) of a neural unit i is
defined as the unit itself together with its direct
neighbors Nh(i) (w.r.t. the PTFM)

NK*(i) = Nh(i) U {i}
= {jICi; #0,1<j S NYU{s}, (4)

where N denotes the current number of neural units
in the network and C is the adjacency matrix ex-
plained in the following paragraph. The best match-
ing unit bmu is given by

lltom = x| < i =xI| . (1<i<N). (5)

2.2.2.  Individual learning rates for each unit

For the application reported in this article we mod-
ified some of the learning rules suggested in Ref. 6

to better meet the demands of our application. The
adjacency matrix C represents the lateral connection
structure between the RBF units i, j and is adapted
by a competitive Hebbian learning rule such as

2T :rbfixrbf; > rbfe xrbfy,
(L<EK,L<N),
Ci; —1:1i,j # bmu, second best ,
and C;; > 0.

Ci;= (6)

This rule connects and subsequently enhances
(refreshes) two units if their masked Voronoi poly-
hedrons have a common border, giving rise to a
PTFM.'20 Furthermore, it may break the connec-
tion, if it is not refreshed after a maximum of 2
training cycles (7' is the number of the feature
vectors in the training set).

We have also modified the Kohonen-type learn-
ing rule suggested in Ref. 6 for training the centers
of the DCS neurons. The main difficulty encoun-
tered with this learning rule was in choosing the cor-
rect learning factor for the best matching unit, €44,
and for the direct neighbor units, €5, as well as for
the decreasing of €4, and of €, during the learning
process.

We solved this problem by using frequency* mod-
ulated individual learning rates for each bmu €pmuy i
and for each neighbor unit of the bmu €, ;: If the
learning rate €p,q,; is substituted by m..l.‘. 2 and if the
counter Mpmy,i is increased by 1 each time when neu-
ron i is bmu, then the resulting learning rule for the
bmu (first case of Eq. 7) computes the exact (non-
floating) average of all feature vectors which have
fallen into the Voronoi polyhedron of neuron i since
the beginning of the training:

* (x — py) for i = bmu,
MNbmu,i

Api= L % (x —p;) fori€ Nh(bmu) and,
Mnb,i

0, otherwise.

(7)

Applying these individual learning rates, the
DCS is observed to rapidly converge during the first
training periods. To avoid a “freezing” of the net-
work caused by too slow learning rates w :‘ —, an
increase in nNpmy,; 15 stopped if npmu reaches a
threshold calculated by Epmu X Zemu,i- Here ki 18
a constant and 2y, counts the number of feature

“The term ‘frequency’ refers to the frequency of a unit to become bmu.
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vectors that have fallen into the Voronoi polyhedron
of neuron ¢ during the training steps of the last train-
ing cycle. Hence the learning rate does not decrease
any further and the individual learning rule for the
neuron i starts to behave in the same way as the
original update rule (i.e. calculation of a floating
average) after approximately kpnmy training cycles.
The learning rule for the neighbors of the bmu
(second case of Eq. 7) is similar to the bmu case
just discussed. The individual learning rate is n:b =
where nyp; counts the number of times the neuron
i has been a neighbor of a bmu. The factor k.
restricts the growth of n,;, ; and is chosen to be about
5 to 10 times greater than kpm.,.

2.2.3. Insertion and deletion of neurons

The faster convergence of the centers and the im-
proved stability in regions of high data density
support the rapid formation of PTFMs in these
regions. Other modifications of the original DCS
learning rules (detailed in Ref. 25) concern the
Hebbian learning rule, shrinking the variances of the
Gaussians and an additional deletion strategy for
excess neural units.

The learning factors of adjacent neurons also
increase, because the inserted neuron should rep-
resent some properties of the feature vectors which
were previously represented by its neighbors.

The insertion of neurons is guided by a local error
measure attached to each neuron which is computed
as the cumulative output error of that neuron. A new
neuron is inserted between the unit with the highest
error and its neighbor with the second highest er-
ror measurement. An additional effect of the learn-
ing rule is that a recently inserted unit always starts
training with a high learning factor. The learning
factors of its neighbors are also increased to adapt
to the changed situation because the number of fea-
ture vectors which fall into the Voronoi polyhedron
may have changed. As the network grows, a situa-
tion may develop where a neuron has no neighbors.
Such isolated units occur where a unit has been nei-
ther a bmu nor a neighbor of a brnu during the last
two training cycles. A second group of units are dead
end units which are only neighbors to a bmu for one
cycle but have never been a bmu themselves during
the entire last training cycle. Both groups of neurons
contribute very little or nothing at all to the output
of the DCS network and therefore become subjects
for deletion.

With the insertion or deletion of neurons, no
special care is taken to maintain the adjacency

matrix apart from inserting or deleting the appro-
priate row and column of the matrix. The correct
neighborhood relationships in the affected part of
the DCS network are established during the next
training cycle by the competitive Hebbian learning
rule (see formula 6).

2.2.4. Relation to previous work

Further applications of DCS utilizing different learn-
ing rules can be found in Ref. 5 employing error
feedback learning for adaptive saccade control of a
binocular head, in Ref. 2 employing real valued re-
inforcement learning for learning collision avoidance
with a mobile robot, in Ref. 3 employing Q-Learning
for learning discrete control policies, in Ref. 4 em-
ploying supervised learning for pole balancing and in
Ref. 22 using unsupervised learning for incremental
category learning of KHEPERA robots. Supervised
DCS has been successfully applied to a series of clas-
sification tasks, as in Ref. 6, as well as to regression
tasks and time series prediction, as in Ref. 10.

Finally, it should be mentioned that indepen-
dently of us, B. Fritzke has further developed his
GCS and created his Growing Neural Gas (GNG)
which is virtually identical to our GDCS (compare
Refs. 1 and 9).

2.3. Class and activity map

In the application presented here, we have considered
9 different classes of facial landmarks: Inner eye cor-
ner, outer eye corner (for both the left and the right
eye), up to 4 intersections of the iris with the upper
and lower eyelid and a point on the eyelid wrinkle. It
should be pointed out, that the intersections of the
iris with the lower eyelid may not exist in every eye
region. Although most of the pixels in an eye region
are not keypoints we do not introduce an explicit
rest class, i.e. a class of non-keypoint positions. The
reason is that the network should not allocate neural
units for a class we are not interested in. Instead
we implicitly define the rest class by all pixels with
an activity below a relative class dependent thresh-
old. By presenting examples from the 9 keypoint
classes, only keypoints are finally represented by the
network.

In order to obtain a class map of an image
[(Fig. 8(a)], all pixels of the image region are clas-
sified by presenting their feature vectors to the DCS
network. Since we have not explicitly defined a rest
class, each pixel — even at non-keypoint paositions
— is labeled as belonging to a certain keypoint class
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Fig. 8. Classification results of the DCS network after presentation of an eye region. (a) Class map for the entire
considered image part without threshold; each pixel is assigned to a particular keypoint class encoded in distinct grey-levels.
(b) Activity map of the classification result; high activity is encoded by dark grey and low activity by bright values. The
activity is increased only at potential keypoint positions and in their direct neighborhood. (c) Resulting classification
map of all keypoint classes after application of class dependent activity thresholds. All white pixels are assigned to the
rest class and each grey value encodes a distinet keypoint class. (d) Activity map related to the keypoint class ‘upper
left intersection of the iris with the upper eyelid’; the biggest black blob indicates the position of the expected keypoint
position. The other smaller grey points mark positions, at which false positive classifications may occur, if the sequential
search strategy terminates there. (e) Original eye region in which the keypoints are marked. The image size of the
computed classification results is smaller than of the original facial region because of the 27 x 27 kernel size of the applied

filters.

[(Fig. 8(a)]. Additionally, a second map, the activ-
ity map, is computed [(Fig. 8(b)] which encodes the
activity induced by each pixel. The activity of a
pixel is defined as the activation of the brnu on pre-
sentation of the feature vector x of the considered
pixel position (Eq. 3). Combining the class map and
the activity map we obtain the resulting classifica-
tion map as depicted in Fig. 8(c) where all the pixels
with an activity below the class average have been
assigned to the rest class.

Taking the ‘upper left intersection of the iris
with the upper eyelid’ keypoint class as an exam-
ple, Fig. 8(d) shows that only very few pixels belong
to a particular keypoint class. Among them there
are image positions in the direct neighborhood of the
keypoint position and some pixels at positions which
are totally unrelated to the original keypoint posi-
tion. The latter pixels will contribute to the very low
false positive decision probability (1% on average)
(see Sec. 2.4 ff). Obviously, this probability strongly
depends on the selection of the class dependent

activity threshold because the threshold is respon-
sible for the assignment to the rest class.

2.4. Bayesian framework for verification

Within a Bayesian framework the introduction of a
verification stage for keypoint verification can be jus-
tified as follows:

First, the sequential search for a keypoint of class
C; is modeled as a random experiment. The position
at which the sequential search terminates is assigned
to the random variable X and hence P(X = C;) de-
notes the probability that the position at which the
search terminated really belongs to the keypoint class
for which we have searched. P(X # C;) is the er-
ror probability that the sequential search has failed,
i.e. that we have terminated at a position not be-
longing to the desired keypoint class Cj.

In order to further reduce the error probability
of taking a non-keypoint as a keypoint of class C;
we introduce a second stage, the verification stage.
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This verification stage analyzes the position at which
the search terminated and classifies it as belonging
to one of the n keypoint classes. Modeling the ver-
ification stage as a second random experiment and
assigning the output of the classifier to the random
variable Y, it decides for keypoint class C; with
conditional probability P(Y = C;|X = ;) and

P(Y = Ci|X # C;). The conditional classification
|

error is determined by P(Y = Ci|X # C;) for
false positive classification, and by P(Y # C;|X =
C;) for false negative classification. For the com-
bined system the a posteriori probability of decid-
ing on a keypoint of class C; but not having termi-
nated at a position of that keypoint class is P(X #
Ci|Y = C;). Using Bayes’s theorem this probability
calculates as

P(Y = Ci|X # C;) P(X #C;)

PX#CIY =C) =

P(Y =Cj)

(8)

P(Y = Ci|X # C;) P(X #C)

TPY=CIX#£C) PX£C)+PY =C[X=C) P(X=Cy) '

Obviously, the verification stage only makes sense
if the a posteriort error probabilities P(X # C;|Y
= () turn out to be smaller than the a priori prob-
abilities P(X # C;). In Sec. 8 we will show that
due to the small conditional error probabilities of the
DCS based verification stage they are indeed much
smaller.

3. Results
3.1. Verification of keypoints with
the DCS

To train the network, we use feature vectors calcu-
lated from keypoint positions and their near neigh-
borhood. The overall number of examples was
668 keypoint positions obtained from 110 different
images of left and right eyes. Feature vectors from
the keypoints of 87 of the 110 eye images formed
the training set. The remaining 23 eye regions
contributed to the validation set. The false negative
classification error averaged over all keypoint classes
for the training and the validation set as a function
of the number of neural units inserted in the DCS
network is shown in (Table 1). Since the (false neg-
ative) classification error for the validation set does
not fall below 4.9% for more than 127 neural units
this was the point chosen to stop the growing of the
DCS network. Otherwise generalization capabilities
can be expected to decrease.

Table 2 shows the results for the combined search
and verification system for four related keypoint
classes. In this table,

e P(X # C;) denotes the a priori probability of
the sequential search strategy terminating at a

Table 1. Classification error related to the size of the DCS
network.

Network Size

Neurons 23 32 59 87 115 127

Training Set

Error (%) 97 82 55 34 1.5 0

Validation Set

Error (%) 8.5 7.8 7.0 6.3 5.6 4.9

position not belonging to the expected keypoint
class C},

o P(Y = Ci|X # C;) the conditional probability for
a false positive classification of the DCS network,

o P(Y # Ci|X = () the conditional probability for
a false negative classification of the DCS network
and, finally,

o« P(X # CilY = C;) the a posteriori probability of
the combined system,

The latter are much lower than the prior error proba-
bilities, due to the low conditional classification error
of the DCS.

All the items in Table 2 are based upon ex-
aminations of an extended face database (more
than 110 face images).'* Since we have consid-
ered only image positions where the computa-
tion of the sequential search strategy has termi-
nated, there are differences in the amount of test
data for each class of keypoints. Only isolated
false positive and false negative detections were
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Table 2. Empirical error probabilities (%).

Keypoint B(X #£C)) P(Y =C; B(Y £C; P(X #£C;

Class C; |X # Cy) |X =Cj) Y =Cy)
Inner eye corner 14.4 6.7 2.2 1.1
Quter eye corner 8.3 11.1 1.0 1.0
Int.s. iris/upper lid 32 14.3 0.9 0.5
Int.s. iris/lower lid 4.1 0.0 0.9 0.0
Overall 6.5 8.3 1.2 0.2

—~ observed. The results of the class ‘eyelid wrinkle’

are not included in the table because strictly speak-
ing the eyelid wrinkle cannot really be viewed as
a single keypoint position. There is no exact and
reliable definition for the location of this keypoint,
a range of values for the location of the contour
or the dark line on the eyelid must be taken into
account. Therefore, an evaluation comparable to
the other ‘real’ keypoints is impossible. The results
presented in previous work are obtained based on
different and much smaller datasets.'®

3.2. DCS based keypoint detection

In an additional experiment we tried to detect the
keypoints directly with the DCS network, i.e. with-
out the sequential search strategy. To this end we
generated class maps and searched for that pixel with
the maximum activity for each keypoint class. The
results for this purely data driven keypoint detection
are summarized in Table 3.

The relatively high error rate for the keypoint
detection in particular for the detection of the eye
corner keypoints and the eyelid keypoint is not due
to the DCS network failing to assign the correct
class to keypoint positions but rather to other image
structures somewhere in the eye region inducing
more activation in the network than the exact key-
point position. The reason is that in complex images
there are a lot of image structures with comparable

Table 3. Purely data driven detection error.

Inner Eye | Outer Eye | Intersection | Eyelid
Corner Corner Iris/Lids | Wrinkle
Error (%) 56.5 47.8 11.9 61.9

or very similar structure to that of the keypoint un-
der investigation and that, by training the network
on keypoints only, we did not teach the network
to discriminate between keypoints and these similar
structures.

For illustration, the keypoints detected by the
purely data-driven keypoint search are depicted in
Fig. 9 taking three images from the validation set
as an example. In the eye images the keypoints of
the eyelid wrinkle and of the eye corner are some-
times misclassified because of the reasons already
mentioned, but the keypoints “upper and lower
intersection points of the iris with the eyelids”,
are detected reliably without any preliminary se-
quential search because of their characteristic image
structure.

4. Concluding Remarks

In this paper we have presented the application of
a DCS network for the verification of keypoint po-
sitions in facial images which have been computed
in advance by a model and data driven sequential
search strategy. We have shown that the DCS net-
work is able to verify keypoint locations suggested
by the sequential search strategy with high reliabil-
ity and that the results for the combined search and
classification scheme as expressed in the last column
of (Table 2) are very promising.

The results given in Table 3 concerning the direct
DCS based keypoint detection indicate that the
purely data driven approach is unlikely to lead to
satisfactory results for keypoint detection in com-
plex real world images. The reason is that no re-
lationships between the important structures in the
facial region have been considered. The integration
of model knowledge is essential for a successful and
reliable detection of real world keypoints because of
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(a) -

(©)

Fig. 9. Examples of detected keypoints in three eye regions from the validation set (a)-(c). The depicted results are
computed by direct classification of each image position of an eye region with the DCS network but without sequential
search of the keypoints in advance. Since the network has been trained with keypoints only (no negative examples) not all
keypoints in an eye region can be classified correctly. In particular, the keypoint on the eyelid wrinkle is often misclassified
because its location cannot be predicted as reliably as for an eye corner. The underlying structural information is not as

straightforward to compute as for obvious classifications.

the large variation in the grey value distribution of
the keypoints to be searched. The eye region is a
good example because its multiple structures caused
by eyelashes and a lot of small wrinkles on the upper
and lower eyelids. The discrimination between key-
points and non keypoint positions may be impossible
if no context information is used because too many
image structures may be present with comparable
structural grey value distributions.

The performance of the direct DCS based detec-
tion may be improved for particular very well de-
fined keypoint positions by a modified or enhanced
training scheme. The intersection of the iris with the
eyelids may serve as an example. In this case the im-
age structure is so characteristic and straightforward
that a reliable detection is possible, but no guaran-
tee against false detections can be given. Indeed we
have observed some remarkable failures, where the
border of a highlight was misclassified as an inter-
section keypoint because the structural information
resembled very closely that of the ordinary keypoint
under examination.

The presented hybrid approach of a model based
search strategy followed by a data driven neural net-
work verification component outperforms each of its
constituents taken alone. It is an excellent example
of how methods for image analysis can be evaluated
and enhanced using state of the art neural networks.

Acknowledgments

We are grateful to Dr. M. Michaelis from the Medis-
Institute at the GSF Research Center for provid-
ing the steerability scheme and for many helpful

discussions. The work has been partially supported
by DFG grants So 320/2-1 and Ei 322/1-1.

References

1. J. Bruske and G. Sommer 1995, “Dynamic cell struc-
tures,” in Proc. NIPS 7, pp. 497-504.

2. J. Bruske, I. Ahrns and G. Sommer 1996, “An
Integrated Architecture for Learning of reactive be-
haviors based on dynamic cell structures,” Technical
Report 9604, Inst. f. Inf. u. Prakt. Math., CAU zu
Kiel.

3. J. Bruske, I. Ahrns and G. Sommer 1996, “Practicing
Q-learning,” in Proc. ESANN’96, pp. 25-30.

4. J. Bruske, I. Ahrns and G. Sommer 1995, “On-

line learning with dynamic cell structures,” in Proc.

ICANN’95 Vol. 2, pp. 141-146.

J. Bruske, L. Riehn, M. Hansen and G. Sommer

1996, “Dynamic cell structures for calibration-free

adaptive saccade control of a four-degrees-of-freedom

binocular head,” Technical Report 9608, Inst. . Inf.

u. Prakt. Math., CAU zu Kiel.

6. J. Bruske and G. Sommer 1995, “Dynamic cell
structure learns perfectly topology preserving map,”
Neural Comput. T(4), 845-865.

7. W. T. Freeman and E. H. Adelson 1991, “The design
and use of steerable filters for image analysis,” IEEE
Trans. PAMI 13(9), 891-906.

8. B. Fritzke 1993, “Growing cell structures — A self
organizing network for unsupervised and supervised
training,” ICSI Berkeley, Tech.-Rep., tr-93-026.

9. B. Fritzke 1995, “A growing neural gas network
learns topologies,” in Proc. NIPS 7, pp. 497-504.

10. A. Giordana and P. Katenkamp 1995, “Growing ra-

dial basis function networks,” in Proc. EWLR-4,
Karlsruhe.

[53]



11

12:

13.

14.

16.

Dynamic Cell Structures for the Evaluation of Keypoints in Facial Images 39

R. Herpers, H. Kattner, H. Rodax and G. Sommer
1995, “GAZE: An attentional processing strategy
to detect and analyze the prominent facial re-
gions,” in Proc. Int. Workshop Autom. Face and
Gesture Rec. ed. M. Bichsel, Zurich, Switzerland,
pp. 214-220.

R. Herpers, M. Michaelis and G. Sommer 1995,
“GAZE: Detection and analysis of facial regions
applying an attentive processing scheme,” GSF-
Bericht, 23/95, D-85764 Oberschleissheim, Germany,
1995.

R. Herpers, M. Michaelis, G. Sommer and L. Witta
1995, “Detection of keypoints in face images,” Tech.-
Rep. GSF-Bericht 24/95, D-85764 Oberschleissheim,
Germany.

R. Herpers, M. Michaelis, K. H. Lichtenauer and
G. Sommer 1996, “Edge and keypoint detection in
facial regions,” in Proc. 2nd Int. Conf. on Auto-
matic Face and Gesture Recognition FG’96, Killing-
ton, Vermont, (IEEE Computer Society Press),
pp. 212-217.

. R. Herpers, M. Michaelis, L. Witta and G. Sommer

1996, “Context based detection of keypoints and
features in eye regions,” in Proc. 13th Int. Conf.
Pattern Recognition, 13-ICPR, Wien, (IEEE Com-
puter Society Press), Vol. B, pp. 23-28.

R. Herpers, L. Witta, J. Bruske and G. Sommer
1996, “Evaluation of local image structures applying
a DCS mnetwork,” in Solving FEngineering Pro-
blems with Neural Netwerks, Proc. of the 2nd Int.

17.

18.

19.

20.

21.

22,

23.

24.

Conf. EANNO96, London, eds. A. B. Bulsari, S. Kallio
and D. Tsaptsinos, pp. 305-312.

M. Michaelis 1995, “Low level image processing using
steerable filters,” PhD thesis, Christian-Albrechts-
Universitit, D-24105 Kiel, Germany.

M. Michaelis, R. Herpers and G. Sommer 1995,
“A common framework for preattentive and atten-
tive vision using steerable filters,” in Proc. CAIP’95
Prague, eds. V. Hlavic and R. Sava, pp. 912-919.
T. Martinetz 1993, “Competitive Hebbian learning
rule forms perfectly topology preserving maps,” in
Proc. ICANN 93 pp. 426-438.

T. Martinetz and K. Schulten 1994, “Topology Rep-
resenting Networks,” Neural Networks T, 505-522.
P. Perona 1992, “Steerable-scalable kernels for edge
detection and junction analysis,” in Proc. ECCV’92,
ed. G. Sandini, pp. 3-18.

C. Scheier 1996, “Incremental category learning in a
real world artifact using growing dynamic cell struc-
tures,” in Proc. ESANN’96, pp. 117-122.

S. Stengel-Rutkowski, P. Schimanek and A. Wern-
heimer 1984, “Anthropometric definitions of dysmor-
phic facial signs,” Hum. Genet. 67, 272-295.

S. Stengel-Rutkowski and P. Schimanek 1985, Chro-
mosomale und nichi-chromosomale Dysmorphiesyn-
drome (Enke Verlag, Stuttgart).

. L. Witta 1995, “Entwicklung von steuerbaren Filtern

zur Ableitung von robusten Merkmalen,” Diploma-
thesis, Institut fiir Informationstechnik, Technical
University Munich, September 1995.



