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ABSTRACT

A technical realization of an attentional mechanism local-
izing and analyzing prominent facial regions in gray-level
images is presented. By adopting the gaze control princi-
ples of the HVS for developing an image processing sys-
tems, a complex 1mage analysis problem may be decom-
posed into a number of subproblems which can be solved
step by step in a simpler way. The attentive processing
strategy starts with the localization of the prominent fa-
cial regions based on a saliency representation carrying
all the information needed to select and restrict the ex-
tend of the prominent facial regions. Subsequently, the
detected and nmow spatially limited regions are classified
to evaluate the benefit of applying more detailed analysis
methods. During the detailed analysis step the ezact po-
sitions of anatomical landmarks or keypoints such as eye
and mouth corners are determined. Fundamental to the
attentive processing strategy is that all processing modules
consider and process only prominent and really character-
istic image structures. Only those images structures are
considered which contribute to the solution of the actual
processing task. The attentive processing strategy proposed
15 able to cope with variations due to the perspective an-
gle or pose, orientation, illumination, and contrast of the
studied factal images.

1. INTRODUCTION

Motivated by the eye movement strategies of the human
visual system, a computer-based attentional strategy has
been developed in order to detect the prominent facial fea-
tures in portrait images. The attentive processing system
is structured into three main parts (fig. 3):

e the localization of salient regions,

e the classification of foveated regions and

o the structural analysis of foveated regions.
In a first processing step, the most salient facial regions
such as the eye, nose, and mouth region are localized,
based on a saliency representation, which is established
by deriving several attentive visual cues [4]. Subsequently,
the detected and now spatially limited regions are classi-
fied to evaluate the benefit of applying more detailed and
expensive analysis methods [6]. Furthermore, a first se-
mantic interpretation of the foveated region is processed
[7]. During the detailed analysis step the exact positions
of relevant keypoints or anatomical landmarks such as eye
corners and mouth corners are determined [5].

Fundamental to the approach presented is the com-
mon use of the processing principle: the consideration
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and evaluation of only salient image features. In other
words, based on this processing strategy only those im-
age features are processed and analyzed further for which
evidence exist in the local arrangement of the image area
considered. During the region localization only the most
attentive cues are derived and represented in a saliency
representation. For the subsequent classification module
an object representation is established which is built of
a small number of point representations located only at
prominent image positions of the object (such as promi-
nent corners or intersection points). This number of point
representations has been connected to maintain the topo-
logical relationship. It has been shown that these rep-
resentations are sufficient for a computation of a reliable
classification of the selected facial regions. During the
third processing step, where a structural analysis of the
foveated facial region is performed, only prominent image
structures such as characteristic edge and line segments
are detected and considered in detail applying stepwise
several adaptive detection and tracking methods.

The high degree of efficiency of the processing strategy
is achieved by the use of a common filtering scheme during
all processing steps. While in the first processing step only
simple features are required, in the subsequent processing
steps more detailed information is needed. The filtering
scheme developed is embedded into a unified processing
strategy based on a common attentive framework [11].

Figure 1. A very menlarged intercanthal distance
and an epicanthus are examples of dysmorphic
signs in the frontal facial image (from [12, p. 42]).

The attentional processing mechanisms developed are
used as an essential component in building an image pro-
cessing system to classify facial images of children with
dysmorphic signs. Dysmorphic signs in facial images are
minor anomalies which, by definition, do not lead to func-
tional disturbances [12] (fig. 1). In this context, dysmor-
phic signs in faces play an important role in syndrome
identification because in most cases they are visible and
prominent in the facial image. It has been shown, that
particular phenotypic combinations are typical for distinct
dysmorphic syndromes [12]. Therefore, the detection of
particular keypoint positions (fig. 2) in facial images is
of high diagnostic value. For this, the localization of the
keypoints or landmarks should be very accurate, repro-
ducible, and it should correspond to the anatomical defi-
nition of the keypoint positions.




(a)

(b)

Figure 3. The attentive processing scheme (a). Attentive visual cues are derived from facial grey level images
(b) to build up a saliency representation. Prominent facial regions are selected and a decision is derived
to apply more detailed processing methods. The attentive processing is supervised by a control strategy
essentially based on model knowledge and recently derived information. Applying this procedure, all salient
facial image regions can be located, selected (b), and analyzed in detail.
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Figure 2. Important anthropometrical landmarks
in a frontal face image.

2. ATTENTIVE PROCESSING

In general, the bottom-up visual search task using real
world images is an NP-complete problem depending on
the image size and the number of objects to be searched.
However, a task-directed search based on selective atten-
tional mechanisms can be computed in linear time com-
plexity which depends only on the number of objects to
be searched in the image [13]. These complexity consid-
erations suggest that attentional mechanisms are neces-
sary to successfully solve an image analysis problem in
real-time. Thus, image processing with attention control
reduces computational load.

In the HVS elementary visual cues such as motion,
color, orientation, edge information etc. are derived from
the sensed input data during the early stages of the preat-
tentive processing. These features establish a preatten-
tive representation upon which the control of the visual
attention is based. The evaluation of this representa-
tion provides different salient image regions which may
be foveated in a sequential order.

By adopting these gaze control principles for develop-
ing artificial image processing systems, a complex image
analysis problem P may be decomposed into a number
of subproblems P; that can be solved individually in a
simpler way [13].

P(I,M) = {Pi(I1, M), ... ,Pa(In,Mn)} (1)

where n = 2,..., N is the number of subproblems,
I, C I are image parts of the image I and M; C M are
model assumptions and other parameters. In other words,

only that information, which is really essential for a given
task, has to be extracted and processed further. Irrele-
vant image regions may be excluded as far as possible to
avoid additional processing effort. The processing of sev-
eral subproblems P, is probably a dynamic process based
on the results obtained from the subproblems processed
before. The analysis of the results obtained and the inte-
gration of top-down knowledge may be used to determine
the next subproblem and the methods to solve them.

2.1. Saliency representation

The attentive processing strategy is based on a saliency
representation S(t) carrying all the information which is
necessary to compute the selective attention (fig. 3). In
the realization this saliency representation is a 2D saliency
map S(¢) in which the spatial distribution of the salient
cues from the underlying image is encoded (fig. 3b and
fig. 4). The saliency representation S(t) is generated
from a ’feature representation’ I(I) and a time dependent
‘control representation’ C(t):

S(t) == UI) x C(t) (2)

The feature representation U(7) is defined as the weighted
sum of several filters f; applied to the image I(7):

U =Y a (i®I) (3)

{
In the application presented here it is advantageous to use
local activity detectors with more blurred responses than
those obtained from classical edge detectors [11] (fig. 3b).

The control representation C(t) is needed to control the
attentive processing. It is defined as:

C(t) := SR(t) x A(t) (4)
The first component of the control map C(t) is the sus-
pension map SR(t) generated to suspend already foveated
and analyzed regions from further processing steps and
the second component is the anticipation map A(t).

To enable the computation of additional salient regions,
previously selected regions have to be suspended from the
subsequent processing. Therefore, locally parameterized
2D Gaussian functions, called the 'suspension functions’,
are calculated at the center of the already detected re-
gions. The suspension of the already detected regions is




represented by a suspension map SR(t) (see the darkened
left eye in fig. 4d) [4].

The control representation C(T') enables also the inte-
gration of top-down information into the low-level analy-
sis. The knowledge integration is realized by slightly em-
phasizing the derived salient cues of that image regions
which are intended to be localized in the next localization
steps. Therefore, a spatially restricted 2D Gaussian func-
tion is calculated for each expected region in the same
way as during a suspension process and encoded in the
anticipation map A(t) (see the right eye in fig. 4d).

The content of the saliency representation S(t) can be
summarized in two parts, one part resembles the regu-
lar attentive or salient cues of the underlying image and
therefore, is fixed for all following processing steps. These
feature representations U(I) can be processed in advance
applying fast and parallel convolution methods. The sec-
ond part of the saliency representation S(t) the control
representation C(t) influences the selection of the salient
features during the processing of the several attentive re-
gions and, therefore, is time variant. It can be viewed
as an integration process or an instrument for decreasing
the saliency of regions which are already detected and for
increasing the saliency of regions which are intended to
be localized based on model assumptions.

2.2. Attentive region localization

The saliency representation S(t) is represented in a scale
hierarchy to provide a high degree of invariance and ro-
bustness during the evaluation of the spatially distributed
salient image cues. It forms the basis of all subsequent lo-
calization steps. The selection of a salient facial region
starts at the coarsest scale of the scale hierarchy, employ-
ing a maximum search algorithm (fig. 4a). Subsequently,
this initial salient map element is expanded dependent on
the underlying local saliency distribution to enable the se-
lection of an elliptical region. Elliptical regions have been
found to cover better facial regions such as eyes than rect-
angular ones. For this, a 2D Gaussian function is fitted
to the local saliency distribution (fig. 4b) and a certain
contour line h is taken to fix the boundary of the elliptical
region given by the following ellipse equation:

(& — m)"Cov™ ! (& — M) = h = const. (5)

where m is the expectation of the 2D Gaussian function
or the center of the ellipse, Cov is the covariance matrix
of all map elements or pixels of the localized region and
h a certain contour line. The parameters of the fitted
ellipse are updated iteratively to optimally cover the un-
derlying saliency representation at each resolution level.
After this iteration the computed region is projected to
the next higher resolution level (fig. 4b) and the region
adaptation is computed again until the highest resolution
level is reached (fig. 4c). The computed elliptical region
is selected at the highest resolution level and it is well
adapted to the extend and the orientation of the underly-
ing local saliency distribution. To enable the localization
of further facial regions the last detected one has to be
suspended from the following localizations steps. For this
the suspension representation SR(t) is used as mentioned
before (fig. 4d). Applying this procedure, all salient fa-
cial image regions can be located and further processing
modules can be applied.

2.3. Results of the region localization

The results of the computation of salient facial regions are
spatially well restricted image areas, which are marked
by the number and by the density of included attentive
cues. Fundamental to the attentive region localization is

Figure 4. Processmg of the region local:zatlon by
evaluating the multi-scale representation of the
saliency map. Maximum search of the element
with the highest saliency (a). The maximum ele-
ment is expanded optimally to the local extension
of the feature representation at each scale. Sub-
sequently the computed region is projected to the
next higher resolution level (b). Final selection of
the first eye region at the highest resolution level
(c). After a detailed analysis step, the analyzed
eye region is suspended from the following local-
ization steps (d). In addition the local analysis
enables an anticipation of the second eye region
which is intended to be detected (d).

the adaptive strategy which is able to foveate dynamically
salient regions ranked by their importance.

The region localization has been tested on more than
100 frontal face images with slightly different illumination
conditions and camera positions. Some faces were tilted or
slightly rotated in different directions. The scales and the
brightness of the photographed faces can also differ from
image to image (fig. 5). It has been found that within the
first 3 foveation steps both eye regions have been detected
correctly in more than 98% of the face images considered.

(a) (b)

Figure 5. Results of the attentive region local-
ization. The detected regions are spatially well
adapted to scale, extend and orientation of the
facial regions (a). The attentive localization algo-
rithm is also applied successfully to face images
of the face database of A. Pentland' although the
resolution of the images is too low to apply all
subsequent processing modules (b).

! available at ftp: vismod.www.media.mit.edu/pub/images




3. REGION CLASSIFICATION

After the attentive localization of the different prominent
facial regions, it has to be decided whether the foveated
region should be investigated in more detail or not. The
subsequent detailed analysis methods (described in chap-
ter 4) are very precise and specially adapted to the par-
ticular facial part to be investigated. Therefore, it is im-
portant to apply these time consuming methods only to
those image parts, for which the methods are developed.
Since the eyes contain the most attentive cues in the facial
image the attentive region localization developed is able
to select the eyes in very early foveation steps (see last
chapter). Supposing that just one eye region is located
after three foveation steps the complexity of the general
classification task can be reduced to the verification of the
question "does the foveated region contain an eye region
77, After the successful classification of one eye region
further processing steps can be chosen and model knowl-
edge about the spatial relations between the facial regions
can be initialized.

3.1. Point representations

To compute this decision a neural classifier is developed
which is motivated by the dynamic link architecture intro-
duced by the Malsburg group [1, 9]. In contrast to these
works, where initially identifications of particular subjects
are computed, we compute classifications for particular
members of a class, e.g. eye regions. Therefore, beside the
intraindividual also the interindividual variability has to
be considered during the construction of a uniform class
prototype. For the recognition of an eye in a facial re-
gion a set of point descriptions are established which are
located at particular characteristic image positions (e.g.
significant corners or intersection points) (see fig. 6).
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Figure 6. Point descriptions connected by a graph
demonstrated at a synthetic eye region. The de-
scriptions at the circled keypoints and the spatial
relationship between them are used to clearly rep-
resent the characteristic features of eye regions.

The spatial relationship between the several image
points are maintained by establishing a 2D graph con-
sisting of nodes for the several point descriptions and of
edges for the connections or relations between them. In
contrast to the related work, object adapted graphs are
used in this application. In detail, an eye region is repre-
sented by 12 point descriptions positioned by the nodes of
the graph at characteristic object positions or landmarks
(fig. 7). Fundamental to this design is that the nodes are
positioned only at image positions for which evidence of
the local structure exists.

Figure 7. Model graph for an eye region.

Furthermore, we have chosen a new filter set to repre-
sent the characteristic image structure at the nodes. To

ensure a reliable representation of the underlying image
structure at particular image positions consisting mainly
of prominent edge and line segments orientation selective
edge and line detection filters as well as polar separable
filters are applied, which catch selectively the local en-
ergy encoded in the surrounding region. For this we have
chosen Gaussian edge and line detection filters as well
as several polar separable filters also based on Gaussian
derivatives [7].

3.2. Graph matching

By applying a two step graph-matching algorithm com-
bined with a simulated annealing approach different facial
regions can be distinguished very reliably. In the first pro-
cessing step the initial starting position is computed while
the shape of the graph is kept rigid. In the second step
the graph is distorted and the several nodes are moved in-
dependently by applying a simulated annealing approach.
Initial starting position

For the determination of the initial starting position,
the similarity of the graph is calculated for all image posi-
tions in the considered image part and that image position
which matches best indicates the initial starting position.
During the computation of the best starting position the
shape of the graph is kept rigid (fig. 8). No distortion of
the graph is allowed only the scale and orientation of the
graph is varied to achieve a better invariance properties.

Figure 8. Results of the calculation of the initial
starting position of the model graph for an eye
region and a non eye region. The calculation will
terminate at that position with the greatest sim-
ilarity to the represented edge information of the
model graph.

Simulated annealing

After the determination of the initial starting position
the model graph has to be adapted independently of its
topology to achieve an optimal correspondence for each
constituent node. The solution of such a high dimensional
problem, considering graph sizes with 12 nodes, cannot be
calculated completely. For this optimization problem, a
heuristic numerical approach is applied which is able to
determine an acceptable approximation of the optimal so-
lution. In the realization a simulated annealing approach
[8] is employed to compute the best match of the model
graph to a test pattern.

For each node of the graph an alternative position is
randomly selected inside a well defined surrounding area.
The difference between the similarity of the image struc-
ture of the suggested position and the former one deter-
mines the acceptance of the new position. This decision
problem is realized for each node independently applying
a thermodynamic decision rule based on the simulated
annealing approach.

Regarding eye regions the adaptation of each node to
the corresponding image structure enhances the similar-



Figure 9. Results of the simulated annealing al-
gorithm demonstrated for an eye region (a) and a
non eye region (b).

ity to the model representation by maintaining simultane-
ously the spatial relationship between the nodes. For non
eve regions the spatial relations will be distorted more
severely, which causes higher distortions of the connec-
tions (fig. 9). By applying a cost function this property
can be used to distinguish reliably between facial regions
and others. With this classification module all eye regions
can be classified successfully as eye regions (sensitivity of
100%). For non eye regions the classification performance
is a little bit worser with 95.5%.

4. STRUCTURAL ANALYSIS

In the third processing step of the attentive processing
strategy the foveated regions are analyzed in more detail.
The approach starts by detecting the most prominent and
reliable features in the facial region. Given our task and
image recording conditions these are the strong vertical
step edges of the iris in an eye region. Subsequently, the
complete iris and the eyelids are tracked to finally detect
the eye corners. At each step the detection and tracking is
controlled by integrated model knowledge [5]. The already
detected edges can be checked for their consistency as well
as the specific edge structures which are searched for in
the next step are given by model assumptions.

4.1. Basic filter operations

A very flexible filtering scheme is applied which produces
many different low-level features providing thus, an ex-
pressive data-driven basis for the keypoint detection [5].
The detection of the image structures in the facial re-
gions is based on a sequential search and tracking of the
characteristic edges and line segments. The detection and
tracking is realized by three different basic filter oper-
ations (fig. 10) that make extensive use of steerable edge
and line detection filters [10].

4.2. Integration of model knowledge

The approach presented for the keypoint detection es-
sentially uses model knowledge to establish a sequential
search strategy for a stepwise detection of the main char-
acteristic structures in the image part considered. The
derivation of a large number of features and the integra-
tion of model knowledge are mutually dependent.

On the one hand, the large number of features that are
derivable by the filtering scheme do not allow a ’classi-
cal’ computational feasible detection strategy. Therefore,
a sequential strategy is needed that uses model knowl-
edge together with the already derived information. The
model knowledge also provides the 'global overview’ for
the confusing wealth of features. We call such a strategy
‘attentive’ because it focuses only on those types of fea-
tures, which may be present as dictated by the model, or
in other words, which are expected to be present. This

(c) BFO3
Figure 10. Basis filter operations. BFO1: Detec-
tion of an edge (a). BFO2: Determination of the
orientation (b). BFO3: Stepwise tracking (c).

can be compared to a kind of active concentration process,
in which step by step only that information is considered,
which is needed to solve the current task.

On the other hand, an attentive processing requires a
flexible and probably complete representation of all in-
cluded features. Therefore, the filtering scheme must al-
low for an efficient on-line choice of the type and the
quality of the features needed. In other words, there is
a potential need for many features, but during the pro-
cessing only a small fraction of all the features is required
to solve the current problem. Therefore, more expensive
and time consuming filtering is applied only to certain

Figure 11. Example steps of the sequential search
strategy for the detection of keypoints and promi-
nent structures in an example eye region. First, a
prominent vertical bright-to-dark edge is detected
(first row). After the detection of the correspond-
ing right edge segment, the final segmentation of
the iris is computed (second row). The eyelid
edges are searched, tracked, and finally that edge
segment which is strongly curved is detected to
determine the inner eye corner (third row). For
the outer eye corner, also the upper and lower
eyelid edges are tracked until they end.




very restricted image areas, where it is really worthwhile.

4.3. Sequential search strategy

The detection of the keypoints in the eye region is
achieved by a sequential search or tracking of the edge
and line structures where each step consists of several ap-
plications of the basic filter operations (fig. 11). The se-
lection of the different operations and their parameters for
each step is controlled by the already derived information
together with the model knowledge. The model knowl-
edge used consists of the relevant edge and line structures,
their scales and geometrical relations of the considered fa-
cial region. This information is used to search for reliable
edges at specific positions, orientations, and scales in each
step of the sequential search. Furthermore, different kinds
of edges (white-to-black against black-to-white edges or
edges against lines etc.) can be distinguished.

5. RESULTS AND CONCLUSION

The attentive system presented in this work is most
closely related to the works of Tsotsos [3] and Califano
[2]. In contrast to most of the related work, our approach
concentrates on a discussion of a fast data-driven real-
ization of a flexible computer based attentional strategy.
Aspects such as the explicit inhibition of non-relevant re-
gions or the neural like modeling were not be addressed
in our design. We focus on real-time aspects and the in-
tegration of high-level control functions into the low-level
analysis processes.

Fundamental to the attentive processing strategy is
that all processing modules consider and process only
prominent and really characteristic image structures.
Only those images structures are considered which are rel-
evant to the processing task. Beginning with the region
localization these are distributed edge and line structures.
In the following processing steps more detailed structures
are needed to be detected and therefore, more sensible
and expensive methods are applied.

The presented approach combines a cyclic as well as a
hierarchical procedure which is essentially supported by
appropriate model knowledge. The proposed strategy re-
alizes an efficient integration of high-level information into
mainly low-level processes.

The attentive processing strategy presented has a no-
tably high degree of scale invariance, achieved using dif-
ferent resolution levels adapted to the requirements of the
particular processing module and to the task to be solved.
The detection and analysis of the prominent facial regions
is independent of the exact position and the orientation of
the face and the facial components within the image. The
search algorithms proposed are able to cope with varia-
tions due to the illumination, brightness, and contrast of
the studied facial images.
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