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Abstract

A new approach to a dynamic analysis of facial im-
ages is presented. Motivated by the eye movement
strategies of the human visual system a computer
based attentional mechanism is developed to recog-
nize the prominent facial regions in natural human
face images. The attentional mechanism is based on
a feature representation, which is derived from gray-
level face images by applying appropriate filter tech-
niques. In a first processing step the most salient
facial regions like the eyes, the nose, the mouth and
the ears are sequentially localized. Subsequently, the
detected and now spatially bounded regions are ana-
lyzed with more expensive methods. The exact posi-
tions of some relevant keypoints of these regions are
determinable and a local interpretation of the de-
tected image areas is derivable. By evaluating the
different locally derived classification results a global
interpretation of the whole face image can be gen-
erated. The presented attentive processing strategy
is noted by a high degree of invariance properties.
The detection of the prominent facial regions is in-
dependent of the exact position and the orientation
of the face and of the facial components within the
image. A high degree of scale invariance is achieved
using a multi-scale representation of the saliency map
for the search of the attentive regions. In addition,
the proposed search algorithm is able to handle vari-
able preconditions related to the illumination and the
brightness contrast of the used face images.

1 Introduction

The visual search task in real world images is in the
bottom-up case a NP-complete problem dependent
on the image size [11]. A task-directed search based
on selective attentional mechanisms can be computed
in linear time complexity dependent on the number of
objects to be searched in the image [11]. These com-
plexity considerations suggest that attentional mech-
anisms are necessary to successfully solve an image
analysis problem in real time. The application of at-
tentional mechanisms generates a sequential order of
spatially limited image regions and offers additional
information about the considered objects [8].
Motivated by the eye movement strategies of the
human visual system [12] an attentional mechanism
selects only prominent regions in images [4]. Us-
ing attentional strategies in image processing systems
only this information needs to be analyzed which is
necessary for the given search task. Irrelevant im-
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age regions are ignored and do not bound additional
computing resources. Thus, image processing with
attention control simplifies computation and reduces
the amount of processing (3, 7].

Elementary visual features like motion, color, ori-
entation, edge information and others are derived in
the human visual system at the early stage of the
preattentive processing [10]. These features establish
a preattentive representation upon which the control
of the visual attention is based on. So, the regions
are foveated in the order of their importance.

This paper presents a technical realization of an
attentional mechanism localizing and analyzing the
prominent facial regions in high resolution gray-level
face images. The fundamental idea of the presented
approach is an iterative strategy which is able to
foveate dynamically the salient regions in the or-
der of their importance. In comparison with clas-
sical recognition systems, the presented approach is
based on a different recognition strategy which re-
duces the recognition problem to the analysis of only
spatially limited but most important regions. It com-
bines a cyclical as well as a hiearchical proceeding of
the recognition process by applying attention strate-
gies. It is shown, that the interpretation of a whole
face image can be reduced to the analysis of several,
spatially limited image regions, which are marked,
however, by a high degree of saliency.

The iterative, attentive localization strategy also
encloses the possibility of a relocalization of salient
regions for several times. Beginning with the detec-
tion and analysis of local image areas, the informa-
tion about the considered scene are improved itera-
tively. So, the amount of information being required
to solve the recognition task is collected stepwise by
each analyzed image part. The detailed information
about each detected region increases and gets evalu-
ated from processing step to processing step.

The methods which are applied during the several
processing steps are mainly dependent on the actu-
ally available information. The global interpretation
of the whole image should be computed at the very
end of the processing by using all the derivable lo-
cal information. Therefore, the presented computer
based attentional mechanism is realized by different
processing steps (fig. 1a).

In the first processing step spatially limited image
regions are detected by using only simple image infor-
mation, like edge information. Only simple features
of the located regions are interpreted to decide about
the necessity of applying expensive analysis methods
(5]. In the second step the now spatially limited re-
gions, in the following called foveated regions, are
analyzed by advanced methods. Special filter tech-
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Figure 1: Proceeding of the preattentive localization (a). The original image is filtered to receive a saliency
representation (b), which is scaled in different resolution levels. Beginning at the lowest resolution the most
salient area is detected and projected to the next higher resolution level. The foveated region is analyzed
applying detailed processing methods during an attentive processing step. The localization process is controled
by an integrated attention strategy. Applying this proceeding sequentially to all salient image regions a scan

path comparable to an eye movement record occurs (b)

niques are applied to detect characteristic keypoints
in the foveated image regions, e. g. the center of
the iris and the eye corners in an eye area. These
keypoints are especially considered in a third step of
the processing, applying steerable filters to analyze
and classify them [6]. The information derived from
these characteristic keypoints is evaluated to verify
or to change the previous classification results. All
the collected information of the already detected and
interpreted regions and keypoints is used to control
the further application of the attentional mechanism.
This attention control implies a spatial estimation of
different regions, in the following called anticipation,
at predicted positions dependent on the already lo-
cated regions.

Inspired by research of J.K. Tsotsos and S.M. Cul-
hane, who developed ’a prototype for a data-driven
visual attention’ [4], the presented approach also
demonstrates a data-driven attentional mechanism
which is supported by model knowledge received dur-
ing the runtime. Certain aspects of their model are
not addressed in this paper, such as the inhibition
of not relevant regions or the neural like modeling.
Instead, emphasis is placed on a fast data-driven re-
alization of a strategy localizing and analyzing promi-
nent facial regions. Our attentional mechanism will
be used as an essential component in building an
image processing system classifying faces of children
with dysmorphic abnormalities [9].

In the following chapter the theory and the devel-
oped methods of the localization mechanism are pre-
sented. Subsequently, the developed filter techniques
to detect and verify the region dependent keypoints
are discussed at an eye region. The success of the
invariant localization of the prominent facial regions
is shown at different examples in the last chapter.

2 Preattentive localization

Biological attentional mechanisms are based on vari-
ous feature representations carrying all the informa-
tion which is needed to control the visual attention

or to gemerate a reaction of the visual system [8].
In the case of detecting prominent facial regions in
gray-level images, the edge information is sufficient
to guide the computer based attention [1, 5]. There-
fore, filter responses of a first and second derivative of
Gaussian in three orientations are calculated. These
filters denoted by f; are only applied on one partic-
ular scale caused by effiency and by reduced compu-
tational costs. Subsequently the filter responses are
coupled with a 'control representation’ C and scaled
in a multi-scale representation [2]. This simple pro-
ceeding is acceptable because only qualitative prop-
erties of the filter responses are important for a fea-
ture based localization process [1]. Nevertheless this
proceeding also supports an efficient realization of
the presented computer based attention mechanism
because first the features can be derived, then a 2-
dimensional attention control representation can be
calculated and combined with the feature map and,
at last, the resulting saliency map is represented at
different scales.

2.1 Saliency representation

The realization of the attentive localization mecha-
nism is based on a 2-dimensional 'saliency represen-
tation’ S(t) in which the spatial distribution of the
actual saliency of the underlying image is encoded.
This saliency representation S(t) is generated from
the 'feature representation’ U and the time depen-
dent ’attention control representation’ C(t).

S(t):=U x C(t) (1)

The time ¢ is used here as a discrete time step with
t :=0,.,7. Itis related to exact one localization
step. The next time step ¢ + 1 begins when the lo-
calization of a new attentive region is started.

The feature representation U is defined as the
weighted sum of the filter responses of the applied
filters f; to the image I(X):

U=) a (A®I(X)) (2)
:
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Figure 2: Weight maps used for the attentive control. A constant emphasis of central regions is achieved by a
static weight map P (a). The suspension of the already foveated regions is modeled by suspension map SR(t)
(b). An expectation is generated by an antizipation map A(t) (c). All pixeiwise calculated weights are based
on 2-dimensional Gaussian functions to achieve smooth transitions from increased to decreased areas. The
resulting 2-dimensional control representation C(t) build of all three components is linked to the original image
(d). It is demonstrated that the already detected left eye has visibly a reduced saliency while the saliency of

the right eye is increased.

when a; are the corresponding weights and /(.X) the
image with pixel positions X := (z, 7.

All these representations are weight matrices, in
the following also called 'maps’. The particular
saliency s(X,t) at a position (X) is calculated by pix-
elwise multiplication of the feature value u(X) and
the control value ¢(X, ).

s(X,t) == u(X) c(X,1) (3)

Attention control representation

The attention control representation C(t) controls
the attention process of the localization algorithm.

C(t) :== P x SR(t) (4)

The control representation C(t) includes an empha-
sis of a priori known salient regions using a constant
'a priori weight map’ P. Using this weight map P,
predefined salient regions in an image can be em-
phasized. In the presented application investigating
frontal face images the saliency of central image ar-
eas is increased against areas at the image corners,
which have predefinedly a less saliency (fig. 2a).

Suspension representation

The second component of the saliency map S(t)
is a suspension map SR(t) generated to suspend al-
ready foveated and analyzed regions from further
processing steps. After the foveation of a region the
saliency or attentive stimuli of this image area are
reduced for the following localization steps (fig. 2b).
This suspension of already localized regions is defined
as a temporary local reduction of the activity of the
salient features only related to the foveated region
and its environment (fig. 2c).

2.2 Localization algorithm

The generated saliency representation is the basis of
all following localization processes. The selection of
the salient regions starts at the coarsest scale k of the
saliency representation Si(t) employing a maximum
search algorithm (fig. 3a). The maximum element
Skmaxe (X, t) of the coarsest saliency map Sk(t) is de-
fined as:

Skmas (X, t) := my@.x{sk(Y,t}} (5)

at the initial time step ¢ = 0 with the pixel position
X := (z,y)T and index k stands for the coarsest scale
of the saliency map.

Detection of elliptical regions

In the proposed localization algorithm elliptical re-
gions are detected by fitting a 2-dimensional Gaus-
sian function to the distribution of the local saliency
intensity (fig. 3b). A certain contour line h is taken
to determine the boundary of an elliptical region.

(X -m)TCov™ (X —m)=h=const (6)

where m is the expectancy of the 2-dimensional
Gaussian function or the center of the ellipse, Cov
is the covariance matrix of all map elements or pix-
els of the localized region and h the contour line.
The parameters of the fitted ellipse are updated it-
eratively to optimally cover the underlying feature
representation at each resolution level (fig. 3c).

Region adaption

The adaption of the foveated region is computed
with respect to every resolution level i of the pro-
cessing hierarchy. The extent of the resulting el-
lipse, i.e. the length of the semi-axes of the ellipse
a and b, is independent of the maximum intensity
of feature representation. It only depends on the
variances of the principal components of a spatially
restricted saliency representation encoded in the co-
variance matrix Cov; ; and in the expectancy m; ;.

- 1 - r -
My = g Z s:i(X)X (7)
XEeDUE; ;-
Coviji=7 D s(X)XXT —my,ml; (8)
XEDE, ;1
with I'= Y si(X) (9)

XEDIE, ;_,

where DilE,; ;-1 is an expanded set of pixels lying
in the elliptical region (defined below), the index :
denotes the resolution level and the index j denotes
the iteration set regarded to the resolution level i.
The extent of preliminary detected regions is ex-
panded or reduced in a way that the size of the region
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Figure 3: Preattentive localization of two prominent facial regions by evaluating the saliency maps in a multi-
scale representation. Maximum search of that element of the minimal saliency map with the highest saliency
(a). The maximum element is expanded to the extension of the feature representation of the underlying eye
region at the coarsest scale (b). Final selection of the left eye at the highest resolution level (c). After an
detailed analysis, the foveated eye region is suspended from the following localization steps (d). The local
analysis enables an anticipation of the second eye which is intended to be detected (d). The detected regions

are spatially well adapted to the scale, extend and orientation of the eye.

i agrees with the extent of the feature representation
of the associated object (fig. 3c). After an initial
expansion of the maximum element sk,,,, (X,¢) to a
3 x 3 neighborhood the detected maximum region is
expanded to the underlying feature extension apply-
ing a two step elliptical region-growing algorithm.

Elliptical region-growing algorithm
In the first step, a set E; ; of pixels lying in the
elliptical region is calculated:

E;; = {X € DilE; ;| (10)

(X = mi;)T Cov (X — i) < he}

where 7, ; is the center of the ellipse and Cov; ; is
the covariance matrix regarded to the considered set.
The calculation of this set is equivalent to the calcu-
lation of a fixed Mahalanobis-distance h; from the
center 7, ; and it implies an adaption of the calcu-
lated ellipse to the underlying intensity distribution.

In the second step, this set is expanded by extend-
ing the semi-axes of the calculated ellipse in steps of
pixel units. Transforming the pixelwise extend of the
semi-axes to the eigenvalues A1 of the covariance
matrix Cov;; a new covariance matrix DilCov; ;
called 'dilated covariance matrix’ is achieved. Cal-
culating the corresponding dilated set DilE; ; to the
dilated covariance matrix DilCov; ; a new base set
for the next iterative adaption step is generated

DilE;; := {X € Si(7)| (11)
(X =)  DilCov] ) (X = mi,;) < hi}

where S;(7) is the definition set for all pixel posi-
tions of the resolution level i of the saliency repre-
sention at the particular time step 7. Subsequently,
the new expectancy 7, ; and the actual covariance
matrix Cov;,; is calculated refering to the dilated set.
This region adaption is continued until the region is
well adapted to the underlying saliency representa-
tion. This is reached when the breakcondition is ful-
filled. or when, in other words, the center of the lo-
cated ellipse 7;; and the corresponding covariance
matrix Cov;; have not changed since the previous
adaption step. Breakcondition:

(i = i -1) A (Covi; = Covyj-1) (12)

The coarse localized and restricted region is now
projected to the next higher resolution level of the
saliency representation. The iterative region adap-
tion algorithm is computed separately at each reso-
lution level to optimize the extent and the orientation
of the considered region (fig. 3).

Suspension of regions

To compute the next attentive region, the already
selected region has to be suspended from the fol-
lowing processing steps. A locally parameterized
2-dimensional Gaussian function, called 'suspension
function’ SReg(t), is calculated for the detected re-
gion (fig. 3d). This proceeding produces smoothed
transitions from aiready foveated regions to their sur-
roundings. The suspension function is parameterized
by the position and size parameters of the just lo-
cated elliptical region R itself (fig. 2b).

SReg(t) = 1

— e~ 3 X=m)TSCov™1(t)(X —mm¢) (

13)

where SCou(t) is the suspension covariance matrix
which is equal to the last calculated covariance ma-
trix Cov;,; of the adaption step of the previous lo-
calization process. SCou(t) := Covgn, and ¢ is
the center vector of the just foveated region, where
the highest resolution level is denoted by index i = 0

and the last iteration step of the adaption process is
denoted by index j = n; (fig. 2b).

Suspension representation

. The suspension representation SR(t) or 'suspen-
sion map’ is calculated out of all suspended regions
of an image which have been foveated until time step
t by evaluating the following recursive definition:

SR(t+1):= mun(RF(SR(t)),SReg(t)), (14)

and SR(0) := SReg(0) (15)

with RF(SR(t)) is a refresh function which is re-
sponsible for a time variant suspension. After a fixed
time delay D the saliency of the suspended region
is gradually increased again. Therefore, the diﬁ'e;ent
salient regions may be relocalized for several times
and results in a iterative strategy. Using a suspen-
sion functionality a sequential order of salient image
regions occurs dependent on their salient importance
encoded in the feature representation.
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Refresh function

The refresh function is defined recursively for two
cases, a linear and an exponential one:

RFiin(SR(t)) := min(SR(t) +c1,1), (16)
and RF.:p(SR(t)) := SR(t)+c2(1— SR(t)) (17)

when c; 2 are two different constants. Iterating this
suspension functionality all salient image regions can
be found (fig. 5).

3 Improved localization

After an initial 'orientation period’, model knowledge
is added to the attention mechanism to improve the
localization of the prominent regions. In the pro-
posed application, a face model is developed which
contains the anthropometrical relations of the main
facial regions like the eye, nose, mouth, and ear re-
gion. It is only used to guide the computer based
attention to necessary and expected facial regions.
In comparison to other related work, which uses the
degree of accordance of a model to interpret a consid-
ered image part [1], the knowledge is only used here
to support the localization process.

After a first initial phase of the localization algo-
rithm one or more regions are detected and might
be analyzed especially. If these detected regions are
interpretable for their own, the face model of the
knowledge base is adapted by these derived param-
eters to the actually given facial relations. The de-
veloped model is actualized after each successfull lo-
calization step with the derived parameters, like the
scale, the orientation and the position of the main
facial regions. So, a stepwise adaption of the model
knowledge to the actually given individual structures
is achieved and, therefore, the expectancy derived
from the model is improved by each processing step.

Application of model knowledge to faces

The influence of the model knowledge to the lo-
calization process is realized in the presented appli-
cation as following: If an eye region, for example,
is detected in the first localization step without any
knowledge support, and if this region is also inter-
pretable as an eye region by applying detailed and
only local analysis steps (see chapter 4), several pa-
rameters are possible to derive. The scale and orien-
tation information as well as the position and exten-
sion of the detected face regions can be determined
locally. These parameters are used to initialize the
face model of the knowledge base. Evaluating this
actual available facial information, the localization
of other prominent facial regions can be supported
by a derived expectation approach.

Anticipation representation

The knowledge influence to the attention control is
realized similar to the suspension functionality of the
attention mechanism. A 2-dimensional weight map is
introduced, a so called 'anticipation map’ A(t). This
representation is time dependent because it is calcu-
lated before each localization process. Applying this
map, the saliency of the regions intended to be local-
ized is increased gradually. The saliency of the rest
of the image is decreased. Therefore, a 2-dimensional
Gaussian distribution is calculated for each expected

region in the same way as during a suspension pro-
cess but with different sign. The Gaussian function
is parameterized by the center of the expected region
and by an estimated extension (fig. 2c). The antic-
ipation map is the third component of the attention
control representation C(t) which is added after the
initial orientation period. Therefore, formula 4 has
to be replaced by:

C(t+1):= P x SR(t) x A(t) (18)

when A(t) is the anticipation map. The anticipation
map is updated after each localization step depen-
dent on the results of a successful analysis step.

Attentive strategy

The underlying idea of the anticipation facility is
to use the actual available knowiedge about the im-
age scene. The integrated model knowledge is only
used to support the localization mechanism. The
knowledge integration is thought as a top down strat-
egy to control the computer based attention. This
functionality reduces the unsharpness of the search
process or, in general, the uncertainty of the recog-
nition process. Applying the proposed strategy, the
areas in which the expected image parts are to be
searched are bound. It focuses the calcuiated atten-
tion only on usefull regions.

Proceeding of the attentive localization

The formal proceeding of the proposed attentive
localization algorithm is now described in 12 different
processing items. The attentive proceeding is relative
independent of the derivation of the used features
and it is robust against distinct derivations of the
edge information.

1. Derivation of the feature representation U and
initialization of the control map C(0) with the
a priori map P (fig. 2a). In the very first pro-
cessing step, this map is identical with the initial
attention control representation C(0) by reason
of the absence of a suspension. Subsequently the
initial saliency map S(0) is determined by com-
bining the feature map U and the control map
C(0) (fig. 1b).

2. Muiti scale representation of the saliency
map Si(t) for i :== 0, ..,k where the indexi =10
stands for the highest resolution and : = k
stands for the lowest. The localization algorithm
starts at time step ¢t = 0 cause of the initializa-
tion of the model knowledge. For all later local-
ization processes t:= 1,.., 7.

3. Determination of the maximum salient ele-
ment Sk.... (-X,¢) of the saliency representation
at the coarsest resolution level Si(t) and selec-
tion of the 3 x 3 neighborhood (fig. 3a).

4. Iterative expansion of the detected region to
the extend of the underiving saliencv representa-
tion (elliptical region growing). Determination
of the set E;, and DilE, ;. for j = 1,..,n: al-
ternately until the extend and position of the
located region doesn't change (fig. 3).

5. Projection of the detected region to the next
higher resolution level S;-:(t) by scaling the pa-
rameter of the ellipse Cov_"_," (fig. 3b,c).
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(a) (b) (c)
Figure 4: Detailed analysis of an eye region. A circular edge detector to localize the center of the iris (a). The
upper part of the filter is missing because usually the upper boundary of the iris is not visible. The maximum
of the scaled set of filter responses determines exactly the center of the iris (b). The corresponding scale of this
optimal filter is used to calculate the radius of the iris (c). Subsequently the derived informations regarding

scale and position information are used to support the determination of the position of the eye corners.

6. goto 4 until each resolution level has been con-
sidered. Descent of the resolution index 1 :=1—1
for i := k, .-, 0.

7. Extraction of the localized and now spatially
well limited region (fig. 3b.c). Interface to de-
tailed local analysis algorithms to derive region
dependent parameters from the foveated region.
Derivation of scale, orientation and semantic in-
formation from the foveated region (fig. 4).

8. Initialization/update of the face model. After
the initial time step t = 0, the knowledge base
is updated after each local analysis period.

9. Derivation of one or more expected regions
from the actual state of the model knowledge.
The generation of the anticipation map A(t) is
only executed if the face model is already initial-
ized (fig. 2c).

10. Suspension of the just detected region by gen-
erating/updating the suspension map SR(t) (fig.
2b and 3c.d).

11. Calculation of the new control representation
C(t + 1) from the static, a priori map P, the
new anticipation A(t), and the actualized sus-
pension map SR(t) (fig. 2). Change from time
step ¢ to time step ¢ :=t+1. Link of the feature
representation U with the new control represen-
tation C(t + 1) and generation of the saliency
map S(t + 1) for the next localization process.

12. goto 2 until a complete interpretation of the
image is received or a particular number of lo-
calization steps are executed.

4 Local analysis

The selected image regions are now especially ana-
lyzed dependent on a first local interpretation. Dif-
ferent relevant keypoints, which are mostly charac-
teristic for a facial region, are searched by applying
appropriate filter methods (6]. In the case of an eye
region, for example, the existence and, therefore, the
position of the iris and the eye-corners are very im-
portant (fig. 4c). In the presented example, a cicular
filter is applied only to the foveated image part (fig.
4a). The filter responses determine exactly the cen-
ter of the iris (fig. 4b). After the detection of the
center, the boundary of the iris is segmented (fig.
4c). Now, the localization of the corresponding eve-
corners are well determined because the spatial rela-
tions of the keypoint positions in the eye region are
known. The morphological relations or morphomet-
rical distances are known from investigations of many

individual faces. The computation of the exact po-
sitions of the eye-corners is also carried out with the
introduced attention strategy. Only predefined and
spatially limited areas are investigated with more ex-
pensive and time consuming filter methods applying
the already used steerability scheme (6).

Derivation of local parameters

The application of special and time consuming fil-
ter methods is acceptable because the image areas
are small and a first coarse idea or interpretation is
known. The filters only cover a small range of scales
given by the estimated scale of the considered image
region. The derived parameters for the scale, orien-
tation, and spatial position are used to initialize or to
update the model knowledge. In addition, it is used
further to improve detailed analysis steps. For ex-
ample, after the recognition of the left eye, the scale
and orientation parameter are used to improve the
detection of the iris of the right eye.

5 Results

The presented methods are evaluated at more than
50 frontal face images with slightly different illu-
mination conditions and camera positions (fig. 5).
Some faces are tilt or slightly rotated in one direc-
tion. The scales and the brightness contrast of the
recorded faces can also differ from image to image.
At more than 95% of the face images both eye regions
are detected and well restricted within the first 5
foveated regions. Including the anticipation facilities
and using more expensive filter methods the percent-
age increases above 98% considering only the first 3
foveated regions. The reliable detection of eye region
is relatively independent of their scale, their orienta-
tion and the brightness contrast (fig. 5).

The other facial regions like the nose, mouth, and
ear region are mostly detected in later foveation
steps. The spatial restrictions of these regions are
also well executed with the exception of the ear re-
gion. The spatial limitation of the ear area is not
reliable because of the high variability of the derived
feature representation. However, the localization of
the ear regions can be reliably guided by integrating
the anticipation facility.

The application of the presented attentional strat-
egy demonstrates a high degree of invariance proper-
ties concerning on the localization process and also
on the recognition capability. The detection and clas-
sification of the prominent facial regions can be cal-
culated independently of their position, their scale,
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The localization of the several regions is invariant wi

localization is also independent of rotations in the X,Z-

(c)

Figure 5: Results of attentive localizations of prominent facial regions to demonstrate the invariance properties.

th respect to the tilt of the face (a). In addition, the
plane (b). The scale invariance property is demonstrated

comparing figure (a) and figure (c) which have slightly different detected regions but a different scan path.

and their local orientation. As shown in the ex-
amples (fig. 5) the attentional mechanism achieves
good rotation invariance properties concerning rota-
tions in the X,Y-plane (fig. 5a) and rotations in the
X,Z-plane (fig. 5b). A high degree of scale invari-
ance performance could be integrated by computing
the attentive regions using a multi-scale representa-
tion of the feature map (fig. 5c). Regions of dif-
ferent scales can be detected without changing the
parameter configuration of the algorithms. In ad-
dition, the proposed localization algorithm is able to
handle relatively variable preconditions related to the
scale, illumination and brightness of frontal face im-
ages. There are no other preconditions to be taken
like normalization or segmentation of the image data
before starting the computation.

It is demonstrated that an artificial attention
mechanism based on the calculation of edge features
is able to detect the salient regions in face images.
It is shown, that the interpretation of a whole face
image can be reduced to the analysis of several, spa-
tially limited image regions which are marked, how-
ever, by a high degree of saliency. The presented
approach only uses the edge information as saliency
input to find all attentive facial regions. These ba-
sic features are sufficient to detect and analyze the
prominent facial areas in gray-level images, although
in the attention system the calculation of other fea-
tures is possible. The presented attentional mecha-
nism is based on feature representations which are
generated by a common set of basis functions, which
are derived by a steerability scheme [6]. For the lo-
calization of the salient facial regions only a small
subset of basis functions is needed. This first coarse
representation is improved subsequently by adding
more basis functions calculated only for the foveated
region. The selected regions as well as the computed
scan path in the investigated face images are in a
good correspondence with the salient image areas.
The proposed attentional strategy is also successfully
tested on other real world images. However, the com-
puted features have to be chosen appropriately.
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