Edge and Keypoint Detection in Facial Regions
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Abstract

In this contribution we introduce a method for the auto-
matic detection of facial features and characteristic anatom-
ical keypoints. In the application we are aiming at the ana-
tomical landmarks are used to accurately measure facial
features. Our approach is essentially based on a selective
search and sequential tracking of characteristic edge and
line structures of the facial object to be searched. It inte-
grates model knowledge to guarantee a consistent interpre-
tation of the abundance of local features. The search and the
tracking is controlled in each step by interpreting the already
derived edge and line information in the context of the whole
considered region. For our application, the edge and line
detection has to be very precise and flexible. Therefore, we
apply a powerful filtering scheme based on steerable filters.
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knowledge integration, face recognition, steerable filters

1. Introduction

Facial keypoints such as eye corners and mouth ends
are important features for many different tasks in automatic
face processing [4, 5]. The localization of facial keypoints
is usually performed interactively or it is not very precise
and robust. In general, the problem is that anatomical facial
landmarks we are searching for in this paper are defined
rather as morphological features (e.g. the corner of an eye)
than by a low-level definition only based on the image data.
Different realizations of the same facial keypoint can vary
drastically in terms of their grey value distribution in the
image. Hence, it is not possible to detect facial keypoints
by standard corner detectors or other purely local and data-
driven detectors that do not make use of the context or of
appropriate model knowledge. The problem of local and
data-driven keypoint detectors is that there is too much local
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image structure in complex real world images. Therefore,
it is not possible to give any interpretation to local features
without considering their context.

Our approach starts by detecting the most prominent and
reliable features (edges and lines) in the considered facial
region. For a robust detection and a subsequent tracking
of the edges and lines we propose a filtering scheme that is
based on steerable filters [1, 6, 7]. The line and edge detec-
tors can be calculated very efficiently in any orientation and
scale. This Hexibility is very important for the sequential
search strategy we have developed. For the detection of the
facial keypoints we have defined three 'basic filter opera-
tions’, of which the sequential search strategy is composed
and which are reused over and over again for every distinct
facial region and for every distinct keypoint.

The application, that gives us the motivation, is the de-
tection of dysmorphic facial signs. Dysmorphic signs in
face images are minor anomalies which, by definition, do
not lead to functional disturbances [9] (fig. 1).

Figure 1. Example of a very enlarged intercan-
thal distance (taken from [10, p. 42]).

In this context, dysmorphic signs in faces play an impor-
tant role in syndrome identification because in most cases
they are visible and prominentin the facial image [8]. It has
been shown, that particular phenotypic combinations are
typical for distinct dysmorphic syndromes [9, 10]. There-
fore, the detection of particular keypoint positions (fig. 2)
in dysmorphic face images is of a high diagnostic value.
For this, the localization of the several keypoints should be
very accurate, reproducible, and it should correspond to the
anatomical definition of the keypoint positions.
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Figure 2. Important keypoints in a frontal face
image. The figure is taken from [8, p. 63].

2. The filtering scheme

The filtering scheme is based on line and edge detectors.
For this, we use a first and second derivative of Gaussian:

Fi(z,y) = C) Le ol ¢ 27

(1)
By(z,y)=C; (1 - (i)z)e_ff_:;_?! P (2)

C and C; are normalization constants such that both filters
have the same L2 norm (for F) see fig. 3 left). These fil-
ters are steered in orientation and scale (1,0) to be applied
separately as line and edge detectors. The term ’steerabil-
ity refers here to a linear reconstruction of the deformed
filters Fyy , on the base of a small number N of so called
basis functions A,k = 1... N (see superposition formula
3). Typically N will be small (10 or 20), while ¥ and o
theoretically assume an infinite number of values. For more
details see [6] and [1, 7].

Fpo(Z) = Y be(0,0)A(2)

k=1

(3)

Figure 3. Edge detection filter F| (first deriva-
tive of Gaussian, with an aspect ratio of 2)
in original resolution (left) and reconstructed
(right) with 10 basis functions.

The quality of the reconstructed primitive filters depends
on the number of used basis functions. Figure 3 shows the
original (left) and the reconstructed (right) edge detection
filter F using only 10 basis functions. The following two
properties of the basis functions are essential for the design
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of our filtering scheme because they allow for an easy on-
line adaptation of the tradeoff between the speed and the
quality of the filters.

e The basis functions are orthogonal. Thus, it is easy
to add on-line new basis functions to achieve a better
reconstruction quality.

e Any number of basis functions reconstruct all deformed
filters. Only the quality of the reconstruction changes.

In most cases low quality approximations of the used filters
are sufficient because they qualitatively still resemble elon-
gated edge and line detectors. The detection and tracking
of the keypoints is performed by three different basic filter
operations that make extensively use of the deformed filters
in arbitrary orientations and scales.

e The first operation (BFO1) searches in a predefined
region for an edge or line with a predefined orientation
and scale (fig. 4a).

The second operation (BFO2) determines the orienta-
tion of an edge or line at a given position by evaluating
the maximal response of a rotated filter (fig. 4b).

The third operation (BFO3) tracks an edge ¢ line by
one step. For this, the filter is moved by a small step in
the already known direction. Then the edge or line is
searched again in perpendicular direction (fig. 4¢).

v

(b) BFO2
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(a) BFOI

i

(c) BFO3
Figure 4. Basis filter operations. BFO1: De-
tection of an edge or line (a). BFO2: Determi-
nation of the orientation (b). BFO3: Stepwise
tracking of an edge or line (c).

3. Context based keypoint detection

We have already pointed out that the integration of model
knowledge is mandatory. The applicability of any model of
course is restricted to a certain class of images. Therefore,
the facial images studied in this contribution have to fulfill
several general requirements to be accepted for the pro-
cessing. The general requirements comprise the necessary




resolution (512* full face image), the orientation (frontal,
not tilted faces), the illumination (frontal and diffuse), and
the completeness (no occlusions or wearing glasses) of the
facial images. Furthermore, there are some detailed as-
sumptions. The detailed assumptions are essentially used
to control the sequential search strategy. They consist of
particular model knowledge about the image structure of
the considered region. They describe the kind, the exis-
tence, and the orientation of different prominent structures
and keypoints in the region such as a prominent, curved,
bright-to-dark edge segment of the iris with a nearly vertical
orientation. A detailed description of the complete model
is beyond the scope of this paper, but more details can be
found in [3]. The model of the edge structures of a left eye
which are essentially considered, detected, or tracked during
the processing are depicted in figure 5.

upper eyelid edge of the eyelid
with lashes

| iris

eyelid wrinkle

outer corner
of the eye

sclera highlight

!
base of the
eyelashes

lower eyelid possibly
with a fine dark line
Figure 5. Model of a left eye. The depicted
details in the model are important features
for the sequential detection and tracking.

inner corner | interséctions
of the eye | iris /eyelid

tea'rgland eyelashes

We want to emphasize that the presented approach and
the class of images are given by our medical application
which is different from general face processing situations
(e.g. resolution etc.). However, it is straight forward to
adapt the developed method to other situations and to any
class of facial images.

4. Sequential search strategy

The detection of the different keypoints involves several
steps. Each step implies several applications of the basic
filter operations (fig. 4). The selection of the operations and
their parameters for each step is determined and controlled
by the already derived information together with the model.
From these combined filter operations a sequential search
strategy is developed to detect the different characteristic
features.
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To better understand the principle of the sequential search
strategy, the detection of the iris and of the eye corners will
be described in detail (fig. 6).

The most prominent and reliable features within the eye
region are the edges of the iris (fig. 6 upper left). There-
fore, the sequential search starts by detecting the left edge
segment (vertical, bright-to-dark step edge) of the iris apply-
ing the basis filter operation BFOI (fig. 4a). The detected
edge is tracked upwards and downwards (using BFO3) until
the intersection points with the eyelids are reached. Sub-
sequently the corresponding right edge segment of the iris
is searched using the model knowledge and the informa-
tion about the size, position and orientation of the already
detected left edge segment. Finally the iris is segmented
and the center and the radius of the iris is determined (fig.
6 upper right). The computed features are checked with
the model knowledge concerning to the expected circular
symmetry, size of the radius, and some other constraints.

Figure 6. Example steps of the sequential
search for a left eye. First, a prominent ver-
tical bright-to-dark edge is detected. After
the detection of the corresponding right edge
segment, the final segmentation of the iris is
computed (first row). The eyelid edges are
searched, tracked, and finally that edge seg-
ment which is strongly curved is detected to
determine the inner eye corner. For the outer
eye corner, the upper and lower eyelid edges
are tracked until they end (second row).

After the detection of the intersection points of the iris and
the eyelids, the edges of the eyelids are tracked until an
edge segment which is strongly curved indicate the inner
eye corner (fig. 6 lower left) respectively the intersection
of the tracked edges marks the outer eye corner (fig. 6
lower right). The tracking is controlled at each step by
the integrated model knowledge (fig. 5) and by the actually
derived information to avoid e.g. that the tracking is misled
by edges of the tear gland. The procedure presented has the
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advantage, that all the conditions, for example, that the iris
has the shape of a circle and a minimum and maximum size,
can be checked explicitly.

5. Results

The method has been tested on more than 100 face im-
ages, that means we have investigated more than 200 dis-
tinct eye and eyebrow regions. The several facial regions
are localized and selected applying an attentive localization
strategy [2]. Our face data base consists of normal faces'
(volunteers of our institute) as well as of dysmorphic ones
(provided from the Kinderzentrum Miinchen). The large
variability of successfully processed facial regions is pre-
sented in figs. 7.9, 11 and 12 . All the regions shown are
processed applying a region dependent processing scheme
all composed of the basic filter operations introduced be-
fore. A sample of representative examples are depicted in
this contribution, which are not only the best results.

Eyes The overall error rate for the detection of the iris

in eye regions was 2.3%. In 94.4% of the remaining eye

'some face images are taken from Manchester Face Database available
via http://peipa.essex.ac.uk/fip/ipa/pix/faces

(i) ()
Figure 7. Ten examples of successfully analyzed eye regions. The different sizes of the eyes reflect
their relative scale. A representative couple of processed images is shown.

regions the outer eye corner was detected successfully while
the inner eye corner was correctly detected in 91.6% of the
remaining cases. The reason for the higher error rate of
the detection of the inner eye corner is its more complex
structure and higher variability. The detection may fail if
there are unexpected structures in the eye, e.g. acontact lens
(fig. 8 left). If the resolution is to low and no discrimination
between the border of the iris and the eye corner is possible
the sequential search strategy will also fail (fig. & right).
The same failure will occur if one wants lo compute gravely
squinted eyes.

Figure 8. Examples at which the sequential

search strategy fails. Caused by a contact
lens (left) and by a too low resolution (right).




Eyes of children with Sotos syndrome are shown in fig.
7b, 71, and 7j. In these eyes the wrinkle of the upper eyelid
is enlarged as far as the lower eyelid and covers the tear
gland. Therefore, the tear gland is not visible in the inner
eye corner. This feature is one of the most prominent feature
or a leading dysmorphic sign of the sotos syndrome and it
is very important for a detailed dysmorphic diagnosis. One
example of eye region which is not in a horizontal orientation
is depicted in fig. 7g. The developed algorithms can handle
rotation angles up to 20°. Eye regions of different sizes are
shown in fig. 7b (iris diameter = 28 pixel) and in fig. 7i (iris
diameter = 53 pixel). In general, the images of Pentland’s
face database’ are not in accordance with the necessary
requirements (too low resolution) but to demonstrate the
robustness of our methods some examples of eye regions
are processed and one is depicted in fig. 7d (left eye of
stephen).

Eyebrow The determination of the upper edge of the
eyebrows is important for the calculation of the midface
height (see also fig. 2). For the detection of the upper edge
of the eyebrows we use the basic filter operation BFO!1 in
horizontal orientation with a large scale because large edge
detection filters are more robust against fine structures (on a
fine scale eyebrows have often no straight edges). The use of
large scale filters is advantageous because they cover a larger
part of the eyebrow edge and therefore, the filter response
marks clearly the beginning of the edge (see fig. 9). We
achieve an overall error rate of only 2.6% for the detection
of the upper edge of the eyebrows in eyebrow regions.

Figure 9. Detection of the upper eyebrow
edge and the corresponding filter responses
f(z,y), computed along the white, vertical
line. After the initial detection, the edge is
tracked in both directions. The minimum (o)
of the filter responses indicates the position
of the upper eyebrow contour, while the max-
imum (u) that of the lower edge.

Mouth The detection of the mouth features are impor-
tant for the determination of the width of the mouth and also
for the determination of the midface height (see also fig. 2).
The sequential search strategy developed for the detection
of the mouth features is summarized in fig. 10. The overall
error rate for the detection of the mouth ends is relatively
worse with 16.2%. One main reason for the incorrect detec-

Zavailable at anonymous ftp://whitechapel. media. mit.edwpub/images/

Figure 10. Sequential search strategy for the
detection of the mouth ends. Initial detection
of the upper edge of the upper mouth lip and
the mouth fissure (first). The upper edge of
the upper mouth lip and the lower edge of the
mouth fissure are tracked in both directions
until they end (second). The mouth corners
are determined and the middle of the mouth
is calculated (third).

tion results is that an exact low-level definition of the mouth
corner is extremly problematical (fig. 11). In our case we
have defined the mouth corners related to the anatomical
definition as that point at which the mucouses of the upper
lip and of the lower lip (red lip) end. But often this position
is not visible in the data and the detection is additionally
complicated by edges of small ongoing mouth wrinkles or
by shadows caused by small dimples near the mouth corners
(fig. 11).

Nose For the determination of the width of the nose an
approximately horizontal edge caused by the nose wrinkles
is detected and tracked at both sides of the nose. The overall
error rate for the determination of the width of the nose was
5.6% (fig. 12). The detection will fail even if no sufficient
edge information is remaining at one side of the nose (see
fig. 12 lower right). The detection succeeds, however, also
in cases of shadows if the remaining edge information is
sufficient for the edge tracking (fig. 12 lower left).

6. Discussion

It has been shown, that by applying a sequential search
strategy, complex facial keypoints can be detected very ac-
curately. The proposed adaptive processing scheme pro-
vides a robust and fast method to detect and exactly localize
keypoints in face images. For the detection of keypoints
the global information of the whole region as well as the
local structure of the keypoints are exploited. Only those
keypoints are detected by our method, for which evidence




Figure 11. The detection of the mouth ends
fails or may be inaccurately in cases of facial
play (first), if shadows of dimples disturb the
region (second), and if the tracking is mis-
led by unexpected edges here caused by non
frontal illumination (third).

Figure 12. Examples of correctly determined
widths of the nose (first row). Even in cases of
shadows the detection succeeds (second row
left). The detection fails if the remaining edge
information is too low (second row right).

exists in the local structure of lines and edges. No extrap-
olations on the basis of other features are performed. If
no detailed information of the local structure remains, the
detection of the keypoint will fail (figs. 8, 11, and 12 lower
right).

The robustness of the developed strategy origins from
the use of model knowledge. At each step of the sequen-
tial strategy the model is used to control the next action.
Furthermore, at each step the derived information can be
checked for its consistency with the model.

In contrast to the approach of deformable templates [11]
the sequential search strategy is more flexible concerning
the adaptation to the local image structure. Our models
consist of knowledge about the edges and lines, their orien-
tation, length, scale, curvature, relative position, and vertices
which have to be detected. However, only those details that
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are necessary are included and if possible only in a quali-
tative way and not with quantitative limits. An estimation
of the position of not visible keypoints (in the data) as it is
possible applying deformable templates is not desired, be-
cause estimated keypoint positions are not of interest for our
application.

The time for the processing of one facial region depends
mainly on the details considered during the processing. In
practice, we convolve a facial region of a typical size of
150 x 100 pixels by 23 basis functions of a kernel size of
27 x 27 pixels what takes about 4 seconds on a 150 MHz
R4400 SGI-Indy workstation. If the convolutions are done,
the computation of the whole sequential search for an eye
needs about half a second. Because of the one dimensional
character of the sequential search (most of the time is spent
for the line and the edge tracking) the computation time
increases approximately linear with the size of the image.
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