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Ahstract

A central task of computer vision is to automatically recognize objects in real-
world scenes. The parameters defining image and object spaces can vary due to
lighting conditions, camera calibration and viewing position. It is therefore desir-
able to look for geometric properties of the object which remain invariant under
such changes in the observation parameters. The study of such geometric invari-
ance is a field of active research. In this paper we present geometric algebra as a
complete framework for the theory and computation of invariants in computer vision
and compare it with the currently popular Grassmann-Cayley (or Double) algebra.
While this paper will only deal with the algebraic invariants formed from points
and lines, other types of invariants, such as differential and moment invariants, can
also be treated in the geometric algebra. In particular, Lie groups and Lie algebras
are natural parts of the framework taking the forms of spin groups and bivector
algebras. We hope to show that geometric algebra is a very elegant language for
expressing all the ideas of projective geometry and provides us with a system in
which real computer implementations are straightforward. Using these techniques
we will look at the formation of 3D projective invariants in terms of both points
and lines in multiple images and their implementation on simulated and real data.
We will also give a new form of the 3D projective invariant in terms of the image
points from 3 views and the trilinear tensor.

Categories: Computer vision; invariants; Clifford algebra; Grassmann-Cayley algebra;
projective geometry; 3D projective invariants.




1 IIIroaucuion

Geometric algebra is a coordinate-free approach to geometry based on the algebras of
Grassmann [?] and Clifford [?]. The algebra is defined on a space whose elements are
called multivectors; a multivector is a linear combination of objects of different type, e.g.
scalars and vectors. It has an associative and fully invertible product called the geometric
or Clifford product. The existence of such a product and the calculus associated with the
geometric algebra give the system tremendous power. Some preliminary applications of
geometric algebra in the field of computer vision have already been given (7,7, 7], and here
we would like to extend the discussion of geometric invariance given in [?, 7]. Geometric
algebra provides a very natural language for projective geometry and has all the necessary
equipment for the tasks which the Grassmann-Cayley algebra is currently used for. The
Grassmann-Cayley or double algebra [?, ?] is a system for computations with subspaces
of finite-dimensional vector spaces. While it expresses the ideas of projective geometry,
such as the meet and join, very elegantly, it lacks an inner (regressive) product (although
an inner product can be defined, it is not a natural part of its structure} and some other
key concepts which we will discuss later.

The next section will give a brief introduction to geometric algebra and to some of the
associated linear algebra framework. For a more complete introduction see [?] and for
other brief summaries see [7, ?, ?]. Given this background we can look at the familiar
concepts of projective space and homogeneous coordinates, outline the formulation of
projective geometry in the geometric algebra and introduce the concept of the projective
split. We then dea! with projective transformations and illustrate the formation of the 1D,
2D and 3D cross-ratios which are algebraic projective invariants in this framework. We
will illustrate the comparisons between our methods and those of the Grassmann-Cayley
algebra by considering 3D projective invariants and discussing the implementation of such
invariants using only image points and lines.

2 Geometric Algebra: an outline

The algebras of Clifford and Grassmann are well known to pure mathematicians, but were
long ago abandoned by physicists in favour of the vector algebra of Gibbs, which is indeed
what is most commonly used today in most areas of physics. The approach to Clifford
algebra we adopt here was pioneered in the 1960’s by David Hestenes [?] who has, since
then, worked on developing his version of Clifford algebra - which will be referred to as
geometric algebra — into a unifying language for mathematics and physics.

2.1 Basic Definitions

Let G, denote the geometric algebra of n-dimensions — this is a graded linear space. As
well as vector addition and scalar multiplication we have a non-commutative product
which is associative and distributive over addition this is the geometric or Clifford




Figure 1: The directed area, or bivector, aAb.

product. A further distinguishing feature of the algebra is that any vector squares to
give a scalar. The geometric product of two vectors a and b is written ab and can be
expressed as a sum of its symmetric and antisymmetric parts

ab=ab+anbd, (1)

where the inner product a-b and the outer product aAb are defined by

ab = %(ab-}-ba) (2)
anb = %(ab—ba). (3)

The inner product of two vectors is the standard scalar or dot product and produces a
scalar. The outer or wedge product of two vectors is a new quantity we call a bivector.
We think of a bivector as a directed area in the plane containing @ and b, formed by
sweeping a along b — see Figure 1. Thus, & A a will have the opposite orientation
making the wedge product anticommutative as given in equation (3). The outer product
is immediately generalizable to higher dimensions - for example, (@Ab)Ae, a trivector, is
interpreted as the oriented volume formed by sweeping the area aAb along vector ¢ - see
Figure 2. The outer product of k vectors is a k-vector or k-blade, and such a quantity is
said to have grade k. A multivector is homogeneous if it contains terms of only a single
grade. The notation (M), is used to denote the k-grade part of the multivector M and
{M) denotes the scalar part of M. For a product of multivectors, the operation of taking
the scalar part satisfies the cyclic reordering property

(A...BCD) = (DA...BC) = (CDA....B). (4)

The operation of reversion reverses the order of vectors in any multivector. The reverse
of A is written as A so that
(ﬂ.] aata..... ak)”= Qp...... Qz3dqd,. (5)

The geometric algebra provides a means of manipulating multivectors which allows us to
keep track of different grade objects simultaneously — much as one does with complex
number operations. In a space of 3 dimensions we can construct a trivector aAbAe, but
no 4-vectors exist since there is no possibility of sweeping the volume element aAbAc over
a 4th dimension. The highest grade element in a space is called the pseudoscalar. The
unit psendoscalar is denoted by I and will be seen to be crucial when discussing duality.
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Figure 2: The oriented volume, or trivector, aAbAc.

In a space of dimension n we can have homogeneous multivectors of grade 0 (scalars),
grade 1 (vectors), grade 2 (bivectors), ete... up to grade n. Multivectors containing only
even-grade elements are termed even and those containing only odd-grade elements are
termed odd. The geometric product can, of course, be defined for any two multivectors.
Considering two homogeneous multivectors A, and B, of grades r and s respectively, it is
clear that the geometric product of such multivectors will contain parts of various grades.
It can be shown [?] that the geometric product of A, and B, can be written as

AB,=(AB),,,+ (AB),,, o +...+{AB), _,, (6)

For non-homogeneous multivectors we again simply apply the distributive rule over their
homogeneous parts. Using the above we can now generalize the definitions of inner and
outer products given in equations (2) and (3). For two homogeneous multivectors A, and
B,, we define the inner and outer products as

Ar'Bs = (ArBs>|1-_3| (7)

Ar/\Bs = (AfBS)r-Hr' (8)

Thus, the inner product produces an |r — g|-vector — which means it effectively reduces
the grade of B, by r; and the outer product gives an r + s-vector, therefore increasing the
grade of B, by r. This is an extension of the general principle that dotting with a vector
lowers the grade of a multivector by 1 and wedging with a vector raises the grade of a
multivector by 1.

2.2 The Geometric Algebra of 3-D Space

In an n-dimensional space we can introduce an orthonormal basis of vectors {o;} ¢ =
1,...,n, such that o;-a; = ;. This leads to a basis for the entire algebra:

1, {o}, {oing;}, {oinojnoe}, ..., o01AGIA. A0, (9)

Note that we shall not use bold symbols for these basis vectors. Any multivector can be
expressed in terms of this basis, although much of the power of geometric algebra results
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from being able to carry out procedures in a basis-iree manner. 'L'he basis tor the 3-U
space has 23 = 8 elements given by:

< ,L{Ula 02,03}, {0102, 0203, 0301_]:, {o10903} = 1. (10)
scalar ﬂec?ar.s biv e:crtors triu:ctar

It can easily be verified that the trivector or pseudoscalar g,0203 squares to —1 and
commutes with all multivectors in the 3-D space. We therefore give it the symbol i;
noting that this is not the uninterpreted commutative scalar imaginary j used in quantum
mechanics and engineering.

Multiplication of the three basis vectors {c;} by i results in the three basis bivectors;
109 =E‘03 0'20'3=3.J1 [s:1231 =E.O'2. (11)

These simple bivectors rotate vectors in their own plane by 90°, e.g. (o102)oz = o1,
(c203)}02 = —o3 ete. Identifying the 4,5,k of the quaternion algebra with ioy, —i03, i0s,
we see that the famous Hamilton relations are recovered

==k =ijk=—1. (12)

Since the i, j, k are really bivectors it comes as no surprise that they represent 90° rota-
tions in orthogonal directions and provide a system well-suited for the representation of
3-D rotations. In geometric algebra a rotor, R, is an even-grade element of the algebra
which satisfies RR = 1. If A = {ag, a1, az,as} represents a quaternion, then the rotor
which performs the same rotation is simply given by

R = ag + a;(ic)) — ag(ioe} + aa(ios). (13)

The quaternion algebra is therefore seen to be a subset of the geometric algebra of 3-space.

2.3 Reflections and Rotations

Any rotation can be formed by a pair of reflections. It can be shown straightforwardly
that the result of reflecting a vector @ in the plane perpendicular to a unit vector n 1s

a, — e = -nan (14}

where a, and a| respectively denote parts of @ perpendicular and parallel to n. Thus,
a reflection of @ in the plane perpendicular to n, followed by a reflection in the plane
perpendicular to a unit vector m results in a new vector

—m{—nan)m = (mn)a(nm) = RaR. (13)

The multivector B = mn is a rotor. Rotors combine in a straightforward manner, i.e.
a rotation R, followed by a rotation R, is equivalent to an overall rotation R where
R = R3R,. The transformation a — RaR is a very general way of handling rotations; it
works for multivectors of any grade and in spaces of any dimension.
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2.4 rormulation oI rrojecilve \xeolnewry

Here we will outline the approach pioneered by Hestenes for using geometric algebra to
discuss the algebra of incidence. The basic projective geometry operations of meet and
join will be shown to be easily expressible in terms of standard operations within the
geometric algebra. For a more extended discussion we refer the reader to [?].

A geometric algebra G, can be written as G(p, ) where p and g are the dimensions of the
maximal subspaces with positive and negative signatures respectively (the signature of a
vector a is positive, negative or zero according as @* > 0, < 0, = 0). While the results
of a projective geometry theory should be independent of signature, for real applications
we find it useful to specify the signature to facilitate actual computations. We will see
later that we adopt the standard Euclidean signature G(3,0) for ordinary space, £3, but
that we are forced to adopt a signature of G(1, 3) for the 4-dimensional space we associate
with the projective space.

We have seen that in Euclidean spaces of 2 and 3 dimensions the unit pseudoscalar, 7,
squares to —1. In G(1,3) it is easy to see that this is also the case. If y, 1=1,2,3,4 are
our basis vectors in the 4D space, and ;2 = —1 for j=1,2,3 and 7§ = 41, then I? is given
by

(nrevs) (mreveve) = (1) (revsva) = —(vvalmre) = -1 (16)

The sign of I? depends on the signature of the space. In a given space any pseudoscalar P
can be written as P = af where « is a scalar. If I™! is the inverse of I, so that [I~! =1,

then,
PIl'=qll'=a =[P (17)

where we have defined the bracket of the pseudoscalar P, [P], as its magnitude, arrived
at by multiplication on the right by I~!. We will see later that this bracket is precisely
the bracket of the Grassmann-Cayley algebra. The sign of the bracket does not depend on
the signature of the space and as such it has been a useful quantity for the non-metrical
applications of projective geometry.

To introduce the concepts of duality which are so important in projective geometry, we
define the dual A* of an r-vector A as

A* = AT (18)

We use the notation A* to relate these ideas of duality to the notion of a Hodge dual
in differential geometry. Note that in general I~! may not commute with A. From the
definition of the unit pseudoscalar we see that the dual of an r-vector is an {n — r)-vector
(e.g. duality of lines (r = 1) and planes (n —r = 3 — 1 in 3-space). In an n-dimensional
space, if 4 is an r-vector and B is an s-vector then using the fact that BI~!' = B-I™!
(using equation (6) since BI~! must be of grade (n — s)) and the identity

A (By-Ci) = (AAB;)-Cy for r+5<t, (19)

we can write

A(BI™) = A(B-I™") = (AAB)-I"' = (AAB)I".. (20)
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Using the definition of the dual we therefore have
A-B* = (AAB)". (21)

Equation (??) illustrates the duality of the inner and outer products. If r + s = n, then
AAB is the highest grade part of AB, i.e. the pseudoscalar part, and it then follows that

[AAB] = (AAB)I "' = A.B". (22)

In this case we can express the bracket in terms of duals and as such, relate the inner
and outer products to non-metrical guantities. It is via this route that the inner product,
which is normally associated with a metric, is used in a non-metrical theory such as
projective geometry. We note at this point that since we have reduced duality to a simple
multiplication by an element of the algebra, there is no need to introduce a special operator
or any concept of a different space.

In an n-dimensional geometric algebra one can define the join .J = A A B of an r-vector,
A, and an s-vector, B, by

J=AAB if A and B are linearly independent. (23)

If A and B are not linearly independent the join is not given simply by the wedge but by
the subspace that they span. J can be interpreted as a cormmon dividend of lowest grade
and is defined up to a scale factor. It is easy to see that if (r 4+ s} > n then J will be
the pseudoscalar for the space. In what follows we will use A for the join only when the
blades A and B are not linearly independent, otherwise we will use the ordinary exterior
product, A.

If A and B have a common factor (i.e. there exists a k-vector C such that A = A'C and
B = B'C for some 4’, B') then we can define the ‘intersection’ or meet of A and B as
AV B where [?]

{Av B) = A'AB". (24)
That is, the dual of the meet is given by the join of the duals. In equation (7?) we must
be slightly careful to specify what space we take the dual of (A v B) with respect to. The
dual of (A Vv B) is understood to be taken with respect to the join of A and B. In most
cases of practical interest this join will be the whole space and the meet is therefore easily
computed so that we can use equation (??) to obtain a more useful expression for the
meet as follows

AV B = (A'AB")I = (A"AB I} = (A"-B) (25)

We therefore have the very simple and readily computed relation of AV B = (A*-B). The
above concepts are discussed further in [?].

2.5 Linear Algebra

In [?) Hestenes has attempted to make obvious the intimate relationship between linear
algebra and projective geometry — a relationship which, he claims, has been obscured by
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the pursuit of the two areas as separate disciplines. In this section we will give a briel
review of the geometric algebra approach to linear algebra with the aim of covering the
material needed in later sections. More detailed reviews can be found in [?, ?7].

Consider a linear function f which maps vectors to vectors in the same space. We can
extend f to act linearly on multivectors via the outermorphism, f, defining the action
of f on blades by

flainaan. . Aa.) = fla)Afla)A. A fla:). (26)

We use the term outermorphism because f preserves the grade of any r-vector it acts
on. The action of f on general multivectors is then defined through linearity. f must
therefore satisfy:

flarnay) = flanflas)
i(Ar) = (i(Ar))f (27)
flowa + aa2) = af(ay) +af(as).

Given this definition it is easy to see that the outermorphism of a product of two linear
functions is the product of the outermorphisms, i.e. if f(a) = fo(fi(a)), then we can

write f = ig ! ¥
The adjoint f of a linear function f can be defined by the property
fla)-b=a f(b) (28)

for vectors @ and b. If f = T the function is self-adjoint and its matrix representation
will be symmetric.

Since the outermorphism preserves grade, we know that the pseudoscalar of the space
must be mapped onto some multiple of itself. The scale factor in this mapping is the
determinant of f;

f(I) = det(f)1. (29)

This is much simpler than many definitions of the determinant. Using this definition,
most properties of determinants can be established with little effort.

3 Projective Space and Projective Transformations

Since about the mid 1980’s most of the computer vision literature discussing geometry
and invariants has used the language of projective geometry — indeed in the appendix
of [?] the authors argue very eloquently that many of the problems in computer vision
(particularly in invariant theory) would be difficult to solve without analytic projective
geometry. As any point on a ray from the optical centre of a camera will map to the same
point in the camera image plane it is easy to see why a 2D view of a 3D world might
well be best expressed in projective space. In classical projective geometry one defines
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a 3D space, P°, whose points are in 1 — | correspondence with iines through the ongin
in a 4D space, R*. Similarly, k-dimensional subspaces of P? are identified with (k + 1)-
dimensional subspaces of RB*. Such projective views can provide very elegant descriptions
of the geometry of incidence (intersections, unions etc.), but in order to carry out any
real computations one is forced to introduce some sort of basis and associated metric.
From a mathematical viewpoint the projective space, P3, would have no metric, the basis
and metric are introduced in the associated 4D space. In this 4D space a coordinate
description of a projective point is conventionally brought about by using hemogeneous
coordinates. The usefulness of the projective description of space is often only realised
with the introduction of such homogeneous coordinates. What we are aiming to do in
this paper is to provide a new way of looking at the problems of computer vision, using a
system in which the algebra is clear and computations are completely straightforward and
well-defined. Much of the conventional mathematical apparatus of projective geometry
will not be needed.

3.1 The Projective Split

Points in real 3D space will be represented by vectors in £3, a 3D space with a Euclidean
metric. Since any point on a line through some origin O will be mapped to a single peint
in the image plane, we will find it useful to associate a point in £ with a line in a 4D
space, RY. In these two distinct but related spaces we define basis vectors: (y1, %2, s, v4)
in B! and (o1, 02, 03) in £3. We identify R and £* with the geometric algebras of 4 and
3 dimensions, G, and G;. We require that vectors, bivectors and trivectors in R* will
represent points, lines and planes in £3. Suppose we choose 4 as a selected direction in
R we can then define a mapping which associates the bivectors vy, ¢ = 1,2,3, in R*
with the vectors o;, 1 = 1,2,3, in £3%;

L=V, C2= T2V, 03 = Y3 (30)

To preserve the Euclidean structure of the spatial vectors, {o;}, (i.e. o = +1) it is
easy to see that we are forced to assume a non-Euclidean metric for the basis vectors
in R*. We choose to use vz = +1, 5 = —1,¢ = 1,2,3. It is interesting to note here
that this is precisely the metric structure of Minkowski spacetime used in studies of
relativistic physics. This process of associating the quantities in the higher dimensional
space with quantities in the lower dimensional space is an application of what Hestenes
calls the projective split. In the version of geometric algebra used for physics (spacetime
algebra) we have the same 4D space with a Minkowski metric (G(1,3)) and basis vectors
(Yo, 71,72, 73). The projective split is there called a spacetime split where 7, the time
axis, is chosen as the preferred direction and performs the same function as v, in Rt

For a vector X = X,v + Xov2 + Xavs + Xyvs4 in R? the projective split is obtained by
taking the geometric product of X and ~y;

X A4
Xy
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Note that & contains terms of the form <y7y4, Y274, Y37Y4 O, V1a L€ as850C1ATIONS 1N €U~
tion (?7?), terms in oy,02,03. We can therefore think of the vector & as a vector in £
which is associated with the bivector XAvs/X4 in B

If we start with a vector & = T,01 + 209 + Za03 in £2, we can represent this in R* by the
vector X = X7, + Xoy2 + X33 + Xy, such that

r = X A74 _ X\ n X, n X3
= X, X, Y14 X, Y274 X, Y374
X Xq X3
= =0 g2 + <03, 32
X, 1+ X4 X, 3 (32)
= z; = % fori=1,2,3. The process of representing  in a higher dimensional space can

therefore be seen to be equivalent to using homogeneous coordinates, X, for . Thus,
in this geometric algebra formulation we postulate distinet spaces in whxch we represent
ordinary 3D quantities and their 4D projective counterparts, together with a well-defined
way of moving between these spaces. It may be worth noting that for all of the issues
addressed here, the non-Euclidean nature of R* will have no effect, but the presence of a
null structure (vectors which square to zero) may have interesting consequences for other
problems.

3.2 Projective transformations

It is well known that there are various advantages to working in homogeneous coordinates.
For example, general displacements can be expressed in terms of a single matrix and some
non-linear transformations in £3 become linear transformations in R - indeed, historically
this has been the main motivation for working in homogeneous coordinates [?]

If a general point (z,y, z) in 3-D space is projected onto an image plane, the coordinates
(%) in the image plane will be related to (z,y,z) via a transformation of the form:

, alx+ﬁly+51z+el , (12.E+ﬁ21j+623+62
x , ¥ = (33)
Gr+By-+oz+é Gz + fy+oz+¢€

The transformation is therefore non-linear and expressible as the ratio of two linear trans-
formations. To make this non-linear transformation in £3 into a linear transformation in
RY we define a linear function ip mapping vectors onto vectors in R? such that the action

of f, on the basis vectors {7} is given by
T) = o+ oeve +azys + 4y
f v} = Bim + Bema+ Bsvs + B

(1)
(r2)
L) = am+dmetdn+ 84
( ) = emt+entantin (34)
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A general point P in &° given by ® = xad; + yoa + 203 becomes the pomnt X = (A7 +
Yy + Zys+ W) in R, where z = X/W, y = Y/W, z = Z/W. We can then see that
f, maps X onto X’ where

3
X' =) {(uX +BY +6Z +eW)n}t + (&X + Y +6Z + EW)v (35)

i=1

The vector @' = z'a, + y'oy + 2’3 in E3 corresponds to X', where z' is given by

" o X+ Y +8Z+eW mz+ By +dz+e (36)
X + fY +86Z + W Gr+ Py +oz+é

Similarly we have

;0% + Bay + 02z + €2 z,_03$+53y+532+63

- - - H I - - = - (37)
oz + Jy + 0z + € axr + By + oz +¢€

Note that in general we would take a3 = f&, 83 = f 8 etc. so that 2/ = f (focal length),
independent of the point chosen. Via this means the non-linear transformation in £°
becomes a linear transformation, ip . in R, We will see later that use of the linear
function ip makes the invariant nature of various quantities very easy to establish.

3.3 Algebra in projective space

There has been much recent interest in the use of the Grassmann-Cayley or double algebra
as an elegant means of formulating the algebra of incidence (2, 7, 7, 7]. Here we will show
briefly how the main algebraic results of the Grassmann-Cayley algebra arise naturally
when we express projective geometry in geometric algebra. It should be stressed here
that we can recover a very similar algebraic formalism while remaining totally within a
mathematical system that is applicable to standard 3D problems - it is not necessary
to introduce different quantities (e.g. extensors) or different rules for manipulation of
elements of the algebra.

Consider three non-collinear points, P,, P,, P;, represented by vectors @, @, @3 in £
and by vectors X, Xy, X3 in R*. The line L;; joining points P, and P, can he expressed
in R* by the following bivector,

Lig = XAXo. (38)

Since Y, AY2AYs = 0 if Y), Yy and Yy are collinear (for Y; in R?), any point P,
represented in B! by X, on the line through P, and P,, will satisfy

XALip = XAX, AX, = 0. (39)

This is therefore the equation of this line in R*. In general such an equation is telling us
that X belongs to the subspace spanned by X, and X, i.e. that

X=mX| +mX, (40)
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10r some y, tig. FOT COmMPplEteness, we wlil g0 TNTOUZI e dlgUiienl WiLCH [elales eyuas
tion (??) in R* to the standard equation of the line through P, and P; in £2, namely

T = x| + A2 (41)

with A, + X = 1. Taking {equation (??)) A and (equation (?7)) - 74 and dividing the
results gives

XAy _ 1

Xy {en(Xiy) + a2(Xe)

. . . . . . _X_.."\4 _le\4 __Xz.-"\-t
Via the projective split we can identify & = ﬁ, z = XIT:T’ Ty = X;L—, so that
equation (77) becomes

} {chl Ay + a2X2A74}. (42)

1
B {a (X ) + aa(Xy-74)
or, & = A\, + Az with A} + Ay = 1, as required. We have laboured this rather obvious

case to emphasize how the projective split brings about the necessary reduction of the
number of free parameters from two in R* to one in £3.

x }{CYL(XL Yaye + (X va) s} (43)

Similarly, the plane @53 passing through points P, P2, Ps is expressed by the following
trivector in R*

D123 = X1 AX2AX; (44)
which further motivates the previous statement concerning three collinear B* vectors. In
£® there are generally three types of intersections we wish to consider; the intersection of
a line and a plane, a plane and a plane, and a line and a line. We will look at each of
these three cases individually, but for each of them we will require the following general

result, giving the inner product of an r-blade, 4, = @;AazA.....Aa,, and an s-blade,
B, = b AbyA....Ab, (for s <)

By (aiAagA.....ha.) = Y €(jijajr) By (a5 Aaj A hag,)ag, A Aay, (45)

J

where we sum over all combinations j = {ji, ja,..--,Jr) such that j1 < 72 < ... < 3.
€(j1jo.--Jr) = +1 if j is an even permutation of (1,2,3,...,7r) and —1 if it is an odd
permutation. See [?] for further discussion of this result.

3.3.1 Intersection of a line and a plane
Consider a line A = X;AX, intersecting a plane ® = Y, AY2AY; — all vectors are in R
The intersection point is expressible using the rmeet operation

Avd = (XAXp) V (YIAYAYS). (46)

Using the definition of the meet given in equation (??) we have (noting that the dual is
taken with respect to the join, which is, in this case, the whole space)

AV = A*-®. (47)

13




Note that the pseudoscalar tor X*, which we shall call {4 1f any amblgully 1$ possible,
squares to —1 and commutes with bivectors but anticommutes with vectors and trivectors
in G(1,3), and that I,~' = —I;. This leads to

AT = (A7) @ = —(AD)-©. (48)
According to equation (?7?)} we can then expand the meet as

AVE = —(AD-(Y1AY2AY3)
= —[{(AD (Y2AY3)}Y) + {{AD)-(YsA Y1)} Y, + {(AD)- (Y1 AY2)} Y] (49)

Noting that (AI)-(Y;AY) is a scalar, we can evaluate the above by taking scalar parts.
For example, (AI}-(YoAY3) = {(I(XiAX,) (YoAY3)) = I(X AXoAY,AY ;). From the
definition of the bracket given earlier, we can see that if P = X; AX;AY,A Y3, then
[P] = (XlAXQ/\YgAY3)I4_l. If we therefore write [X;X2X3X,] as a shorthand for the
magnitude of the pseudoscalar formed from the four vectors, then we can readily see that
the meet reduces to

AV e = [X; XY Y3]Y: + [Xi X Y5, Yo + X Xo Y Y)Y, (50)

giving the intersection point (vector in R*). Note that this is precisely the expansion
of the meet that would result from the analysis in the Grassmann-Cayley algebra (7, 7).
We can see that we must identify the r-extensors of the Grassmann-Cayley algebra with
r-blades in our geometric algebra. Also, the definition of the bracket of four vectors in
R* as the magnitude of the pseudoscalar formed from the outer product of the vectors is
equivalent to its definition as the determinant of the four vectors in the Grassmann-Cayley
algebra.

From the definition of the bracket given above it is easy to show that for [X;X,X;3X,]
the equivalent bracket in £3 is formed by evaluating the following volume

(332—531)/\(:33—:31)/\(334 —:31)13_1 ({—)1)
where, as before, x; = §'i;ﬂ This is most easily seen by the following argument;
P= Xl/\X2/\X3/\X4 = (XI’Y4’T4XQX3’Y4’Y4X.4)4
= WiW,WaWo((1 + @) (1 — 22)(1 + 25)(1 — 24)),

where W; = X;-~s from equation (??). A pseudoscalar part is produced by taking the
product of three spatial vectors (there are no {spatial bivector)x(spatial vector) terms},
ie.

P = W1W2W3W4(—$1$2323 — XT3y + 1224 + 222:173224)4
= W1 W2W3W4<($2 -_ 231)(273 - 271)(334 - $1)>4 (52)
= W1W2W3W4{(:1:2—ml)/\(:c3—a:1)/\(:c4 —ﬂ:l)}.

If the W; = 1, we can summarize the above relationships between the brackets of 4 points
in R* and £? as follows

[X1X2X3X4] = (Xl/\XQ/\XgAX,:l)I.q-l X {(932 - :c;)/\(a:;; - 2:1)/\(274 - 5131)}13_1. (53)
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3.3.2 Intersection of two planes
We now consider the intersection of two planes ®) = X;AX2AX; and ®2 = Y, AYAY;.
The meet of ®, and ®, is given by

®; Vv &y = (X AXoAX3) V (Y AYAYS). (54)
As before, this can be expanded as

{Dl V‘I’g - ‘I’f‘(Y]/\Yg/\Y;})
= —[{(®.1) Y 1 }(Y2AY3) + {(®1])- Y2} (Y3AY)) + {(®,1)-Y3}(Y.AY3))].

Again, the join is the whole space and so the dual is easily formed. Following the argu-
ments of the previous section we can show that (®,1)-Y; = —[XX2X;3Y;], so that the
meet is

P, v CI)Q = [X1X.2X3Y1}(Y2/\Y3) + [X1X2X_3Y2](Y3/\Y1) -+ [X1X2X3Y3] (Yl /\Yg), (55)

producing a line of intersection (bivector in R"). If one identifies the 2-extensors of the
Grassmann-Cayley algebra with bivectors in the geometric algebra, the above expansion
is seen to be the same as the expressions given in {7’.

3.3.3 Intersection of two lines

Two lines will intersect at a point only if they are coplanar, this will mean that their
representations in R, A = X;AXjy, and B =Y, AY, will satisfy
AAB =10 (56)

since it is then not possible to form any 4-volume. We see therefore that any one vector
is expressible as a linear combination of the other three vectors. We then need to work
only in a 2D Euclidean space, £2, which has an associated 3D projective counterpart, R3.
The intersection point is given by

AV B = A"-B = —(AL)-(YiAYs) = - {((A5h) Y))Y2 — (45)- Y2} Y }  (57)

where I3 is the pseudoscalar for R®. Once again we evaluate ({Al3)-Y;) by taking scalar

parts
(AI;;)Y, = (X1XQI3Y,') == I3X1X2Yi = _[X1X2Yi]. (58)

The meet can therefore be written as
AV B = [Xi X Y1]Ys - [X1 X, Y| Y (59)

where the bracket [A;A,Aj] in R® is understood to mean (ATAAZAAR) LT
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3.3.4 1mplementation ot the algebra

The approach we have outlined here has expressed the projective nature of the situation
by postulating a 4-dimensional geometric algebra with an imposed Minkowski metric,
G(1,3) - recall that the reason for adopting such a metric was to ensure that the 3D
spatial vectors to which the 4D vectors are related via the projective split, are Euclidean.
This 4D algebra has been implemented using the computer algebra package MAPLE and
all of the operations and expressions derived here are easily evaluated. Another advantage
of having the quantities we are dealing with as elements of a geometric algebra is that
one can then (in any dimension) use the framework for dealing with rotations outlined
in section (2.3) and deal with other classes of structure, such as Lie groups, within the
algebra.

4 Invariance using Geometric Algebra

In this section we will use the framework established so far to show how standard geometric
invariants can be expressed both elegantly and concisely using geometric algebra. Here we
will look only at algebraic quantities which are invariant under projective transformations,
arriving at these invariants in a way which can be naturally generalized from 1D to 2D
to 3D.

4.1 1-D and 2-D Projective Invariants from a Single View

The 1-D Cross-Ratio

The ‘fundamental projective invariant’ of points on a line is the so-called cross-ratio, p,
defined as

_ACBD _ {t3—t)(ta — ta)
P=BCAD ~ (1 — 1)t — 1)’

where ¢, = |PA|, to = |PB|, t3 = |PC|, t4 = |PD| - see Figure 77. It is fairly easy to
show that for the projection through O of the collinear points A, B, C, D onto any line, g
remains constant. For this 1D case, any point g on the line £ can be written as g = to,
relative to P, where ¢, is a unit vector in the direction of L. We then move up a dimension
to a 2D space, with basis vectors (7y;,72), we will call B? in which g is represented by the
vector Q;

Q=Tm+S7
where, as before, we associate g with the bivector
QAv T T

Qs g’h’m = §G’1
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Figure 3: Formation of the 1D cross-ratio

so that ¢t = T/S. When a point on line L is projected onto another line I/, the distances
¢ and t', where t' = P'A’ etc., are related by a projective transformation of the form

t,_at+ﬂ

at+p (€0)

This non-linear transformation in £' can be made into a linear transformation in R? by
defining the linear function f mapping vectors onto vectors in R?

5 () = amtar
f(r) = Bim+ Ba.
Consider 2 vectors X, X, in R2. Form the bivector
S =X AXy = A1
where I, = 4,7, is the pseudoscalar for B2, We now look at how &; transforms under f:
Si = X|AX) = [ (X AXy) = (detf ) (XiAXa). (61)

This last step follows since a linear function must map a pseudoscalar onto a multiple of
itself, this multiple being the determinant of the function (equation ?7?). Suppose that we
now take 4 points on the line L whose corresponding vectors in R? are {X;},i=1,.,4,
and consider the ratio R; of 2 wedge products,

XA Xy
T XaAX,

Ry (62)
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Then, under f,, Ry = R, where

!
Ri= XGAX,  (detf )XsAX, (63)

R, is therefore invariant under f . However, we want to express our invariants in terms
of distances on the 1D line; for this we must consider how the bivector §; in R? projects
down to £L.

X, AXy = (Tin + Siv)A (Ton + Save)

(T152 — TaSimme

818:(Th /Sy — T2/52) 15

= $15;(t; — to)la. (64)

il

Il

Note that we could also have arrived at this result via the method outlined in equa-
tion (77). In order to form a projective invariant which is independent of the choice of
the arbitrary scalars S;, we must then take rafios of the bivectors X;AX; (so that detf,
cancels) and multiples of such ratios so that the S;'s cancel. More precisely, consider the
following expression

e = (X3 AX ) (XA Xo) 5!

L= (XuAX ) (XaAXg)

Then, in terms of distances along the lines, under the projective transformation f [ Inv
goes to Inv] where

,_ S3Si(ts — £1)54Sa(ta —t2) _ (s — t1)(t4 — t2)

I - - 1
T 5,0 (ts — 11)SsSalts — ta)  (ta— 1) (ts — t2)

(65)

which is independent of the S;’s and is indeed the 1D classical projective invariant, the
cross-ratio. Deriving the cross-ratio in this way enables us to easily generalize it to form
invariants in higher dimensions.

The 2-D generalization of the Cross-Ratio

For points in a plane we again move up to a space with one higher dimension which we
shall call R%. Let a point P in the plane M be described by the vector x in £? where
@ = zoy + yop. In R3 this point will be represented by X = Xv; + Y2 + Z73 where
= X/Z and y = Y/Z. As described in Section 3.2, we can define a general projective
transformation via a linear function f, mapping vectors to vectors in R* such that;

ig(’}"l) = a1y + Y + &
() = Bim+bamt B (66)
ig(’)’a) = §im+ v+ 8.

Consider 3 vectors (representing non-collinear points) X;, ¢ =1,2,3, in R? and form the

trivector
Sg = XlAXQ/\X.;; = /\2!3 (67)
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where I3 = ¥,7273 18 the pseudoscalar tor £”. AS Delore, UNAJer the Projecuve Lransivri-
ation given by [, g1 &, transforms to S where

S; = detL;_»S?' (68)

Therefore, the ratio of any trivectors is invariant under f,. To project down into &2, using
the fact that Xyvs = Zi(1 + ;) under the projective split and v§ = 1, we can write

Sl = (X XeXsLh
= (X737 X Xavavsls )
= Z1ZZ:3{(1 + ) (1 — 22) (1 + z3)v3 137 "). (69)

Where the z; represent vectors in £2. We can only form a scalar part from the expression
within the brackets by taking products of a vector, 2 spatial vectors and LY e

8213_1 = leQZ3((:B1$3 — T2 — 222223)7313_1) = 212223{(:32 - :cl)/\(:c;; - :Bl)}fgul.)
(70
As I;* = —1, we have I;™! = yyyov1 so that wls™' = wy = (mam)(1m) = —o201 =
—I,!, which accounts for the identification in equation (??). It is then clear that we
should take multiples of such ratios so that the arbitrary scalars Z; cancel. For 4 points in
a plane, there are only 4 possible combinations of Z;Z;Z; and we cannot have a situation
where we multiply two ratios of the form X; AX;AX; together and have all the Z’s
cancelling. For 5 coplanar points {X;}, i = 1,..,5, there are several ways of achieving the
desired cancellation, for example

Iny, = (X5AX4AX3)I3_1(X5/\X2/\X1)_{3_1
2T KA K AK) T (XsAKAK )

According to equation (??) we can interpret this ratio in £2 as

(@5 —ma)A(@s — w3} 15t (@5 — ) A (25 — 1) L5 AsssAsn

Invy = = 71
? (335 - 2!1)/\(2:5 - :83)1{1(325 - 272)/\(2!5 - 224)12_1 A513A524 ( )

where %Atjk is the area of the triangle defined by the 3 vertices @;, ®;, x. This invariant
is regarded as the 2D generalization of the 1D cross-ratio.

4.2 3-D Projective Invariants from Multiple Views
4.2.1 The 3-D generalization of the Cross-Ratio

When considering general points in £ we have seen that we move up one dimension
to work in the 4D space R*. The point = z0, + yop + 203 in £3 is written as X =
Xy + Yyg + Zvys + Wy, where z = X/W, y = Y/W, z = Z/W. As before, a non-linear
projective transformation in £° becomes a linear transformation, described by the linear
function f,, say, in R%.
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Figure 4: The areas Asy and Aggs

Consider 4 vectors in R*, {X;}, i =1,..,4. Form the 4-vector
Sa = X] /\XQAX3AX4 = /\314 (72)
where Iy = v17%7374 is the psendoscalar for B*. As before, 8; transforms to &} under I
8 = X{AXGAXGAX) = detf, 8. (73)

The ratio of any two 4-vectors is therefore invariant under f, and we must take multiples
of such ratios to ensure the arbitrary scale factors W; cancel. With 5 general points there
are 5 possible ways of forming the combinations W;W;W; W, and it is then simple to show
that one cannot take multiples of ratios such that the W factors cancel. For 6 points one
can, however, do this, and an example of such an invariant is
(XlAXQ/\X3/\X4)II1(X4/\X5/\X2/\Xﬁ).ﬁ-]
(X AXAXAX )T (KA XA X AKX )
Using the arguments of the previous sections we can write
(XlAXQ/\Xg,/\X,i)III = W1W2W3W4{($2 - 321)/\(3’23 - 321)/\(:1!4 - 3':1)}1:;1. (75)

The invariant Invs is therefore the 3D equivalent of the 1D cross-ratio and consists of
ratios of volumes;

(74)

Inug =

_ ViogaVasas

Inug (76)

B ]'/12451/3426,
where Vi is the volume of the solid formed by the 4 vertices @y, z;, @x. 2.

Conventionally all of these invariants are well known but above we have outlined a general
process for generating projective invariants in any dimension which is straightforward and
simple.
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4.2.2 3D projective invariants in terms ot image coorainates

Suppose we have six general 3D points P, ¢ = 1,..,6, represented by vectors {z;,X;} in
E% and R! respectively. We have seen in Section 4.2.1 that 3D projective invariants can
be formed from these points, and an example of such an invariant is

XXX X[ X X X X

Invy = .
P XXX X5 X3 XaXa X

(77)

This is simply equation (?7) rewritten in terms of brackets. If it is possible to express
the bracket [X;X;X,;X,] in terms of the image coordinates of points ¥;, P}, F, B,
then this invariant will be readily computable in practice. Some of the most recent work
which has addressed this problem has utilized the Grassmann-Cayley algebra {?, 7, ?].
It has been shown [?] that it is not possible to compute general 3D invariants from a
single image and in [?] Carlsson discussed the computation of such invariants from a
pair of images in terms of the image coordinates and the fundamental matrix, F, using
the Grassmann-Cayley algebra. Subsequent work by Csurka and Faugeras [?] discussed
corrections to Carlsson’s expressions by including a series of scale factors. We want to form
invariants from only image coordinates and the fundamental matrix, but in the analyses
referred to above, both coordinates and matrix are quantities derived in projective space.
Despite the clarity of the derivations in [?], some degree of confusion has arisen when
subsequent workers have tried to implement these invariants with real data. We need
to be completely clear about how one forms real invariants which are formed from the
observed image coordinates and the fundamental matrix calculated from these observed
coordinates. Here we will translate the approach of Carlsson into the geometric algebra
framework in order to clarify these issues. We will also give the explicit expressions for
forming 3D projective invariants from the experimental data and note the relation between
these expressions and previous work.

Consider the scalar Si934 formed from the bracket of 4 points
Sizar = X1 XoX3Xy] = (XiAX AKX AX DT = (X AXK)AKsAXa) ™ (78)

The quantities (X, A Xz} and (X3 A X4) represent the line joining points P, and P, and
P; and P;. We let ag and by be the centres of projection of the two cameras and suppose
that the two camera image planes can be defined by the two sets of vectors {a, @2, a3}
and {by, by, b3}. Let the projection of points { F;} through the centres of projection onto
the image planes be given by the vectors {a}} and {b;}. Note that this notation follows
that of Carlsson [?] but that our vectors, a;, b;, etc. are ordinary vectors in £3. We then
let the representations of these vectors in B! be A, B;, A}, Bi..., etc.— see figure ?7.

As shown in figure 72, a world point X projects onto points A’ and B’ in the two image
planes. In figure 77 the epipoles (the intersections of the line joining the optical centres
with the image planes) in the A and B planes are denoted by Eap and Eps. [t is clear
that the points Ag, By, A', B’ are coplanar. We have seen previosuly that the wedge of
these four vectors must therefore vanish:

.A.(;./\B[)/\.AJ/\:BJr =0. (79)
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Figure 5: The projections of a world point X onto two image planes A and B are shown
together with the epipoles, E 45 and Ep,, and three points which define each plane, (A;)
and (B;) for i =1,2,3. All vectors are in R*.

Now, if we let A’ = o;A; and B’ = 3;b;, then equation (??) can be written as

(I,'ﬂj{A(]/\B[)AA,‘/\Bj} =0 (80)
Defining F;; = {AgABoAA;AB;} ! gives us
I:",-ja,-ﬁj =0 (81)

which is the well-known relationship between the components of the fundamental matrix,
F, and the image coordinates.

From this geometric interpretation of F, which was first given by Carlsson, (7], we can
immediately see how we might express the 3D projective invariants in terms of F and the
image coordinates. We start by considering two world points X, and X projected into
two images planes as shown in figure 7?7. We can express the line L)z joining these two
world points as the intersection of the two planes ®4 = ApAL#); and ®p = Bon LB,
where LA 5 and LZ,, are the lines joining the projections of the world points in the two
image planes, see figure ??. We can therefore write the line Ly, as the intersection of two

planes
Lis=XAX, = (AD/\LAm) A% (B(}/\Lnlg).

(82)

Now, we can obviously extend the above to give an expression for the 4-vector X;AXoA
Xg/\X,;:

XiAXAX AKXy = [(AD/\LA 12) vV (BQAleg)]A[(Ag/\LAs.q) 1'% (BD/\L334)]. (83)
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Using the fact that
(B V O)A (B3 V By) = —(P1 V B3)A (P V Dy) (84)
(this result is proved in Appendix A), we can rewrite the 4-vector as

X AXpAX3AXs = [(AeAL1) V (AgALA )] A[(BoALP12) v (BoALPsy)]
= (AoAA1234) A(BoABig3a) (85)

where A g3, is the R? representation of the point @;234, the point in the first image plane
which is the intersection of the lines joining points {a} and a,} and {a} and @)} and
similarly for Biga, — see figure 7?. The equality of the second line of equation (??7) with
the first can easily be seen by noting that the two planes (AgAL%12) and (AgAL#34) must
intersect at a line passing through Ay and the intersection of L#(; and L*y.

Now suppose we write Aja3s and Bgss in terms of the basis vectors:

losa = Cuzsa1Al+ 0izzapAe + anazazAs. (86)
foga = Dizsa 1 Bi + Bi2aa2Ba + Bi2343B3. (87)

Then it is clear from our definition of F' above that we can now rewrite equation (??) as

XiAXoAX3AX = AgABoAA s AAasy = Fijorion iBiasay. (88)

Note here that the bracket [X;X;X3X4] has been equated to [ABgA}y3,Bisg] by the
process of splitting up the bracket into two parts, X, AXz and X3AX, and then expressing
each of these lines (bivectors) as the meet of two planes (trivectors). During this process,
since we are working in R*, we are effectively ignoring any scale factors due to the arbitrary
choices of the v4 components. Thus, when we take ratios of brackets to form our invariants
we must ensure that, if we want to express the brackets in the form of equation (77?), the
same decomposition of X; A X; must occur in the numerator and denominator so that
these arbitrary factors cancel. In the case of Invs, we have

{(Xy AX) A (X AXa) Ha {(KuAX5) A (Ko A Xg) ™

(K AT A (KA s HaT{(KoAK) AR A K s &

In’b‘;; =

so we see that this decomposition rule has been obeyed. Now, in the past it has been
claimed that the invariant of 6 points which can be thought of as arising from 4 points
and a line, namely

X XXX [ X X X5 X

XXX X[ X X X X
is not invariant when expressed in Carlsson’s terms; the solution being to include various

correcting scale factors. If we were to decompose the expression as given in equation (??)
in the manner outlined previously, we would have

Invg (90)

{(XAXD)AKAX ) M (K AX) AKX AXg) !
(X AX) AKX AXe) Hy {(XiAX) A(XAXg) Hy

Invs =

(91)

23




It is clear that the same bivectors do not appear 1n both the numerator and denominator
and therefore there will not be the required cancelling of scale factors. However, suppose
we simply rearrange equation (??) in the following way;

p XXX X)X X X X

Inv, = )
3T XX X0 X5 [X) X X Xe)

(92)

This can always be done since interchanging vectors in X; A X; A X, A X simply changes
the sign of the pseudoscalar. Now, the decomposition would look like
(X AX)A K AX )M K AX)A (Ko AXK) Ha

I = AR A KA R (K AKOA (KgAK )} T (93)

We now see that the same bivectors appear in both numerator and denominator and

therefore that all scale factors should cancel. Writing

_ [X1X2X3X4][X1X2X5X5] UBDA’1423B’1423][AOBUA;:»%B;S%]
(X1 X X3 X5][X, XX 1 Xg] 0BoA 55 Bl 525 [AcBoA 136B1 42]

Invg (94)

_[A
=
where A is the point in R* corresponding to the intersection point Qj; 8s defined
previously, will indeed produce an invariant. We have verified this via simulated views of
a number of points in MAPLE.

However, the problem of how to express such invariants in observed coordinates, still
remains. Let us write the ratio Inv; as follows

(0T1234 ?ﬂu&;) (aT452613‘ﬁ4525)
(QT1245F51245) (3426 F Ba106)

where the we define the vectors & and A by o235 = {@1234,1; Q1231.2, 1234,3) and B gg =
(B1234.1, Br23a,2, Bi23a3)- This was the expression obtained by Carlsson [?] - however
the derivation in [?] was considerably more involved than that given here. Note that
equation (7?) is invariant whatever values of the 44 components of the vectors A, B;, X;
ete. are chosen.

Iny = (95)

There is indeed no doubt that Invs an invariant — the confusion seems to arise when we
attempt to express Invs in terms of what we actually observe, the 3D image coordinates
and the fundamental matrix calculated from these image coordinates. A point I will be
projected onto a point in image plane 1, say a;, which can be written as

a; = a) + M(az —a1) + pi{as — a1) = 0ua + dipae + dpnag (96)

where §;; = 1 — (X + pi), 8;2 = A and di5 = py, s0 that Ele 8;; = 1. We have seen that
in R, @) is represented by A} and that A] and a} are connected via the projective split
so that

P = A:,A% = ,1 {an(AiAyg) + ctio( AaAvYy) + cus(AzAvs)}- (97)
a Ay Ay

We can therefore write the cy;’s in terms of the J;;’s:
Al
Ajvy

035 (98)

Of,‘j =
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Similarly, if P, projects onto a point b; in the second 1mage plane which we Write as
b = by + eiby + €iby (so that ¥3_, &; = 1) with a representation in R! given by
B: = ,«'3,'1B1 + ﬁing + ﬁ,’3B3, then the ﬁ,’j’S are related to the E,‘j’S by

B”)G;
W L 99
ﬂj BJ"'T‘l X ( )

The “fundamental’ matrix F is such that aT,vf*"B,- = 0, if o; and §; are the vectors
of coefficients of the points in planes 1 and 2 produced by the same world point £

Now, given more than eight pairs of corresponding observed points in the two planes,
(8;,€), i =1,..,8, we can form an ‘observed’ fundamental matrix ¥ such that

6" Fe; = 0. (100)

This F can be found by some method such as the Longuet-Higgins 8-point algorithm [?]
or, more correctly, by some method which gives an F which has the true structure [?]. If
we define F by

Fy = (Ap-71)(Bi-ma)} Pt (101)

then if follows from equations (??),(??) that
cixFuaBu = (Af-v4) (B -va) ik Fraar- (102)

If F is formed using a method such as the Longuet-Higgins algorithm, then an F defined
as in equation (??) will also act as a fundamental matrix in R*.

Now let us look again at the invariant Invs. According to the above, we can write the

invariant as T -
(87 1931 F€1234) (8" 1505 F €456 ) P1234P1526

(103
(5T1245F€1245)(5T3426F€3426)¢1245¢3426 )

Inv;, =

where
¢mf8 = (A;;qrg "Y‘i) (BI;PQ'TS '7&1)' (104)

We see therefore that the ratio of the 67 Fe terms which parallels the expression for the
invariant in R*, but uses only the observed coordinates and the estimated fundamental
matrix, will not be an invariant. Instead, we need to include the factors ¢i234 etc.,
which do not cancel. These factors can be found straightforwardly in terms of observable
quantities; in Appendix B it is shown that we can write

(Algga-7a) (Alsos-va) _ thizas{piaeng — 1) 105
Al A ) (105)
(Abpog-7a) (Algss-va)  Masos(piazae — 1)

and

(Blasa 74) (Blgagv4) _ Araas(Aaazs — 1) (106)
(Bhuogva) (Bloag ¥e)  Asoe{Aizss — 1)
Here, i and A are defined by expanding the images points as follows. Since a;, @, and

] ) .
., are collinear we can write

¢

a’pqra - )u’pq‘f.‘!a.; + (1 - fv"“pqrs)a:' (107)
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b;qurs = Apgrsly + (1 — Apgrs) 0, (1us)

While the above has adopted the approach of forming all invariants in 4D and then finding
the equivalent expression in 3D, the approach outlined in [?] gave the invariant in the
form of equation (?7), but did indeed define ajp34 as follows:

o Aoy (109)

where the A" in this equation is the meet of the Cayley-Grassmann algebra. Thus, o)
is not the homogeneous coordinate vector of the intersection point of the two lines in the
image plane joining A} & A} and A} & A}, but rather some multiple of that vector, given
by equation (7). It can be shown that computing the invariant using equation (??) and
the corresponding expressions for the other intersection points, produces exactly those
correction factors arrived at by us in equations {?7)}. It is therefore likely that the past
confusion over the formation of the invariants has been soley due to the misinterpretation
of the nature of the quantities ;i and B,;;,; however, the derivation we have presented
here is totally unambiguous and, by clearly distinguishing between 3- and 4D quantities,
cannot be misinterpreted. Indeed, in the following section where we discuss invariants
involving line coordinates, we will see more clearly how equations (77) and (77) are
related.

Thus, to summarize, given the coordinates of a set of 6 corresponding points in the two
images planes (where these 6 points are projections from arbitrary world points but with
the assumption that they are not coplanar) we can form 3D projective invariants provided
we have some estimate of F.

4.3 Invariants from lines

Consider again the invariant discussed in the previous section. In terms of world lines we
can rewrite the invariant of 6 points given in equation (??) as an invariant of 4 lines
(X AX)A K AX O (K AXG) A (XA X ) !
{(X AKX ) A (KXo AXs) T H{(Ka AX) A (X2 AX ) !
{LisALa} s {LigALps}Ha ™

- {111
{Lm/\f&s}f«;_l{L16AL24}I4_1( )

As in equation (7?) we can express each line in the above expression as the intersection
of two planes, e.g.

LiznLyy = {Au/\(LAls vV LA24)}/\{B0/\(L513 vV Lﬂm)} (112)

Iny, (110)

where, as before, L#,; is the line in the A-plane joining the projections of X; and X;.
Now, as well as having a basis {A;} in the A-plane, we can define a bivector basis in the
A-plane. This bivector basis is L4;, i = 1,2,3, given by

La = AnA; (113)
LA2 B A3/\A1 (114)
Ly = A.1/\A2. (115)
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A LLa (116)

Similarly, we define basis bivectors for the B-plane; {Lp;}, j = 1,2, 3. Now, wecanezpandequation (2?)br

IABL 45, as follows
LygALgs = PP (AN (Lai V Lag)}A{BoA(Le V Lpa)}-(117)

Since LA1 v L,q-z = A3, LAQ vV LA3 Al, and LA;} i LAI = A.z (W’lth L,q, \'% LA, = 0) we
see that we can write La; V L =0 as

Laj V Lax = €je Ay (118)

from which it follows that the intersection of any two lines in the A-plane can be expressed

as
L; v LqA = E,‘jkl!fle,; = {Iplq},-A; (119)

where is the standard vector product and I, is the vector {i¥,{5,15]. We are thus able to
write

L13/\L24 _ (IA13£B'24) (15131524) {A.{]AA AB(}ABJ} F;J IA13IBJ4) (131311324) (120)

We can cast equation (7?) in terms of observed quantities using the projective split by
rewriting the line coordinates in terms of the point coordinates:

LAY = AAAL = (oA A (asAy)
= fijkalia3j£’f
= (o)L == 1}, (21

Which tells us that [*® = (a;c3) and therefore that our definition of line coordinates
which uses the expansion in terms of the basis bivectors agrees with the conventional idea
of homogeneous line coordinates. Now consider the term Fi;(1#131%%),(17°17%%),, we can
rewrite the line coordinates in terms of points and use the projective split on these points
to give

ﬁij(IABIB?d)i(lBBIBM)j —

Doing the same things for the other factors enables us to write the above invariant as

Since Ajzsq and Bigas can be written as the intersection of lines L{y& L3y and L7 W& LE,
respectively, we are able to write equation (?7) as

X[ /\Xg/\X;j/\X,; = (A[)/\A123,1) A (Bu/\B1234)
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Figure 6: The wire frame house used in the simlations.

5 Experiments

Here we investigate the formation of the 3D projective invariants from sets of 6 matching
image points — in particular we look at their stability in noisy environments.

The simulated data was a set of 38 points taken from the vertices of a wire-frame house,
as shown in figure ?? and viewed from three different camera positions. From three sets
of 6 points (non coplanar) we form Invl for each set over views 1 & 2, 1 & 3 and 2 &
3. During the simulations the world points are projected onto the image planes and then
gaussian noise is added. Figure ?? shows results for the three sets of points chosen. In
figure 77, a), c), e} we plot the value of the invariant with increasing noise. In a}, ¢), and
e) the invariant was formed using an F calculated via a linear least-squares method from
a set of 30 matching points. Figure 7?7 b), d) and f) show the same invariants formed this
time by taking the noisy point matches but the true value of F (i.e. that formed in the
noiseless case). The true values of the invariants for the three sets of lines were 0.655,
0.402 and 8.99.

For small values of the noise the invariants can be calculated accurately. In greater noise
large variations are possible for some invariants whereas other invariants are relatively
robust. Figure ?7 indicates that uncertainties in the calculation of F will significantly
affect the invariant in some cases. It is also apparent that the formation of this invariant
is more accurate between some pairs of views than between others. We should expect
this since altering the view may mean that the 6 points move closer to some unstable or
degenerate configuration. In summary it appears that the type of invariant described here,
when used in isolation, may be useful for data which is not noisy but that the degradation
in the presence of significant noise may render them ineffective for real images unless used
in some sort of averaging process (i.e. several invariants are considered and an average
value formed).
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a) Invariant 1 b} Invariant 1 — true F used
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Figure 7: Plots showing the behaviour of the 3D invariant between three different pairs
of views with increasing noise. The solid, dotted and dashed lines show the invariant
formed between views 1 & 2,1 & 3 and 2 & 3 respectively. The x-axis shows the standard
deviation of the gaussian noise used.
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6 Invariants irom three views

The technique used to form the 3D projective invariants for 2 views can be straightfor-
wardly extended to give expressions for invariants of 3 views. Consider the scenario shown
in fgure ??, which shows four world points, {X;, X3, X3, X4} (or two lines X, AX, and
X3AX,) projected into three camera planes, where we use the same notation as in section
4.2.2. As before, we can write

X]_AXQ = (AQALAlz) A% (BOALBIQ)

X3/\X4 - (AQALA34) v (CD/\LC;;q)(lQEI)
Once again, we can extend the above to give an expression for the 4-vector X AXAXAX
using the result in equation 27

X, AXoAX3AX, = [(ApALA ) V (BoALP 1) A[(AgALA3) V (CoALC )] (126)
Now, using the result in equation 77 we can write,

X AX AKX AXy = [(AgAL 1) V (AgALA ) A(BoALE 13) v (BoAL 5y)]
= (A{]/\A1234)/\(B0/\L312)V(CD/\LC34). (127)

where A;o34 is as previously defined. Now, writing the lines LBy and L%3, in terms of
the line coordinates we have

B __ B B
L 12 —I 12,_;1'L i
c c C
L 34 =£ 343‘1} e

Now, it has been shown, [?], that the trilinear tensor (which plays the part of the funda-
mental matrix for 3 views), can be written in geometric algebra as

Tise = {(ApAANA[(BoALP;) v (CoALSy) (128)
so that equation 77 reduces to
X AXAX3AX = Tyjponaal?121954. (129)
The invariant Inv; can then be expressed as

(Tis00012340812
)

Therefore we have an expression for invariants in three views which is a direct extension
of the invariant for 2 views. When we form the above invariant from observed quantities
we note, as before, that some correction factors will be necessary - equation (?7) is
given above in terms of R* quantities. Applications of this 3-view invariant will be given
elsewhere.

Invy = ﬂjka452533455625(ﬂjka1245IB123045)71@:;034263”345026- (130)
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7 Conclusions

We have presented an introduction to the techniques of geometric algebra and shown
how they can be used in the algebra of incidence and in the formation and computation
of invariants. For intersections of planes, lines etc. and for the discussion of projective
transformations it is useful to work in a 4D space we have called R*. We find that we do
not need to invoke the standard concepts or machinery of classical projective geometry
(although they can be used If desired), all that is needed is the idea of the projective split
relating the quantities in R? to quantities in our 3D world. We believe that with this
approach we can achieve everything that has currently been achieved with the standard
approaches, but that we can do it in a more transparent and clear fashion. For real
computations in the space R* we have a 4D geometric algebra with a Minkowski metric.
We can therefore use the extensive symbolic algebra packages (for use with MAPLE)
which have been developed for work in relativity, quantum mechanics and cosmology
[?] using the spacetime algebra, also a 4D geometric algebra with a Minkowski metric.
Analysing problems using geometric algebra provides the enormous advantage of working
in a system which can be used for most areas of computer vision and which has very
powerful associated linear algebra and calculus frameworks.
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8 Appendix A

We define U;; to be the plane through the centre of projection of the first camera, Ay,
and the image points A} and A;. Similarly, V;; is defined as the plane through the centre
of projection of the second camera, By, and the image points B; and B}. We can now
express each of X A X3 and X3 A Xy as the meet of two planes; Ujp V Vip and Uy V Vag,
respectively;

X AX; = (AgAALAAL)V (BeABIABY) = UV Vi (131)
XaAXe = (AgAARZAAL YV (BoABRABY) = Use V Vi, (132)

Siam = [Xl, Xo, Xa, Xq] can therefore be written as 5934 = {(Um vV Vl-z) A (U34 vV V34)} L;_l.
From the definition of the meet (noting that the dual is in this case taken with respect to
the join which is the whole space) this equation can be simplified to

Sia3a = {[(Ur2* AVia*) I A[(Uss” AVag* ) 4]} I (133)

Using the fact that I, commutes with bivectors in the space and that I, = 1, the
expression for Sje34 can then be reduced to

Siosr = {Un" AVig" AUzs" AVay"} L. (134)
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The duals of the trivectors U;; and V;; are vectors and since the wedge product 1s anti-
commutative, the order of the vectors in the last equation can be altered - in particular

we ¢can write
Sia3s = — {U" AU AV AV} 17 (135)

A comparison with equation (??} enables us to express the bracket as

Sigaa = — {{U12 V Us ) A (Vi V Vau) Y I, 7L {136)

9 Appendix B

Since the intersection point a,,,, is collinear with {a,&a,} and {a.&a,}, we can define
the following p's

Ay = pasay + (1 — pizs)ay (137)
Q25 = fhizas@s + (1 — p12e5)@
Qo = Haoe®s + (1 — faa0e) @)
Qusos = Masas@s + (1 — pasag)ay.

Also, we can formulate Al,y, as the intersection of the line joining A} and Aj with the
plane through Ay, A}, A} as follows;

Ay = (AIAAL)V (AgAAGAAY)
= [AlALAALA) + [AALALAG AL + [ALALALAL A, (138)

The last term on the RHS is zero since A}, A}, A} and A} are coplanar. We can therefore
write our intersection point as

Via the projective split we know that a/,,;, and Aly,, are related by

Algsa Ay
—_ 140
Qg = A ot Vs (140)
Substituting equation (?7?) into equation (?7) then gives
A’ Ayy A Ay
! = [A Al‘ f — A Ar Af A.f 3
Q1234 [ApATAAG] A" :1234_% [AgAlA; 4]A;—234-74
Al !,
= T [AATALAY ) - 2 [AAl A, (141)
123474 1234" 74

!

where we have used a! = Aff‘ﬁ Equating this expression to equation (?7?) therefore gives

Ai%
A."
Hizzq = E‘%[Ana A;:Ar A’a] (142)

s

123474
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and

A
(s = 1) = 77> Tk, A1, 45, ) (143
1
Similarly we can write
’Y) i (AI Y4 f
Pigas = (‘—‘(&E;}—Ll—)[Ao,AUA'z, 4] (thoas — 1) = m")—)[AosAUAE: 5]
(A Al
P D B WYY (125 — 1) = ~23) 40 AL A7 AY]
( 3426 ’Yd) (A 4)
(A 74) ' ' ' ( 4 74) I ' '
faszs = ————Ag, A, Ag, A tasas — 1) = —————[Ao, Ay, Ag, A
6= Q) A0 APAS AL s = 1) = e A e A

Now consider the following combination of the p's:

A"’M A-’ 4
#1245(#’3426 - ].) _ m[A(}: Al: A21 Ad %M[AD: A‘Zs Aﬁs A‘l]
tasos(pazas — 1) %‘:_;E[Aoj Ao, Aﬁ,Ad]ﬁ—ﬂ-)-[An, A, Ay A

!
(i}zad ’Yﬂ(i;;s% ’Td)_ (144)
( 3426"}’4)( 1245"?4)

A similar process can be repeated for the second image. This therefore teils us that the
factors in equation (??) in terms of observable quantities are as follows:

$1234D452 _ 1245 (aaas — 1) Ar2as(Aaaos — 1) (145)
ProasPazs  Masos(tiosa — 1) Aagze(Arzas — 1)

Thus we are able to evaluate the scale factors we need. The values of the p's and A’s can
easily be found from equation (?7).
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