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Abstract

Facial keypoints such as eye corners are important fea-
tures for a number of different tasks in automatic face pro-
cessing. The problem is that facial keypoints rather have
an anatomical high-level definition than a low-level one.
Therefore, they cannot be detected reliably by purely data-
driven methods like corner detectors that are only based on
the image data of the local neighborhood.

In this contribution we introduce a method for the auto-
matic detection of facial keypoints. The method integrates

model knowledge to guarantee a consistent interpretation of

the abundance of local features. The detection is based on a
selective search and sequential tracking of edges controlled
by model knowledge. For this, the edge detection has to
be very flexible. Therefore, we apply a powerful filtering
scheme based on steerable filters.
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1. Introduction

Facial keypoints such as eye corners are important fea-
tures for a number of different tasks in automatic face pro-
cessing (4, 5]. In this contribution we will introduce a
method for the automatic detection and localization of such
keypoints. The problem is that the keypoints are defined
rather as anatomical features (e.g. the corner of an eye) than
by alow-level definition like a junction. Different examples
of the same facial keypoints can be very different in terms of
their grey value distribution in the image (fig. 1). Hence, it
is not possible to detect facial keypoints by standard corner
detectors [6] or other purely local and data-driven detectors
[10] that do not make use of context or model knowledge.

The problem of local and data-driven keypoint deteetors
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Figure 1. Three examples of inner eye cor-
ners. The large variance of eye corners does
not allow for a purely local and data-driven
detection.

is that there is too much local image structure in complex real
world images. Therefore, it is not possible to give any inter-
pretation to local features without considering their context.
Yuilleetal. [13, p.104] have written: "The problem seems to
be that although it is straightforward to find local evidence
for edges, it is hard to organize this local information into
a sensible global percept”. The integration of appropriate
model knowledge is mandatory. We believe that this situa-
tion is typical for complex real world problems. In Yuille
etal. deformable templates are used to obtain such a global
percept. In the case of the eyes, for example, these tem-
plates consist of two parabolic sections for the eyelid edges
and of a circle for the iris. Applying deformable templates
the number of parameters to tune the model to the data is
limited. Therefore, an exact localization of the eye corners
according to the anatomical definition of the keypoints is
not guaranteed because the template is not flexible enough
to adapt to all details.

Our approach starts by detecting the most prominent and
reliable features in the eye region. Given our task and image
recording conditions these are the strong vertical step edges
of the iris. Subsequently, the complete iris and the eyelids
are tracked to finally detect the eye corners. At each step the
detection and tracking is controlled by the integrated model
knowledge. The already detected edges are checked for their
consistency as well as the specific edge structures which are
searched for in the next step are given by the model.




The application. that gives us the motivation. is the detec-
tion of dysmorphic facial signs, Dysmorphic signs in face
images are minor anomalies which, by definition, do not lead
to functional disturbances (fig. 2, [12. p. 42]). The ratios
of distances between certain facial keypoints are statistically
significant for discriminating between normal children faces
and different classes of dysmorphic syndromes [11, 12].
Therefore, the detection of particular keypoint positions in
dysmorphic face images is of a high diagnostic value (see
fig. 7, [11, p. 63]). For this, the localization of the keypoints
should be precise, reproducible, and it should correspond to
the anatomical definition of the keypoint positions.

Figure 2. Example of a very enlarged intercan-
thal distance which is a typical dysmorphic
facial sign (taken from [12, p. 42]).

The organization of the paper is as follows. The next
section gives a brief outline of the filtering scheme that we
use for the edge detection and tracking. Subsequently we
will introduce the sequential search strategy for the example
ofaneye region. In section 4 we will present results followed
by a short discussion.

2. The filtering scheme

The filtering scheme is essentially based on an edge de-
lector. We use a first derivative of Gaussian:
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C{e) is a normalization constant such that the filter has
a L' norm of 1 for all scales. For the aspect ratio £ there
are the following considerations. Elongated filters have
proven to show good results for edge and line detection
[9. 8]. However, very elongated filters are computationally
expensive if they are steered in orientation. In addition. it
is relatively easy to synthesize more elongated filters from
less elongated ones but the opposite is more difficult. As
a compromise, we choose an edge detection filter with an
aspect ratio of 2 (fig. 3). For some tasks we also use a line
detector based on second derivative of Gaussian filter.

Steerable filters were introduced to efficiently calculate
the responses of filters in arbitrary orientations, scales, and
other deformations [1, 9]. It refers to the reconstruction of
all deformed filters F,, by a superposition formula of the
following type:
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Figure 3. The mother filter (left) and a typi-
cal basis function (right) to steer the filter in
orientation and scale.
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« is an arbitrary deformation (multi-) parameter. In our
case the orientation and scale are steered. In contrast to
the work of Freeman & Adelson 1] the term ‘steerability’
here is applied to all deformations, not just to rotations. The
number NV of so called basis functions A, k=1...Nis
small compared to the number of deformed filters. Typi-
cally N will be 10 or 20, while « theoretically assumes an
infinite number of values and many thousands in practice
for orientation and scale.

The quality of the reconstructed filters depends on the
number of basis functions (bfcts). Figure 4 shows examples
of reconstructions with different numbers of basis functions.
We don’tuse deformed copies of the filter as basis functions
but orthogonal basis functions instead (fig. 3 right). For
more theoretical background we refer to [7]. The following
two properties of orthogonal basis functions are essential for
the design of our filtering scheme. They allow for an easy
on-line adaptation of the tradeoff between the speed and the
quality of the filters.

e The basis functions are orthogonal. Thus it is easy
to add on-line new basis functions to achieve a better
reconstruction quality.

e Any number of basis functions reconstruct all deformed
filters. Only the quality of the reconstruction changes.

In most cases low quality approximations of the filters are
sufficient because they qualitatively still resemble elongated
edge detectors (fig. 4 left). Therefore. the region to be
analyzed is convolved with only a small number of basis
functions. More basis functions are added only during the
processing at certain positions where better approximations
are required.

The detection of the eye corners is based on a sequential
search and tracking of the edges in the eye region. The
detection and tracking is performed by three different basic
filter operations that make extensive use of the steered filter




Figure 4. Reconstruction of the filter with
different numbers of basis functions. 10
bfcts. (left) and 30 bfcts. (right) are used for
steering orientation and scale (2 octaves).
The respective L° errors are 22% and 3%.

e The first operation (BFOI) searches in a predefined
region for an edge with a predefined orientation and
scale (fig. 5a).

e The second operation (BFO2) determines the orienta-
tion of an edge at a given position by evaluating the
maximal response of a rotated filter (fig. 5b).

e The third operation (BFO3) tracks an edge by one step.
For this, the filter is moved by a small step in the already
known direction. Then the edge is searched again in
perpendicular direction (fig. 5c).
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Figure 5. Basis filter operations. BFO1: De-
tection of an edge (a). BFO2: Determination
of the orientation (b). BFO3: Stepwise track-
ing of an edge (c).

3. Sequential search strategy

We have already pointed out that the integration of model
knowledge is mandatory. The applicability of any model of
course is restricted to a certain class of images. Therefore,
the facial images studied in this contribution have to fulfill
several general requirements to be accepted for the process-
ing. The general requirements comprise the necessary reso-
lution (5122 for a full face images), the orientation (frontal,

not tilted), the illumination (frontal and diffuse), as well as
the restriction to faces without glasses or other occlusions.

The detection of the keypoints is achieved by a sequen-
tial search respectively tracking of the edges within the eye
region where each step consists of several applications of
the basic filter operations. The selection of the different
operations and their parameters for each step is controlled
by the already derived information together with the model
knowledge. The model knowledge used consists of relevant
edges, their scales and geometrical relations of the con-
sidered object respectively of an eye region as depicted in
fig. 6. This information is used to search for reliable edges
at specific positions, orientations, and scales in each step
of the sequenual search. Furthermore, different kinds of
edges (white-to-black against black-to-white edges or edges
against lines etc.) can be distinguished. A complete de-
scription of all details of the model used is beyond the scope
of this paper, but it can be found in [3].

upper eyelid edge of the eyelid

\ with lashes

‘-\ highlight " ins outer corner
\ of the eye

eyelid wnnkle
\

sclera

inner corner | intersections | base of the
oftheeye | ins/eyelid | eyelashes

teargland eyelashes lower eyélsd possibly
with a fine dark line

Figure 6. Model of the left eye. The depicted
details are important to control the sequential
search.

We want to emphasize that the presented approach and the
class of images are given by our medical application which
differs from general face processing situations (resolution
etc.) However, it is straight forward to adapt the method to
other situations.

To better understand the sequential search strategy, the
detection of the iris and of the eye corners will be described
in more detail (fig. 8). The most prominent and reliable fea-
tures within the eye region are the edges of the iris. There-
fore, the sequential search starts by detecting these edges.
The iris is not detected in one step by applying a especially
designed circular symmetry filter because it is faster and
more reliable to divide the detection into several steps. First




Figure 7. Keypoints in a frontal face image.
In this contribution only the points number
2 and 3 (inner and outer eye corners) are of
interest. The figure is taken from [11, p. 63].

the lett edge segment (vertical, white-to-black edge) of the
ins is searched for in the selected image part applying the
basis filter operation BFO! (fig. S5a). The spatially lim-
ited image parts of the eye regions considered are computed
by applying an attentive localization algorithm [2]. The
detected edge is tracked upwards and downwards (using
BFO3) until the intersections with the eyelids are reached.
Subsequently the corresponding right edge segment of the
iris 1s searched using the model knowledge and the informa-
tion about the size, position and orientation of the already
detected left edge segment. Finally the iris is segmented
and the center and the radius of the iris is determined (fig. 8
hirst row right). The computed features are checked with the
model knowledge and if they do not agree with the expected
circular symmetry, size of the radius, and other constraints,
the search starts again to detect the next prominent vertical
edge segment. By applying this processing, the detection of
a highlight often visible on the iris can be excluded.

After the detection of the intersection points of the iris
and the eyelids (fig. 8 second row), the edges of the eyelids
are tracked. The tracking is controlled at each step by the
model knowledge to avoid e.g. that the tracking is mis-
leaded by edges of the tear gland. This processing differs
strongly from a 'blind" edge detection step with a subsequent
interpretation of the edge image. Only edges with proper-
ties known by the model are considered. Furthermore, for
edges, which are expected from the model, our search al-
gorithm is looking explicitly for hints in the image data.
Therefore, a robust and reliable edge detection and track-
ing is achieved because only edges, that are in accordance
with the model (especially their orientation), are considered
during the processing. The application of orientation selec-
tive filters enhances the robustness of the edge detection and
tracking compared to the application of isotropic edge detec-
tors if there are competing edges with different orientations.

Finally, the inner eye corner is detected at that point on the
curved edge segment, which has the greatest distance from
the center of the iris (fig. 8 last row left). The processing
of a left and of a right eye is distinguished by the search
algorithm. The search strategy is slightly different for inner
and outer eye corners because of the missing tear gland and
other details (fig. 8 last row).

The proposed method can deal with a high degree of vari-
ability of the image data of the objects to be considered (in
the presented case the eye region) (fig. 9). Predefined fixed
distances, angles or scales are replaced as far as possible
by variable ranges with relative limits, which are calculated
from model parameters or actually acquired knowledge dur-
ing the runtime of the sequential search algorithm. This
enhances the robustness and efficiency of the developed al-
gorithm.

Figure 8. Sequential search strategy depicted
for a left eye. First, a prominent vertical
white-to-black edge is detected. After the de-
tection of the corresponding right edge seg-
ment, the final segmentation of the iris is
computed (first row). Detection of the inter-
section points of the edge segments of the
iris with the edges of the upper and the lower
eyelid (second row). The eyelid edges are
tracked and finally an edge segment which is
strongly curved is detected to determine the
inner eye corner. For the outer eye corner,
the upper and lower eyelid edges are tracked
until they end (third row).




Figure 9. Ten examples of successfully analyzed eye regions. The different sizes of the eyes reflect

their relative scale.

4. Results

The method has been tested on eye regions from more
than 100 different face images. The data base consists of
normal faces as well as of dysmorphic faces. The overall
error rate for the detection of the iris was 2.35%. In 94.4%
of the remaining eye regions the outer eye corner was de-
tected successfully while the inner eye corner was detected
in 91.6% correctly. The reason for the higher error rate of
the detection of the inner eye corner is its more complex
structure and higher variability (fig. 1) but the sequential
search algorithm presented can easily be improved by addi-
tional consistency checks, so that the error rate will decrease.
The large variability of successfully processed eye regions
is demonstrated in fig. 9. All the depicted eye regions are
processed applying the same model and parameter settings.

Eyes of children with Sotos syndrome are shown in fig.
Oa, 9b, and 9j. In two cases the wrinkle of the upper eyelid
is enlarged as far as the lower eyelid so that it covers the
tear gland. Therefore, the tear gland is not visible in the
inner eye corner. This feature is one of the characteristic
dysmorphic signs for the sotos syndrome and it is important
for a detailed dysmorphic classification.

One eye region which is not in a horizontal orientation
is depicted in fig. 9g. Rotation angles up to 20 degree are

tolerated without explicitly changing the parameter settings
of the sequential search algorithms.

Eve regions of different sizes are shown in fig. 9g (iris
diameter = 28 pixel) and in fig. 9 (iris diameter = 54 pixel).
The diameter of the iris varies between 14 pixel and 104
pixel (not depicted) for the largest successfully investigated
eye image in our database. At all scales except for the
smallest one, the detection of the iris as well as of the eye
corners is possible. At the smallest scale the detection of
the eye corners fails because of missing details, which are
assumed by the model, to guide the line and edge tracking.

To demonstrate the robustness of the presented method,
different examples of eye regions selected from the face
database of A. Pentland' have been processed. One of them
isdepicted in fig. 9d (left eye of stephen) where the detection
is successful although the images of the database are too low
in resolution in general.

The developed algorithms are robust against noise. We
added noise with a SNR between 14dB and 4.5dB. In any
case the iris can be detected successfully, but the exact de-
tection of the eye corners may fail if the SNR is too low.

lavailable at anonymous fip://whitechapel. media.mit.edw/pub/images/




5. Discussion and conclusion

It has been shown, that by applying a sequential search
strategy, complex facial keypoints can be detected very pre-
cisely. The proposed adaptive processing scheme provides a
robust and fast method to exactly localize keypoints in face
images.

For the detection of keypoints the local structure at its
location but also the 'global’ edge information in the near
surrounding is exploited. The robustness is achieved by
many global and local consistency checks between the object
and the model. Hence the included model knowledge is able
to actively guide the search, i.e. the tracking of the edges.
based on the geometrical constraints of the expected edges
in the eye region.

Only those keypoints are detected by our method, for
which evidence exists in the local structure of lines and
edges. No extrapolations on the basis of other features are
performed.

We want to point out, that the specific eye model pre-
sented does not impose any restrictions in the flexibility of
our method. It merely represents the knowledge about the
class of images we have to consider.

In the case of large variability of the image data to be
considered the sequential search strategy is more adaptive
in contrast to the deformable template approach [ 13]. There-
fore, it provides more reliable localizations of the keypoints,

The sequential processing strategy is based on a powerful
filtering scheme which provides all the features needed for
a robust detection and tracking of the edges. The tradeoff
between the quality and the speed of the filters can easily be
adjusted on-line by varying the number of basis functions.
For example, only two basis functions are necessary for the
detection of the prominent vertical step edge at the beginning
of the sequential search strategy (fig. 8 first row), because
the full orientation selectivity of the filter is not required.
For all different search and tracking tasks a maximum of 10
basis functions for the edge detection is sufficient. Also the
choice of orientation selective edge detectors enhances the
robustness of the edge tracking compared to less orientation
selective ones. This is especially important if there are
Junctions with misleading edges.

The time for the processing of one eye region depends
mainly on the details to be considered. In practice, we con-
volve an eye region of a typical size of 120 x 70 pixel by 10
basis functions of a kernel size of 27 x 27 pixel what takes
about 3 seconds on a 150 MHz R4400 Silicon Graphics Indy
workstation. If the convolutions are done, the computation

of the whole sequential search shown in fig. 8 needs about
half a second. Because of the one dimensional character of
the sequential search (most of the time is spent for the edge
tracking) the computation time increases approximately iin-
ear with the size of the image.

*

A precise localization of the prominent facial key-
points and features is very important for many problems
in face recognition and face identification. This contri-
bution demonstrates a successful example for an efficient
solution of a complex detection problem in real world im-
ages. Presently the method is extended to detect other facial
keypoints, such as the corners of the mouth or the outline of
the nose.
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