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Abstract. Motivated by human eye movement strategies a computer
based ’attentional mechanism’ for processing face images is developed
that comprises preattentive and attentive processing strategies. Both
parts use a common filtering framework based on steerable filters. During
the preattentive processing, prominent facial regions like the eye or the
mouth region are localized. The selected regions are analyzed in more
detail in the attentive processing step. A variety of complex features are
derived applying an efficient filter method based on steerable filters.

1 Introduction

In ’classical’ computer vision systems the first processing step commonly consists
of the convolution with a few simple filters, e.g. for edge detection. However, the
restriction to only one kind of simple features like edges has the drawback that
information is lost or that it is not represented in an explicit way. In this paper
we propose an approach based on an attentional strategy and steerable filters
which allows flexible, efficient, and explicit representations of complex features.

The explicit representation of a huge number of different local image struc-
tures causes a data explosion that cannot be calculated, stored or analyzed in
practice. To cope with this situation, an attentional strategy is applied. The first
observation within such a strategy is that for many tasks the major part of the
image can be ruled out as being insignificant by applying simple and fast meth-
ods. Motivated by human eye movement strategies [11], the prominent regions
of an image are detected in a preattentive processing step and the attention is
focused on the spatially limited areas. The more detailed and expensive attentive
processing can therefore be restricted to these image regions.

Computer vision systems incorporating attentional strategies have been in-
vestigated e.g. in [7, 10]. However, these authors treat only the preattentive
processing and they use no explicit representations of the features the attention
is based on. In [2] the preattentively focused regions are analyzed at an enhanced
resolution. The idea is that high resolution is necessary in some regions whereas
it is computationally prohibitive to process the whole image with high resolution.

The problem tackled in this paper is the following: The data explosion is
not only due to an enhanced resolution and the image size but also by the huge
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number of local degrees of freedom (local image structures, orientations, scales,
etc.). However, all these degrees of freedom potentially have to be considered
and represented to support higher processing levels with appropriate low-level
information. Therefore, the number of different filters is large and the goal is
to calculate more complex and time consuming responses only for positions and
parameters where it is rewarding.

The attentive processing of the salient regions has to exploit previously de-
rived information to restrict the number of filters, their quality and parameter
ranges to a minimum. The decision, which filters and parameters are of inter-
est, can only be taken at run-time. In this paper we propose a filtering scheme
that supports such a strategy where the use of expensive filters is controlled by
preceding simpler filters. The attentive part therefore is sequential and has a top-
down control while the preattentive part is parallel and bottom up. The filtering
scheme is essentially based on steerable filters. The filtering of the preattentive
and the attentive processing can be combined in a common framework based on
one set of basic filters.

2 Steerable filters

It has been shown by several authors (e.g. [3, 8, 5, 6]) that it is advantageous
for various tasks in computer vision to have the response of a certain filter F'(x)
in a continuum of orientations (#) or scales (). For the efficient calculation of
such continuous responses, all deformed filters are reconstructed from a small
number of so called ’basis functions’ A;(x). 'Steerability’ then refers to the
following reconstruction formula with superposition coefficients bx that depend
on the deformation:

Fopo(x) = > .b(0,0)Ar(x) (1)

Steerable filters were introduced in [3] and [8]. In this paper we use the singu-
lar value decomposition approach to steerability that has first been proposed by
Perona [8|. For a detailed discussion of steerability, especially for the case that
several deformations (orientation and scale) are steered simultaneously we refer
to [6]. Following we show as an example for steerability the filters our attentive
processing scheme is based on.

A second and first derivative of Gaussian with an aspect ratio of 2 (fig. 1a,b)
are steered in orientation and two octaves in scale. The optimal basis functions
are polar separable (fig. le-h). These basis functions have no interpretation or
meaning themselves, they are only used for reconstructing the filters. However,
they are some sort of local ’activity’ detectors what is exploited for the preat-
tentive processing.

With 30 basis functions for the first derivative and 40 for the second (the
filters are steered separately, i.e with different basis functions), we obtain very
good approximations with less then 3% L? error. The following properties of the
basis functions support the efficient adaption of the speed and quality of the
steered filters: (1) The basis functions are orthogonal. Thus it is easy to add
new basis functions for a better reconstruction without changing the coefficients
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by for the old basis functions. (2) All deformed filters can be reconstructed, even
if only a small number of basis functions are used.

Hence, we can start with a small number of basis functions and add more basis
functions only where it is necessary. Using only 13 and 10 basis functions we have
about 25% and 22% L? error but the properties of these 'poor’ approximations
(fig. 1c,d) are qualitatively those of the original filters so that they are sufficient
for many tasks

(8) (h)

Fig. 1. Filters that are steered in orientation and scale (a);(b). Approximations of the
filters with 13 and 10 basis functions (c),(d). Examples of the basis functions (e)-(h).

3 Preattentive processing

Preattention in biological systems is based on the analysis of several simple
features which are derived from the visual input [9]. At an early stage of the
visual processing this feature representation carries all the information to control
the ’visual attention’. For a preattentive foveation in artificial attention systems
the salient stimuli of the image objects of interest have to be derived. In the case
of detecting prominent facial regions only the edge or local activity information
is sufficient for their localization [1].

This preattentive part of the image processing strategy has a datadriven and
parallel character and can be compared with the parallel preattentive processing
in biological visual systems. 'Parallel’ implies that a small set of simple features
are derived for the whole image without any local adaption to the data. The
different processing steps of the preattentive localization are shown in fig. 2a.

Saliency representation: The preattentive search of salient regions is based
on a saliency representation S where the brightness at a pixel-position encodes
its saliency (fig. 2b). It is computed from a feature representation F and a control
representation C: S = F'xC. In general, F' can represent any salient features. In
the case of face recognition, however, it is sufficient to represent the local activity
in the image, detected by fast and simple filters. It is advantageous to use filters
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Fig. 2. Flow chart of the preattentive localization (a). Saliency representation (b) de-
rived by the basis functions of the steerability scheme (fig. 1). The scan path shows
the first 5 foveated regions after applying the region-adaption algorithm.

with more smeared responses than edge detectors have. Such filters are provided
by the steerability scheme (section 2). The basis functions (fig. le-h) are viewed
as local activity detectors in our application.

The representation C is introduced to control the sequential foveation of
the different salient regions. Already detected regions are suspended from the
following processing by decreasing the saliency in their local neighborhood. The
saliency representation S is scaled in a multiresolution pyramid. This pyramid
is the basis for all following localization processes (fig. 2).

(b)

Fig. 3. Preattentive localization of two prominent facial regions (left and right eye) by
evaluating the saliency maps in the multi-scale representation.

Localization process: The localization process starts with a maximum search
at the lowest resolution level of the scale hierarchy (fig. 3a). The detected maxi-
mum element is expanded to a preliminary region by applying an iterative region-
growing algorithm (fig. 3b). The region is expanded such that it wraps in size
and orientation the bright blob in the saliency representation (fig. 3c). This
coarsely localized region is projected to the next higher resolution level of the
saliency representation and the region-adaption algorithm is applied again. At
the finest resolution level an optimized wrapping of the underlying salient region
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is gained. It is a compromise between detecting single bright pixels and melting
regions that we would like to be separated (e.g. nose and mouth). To compute
the next salient region, the already foveated region is suspended from the follow-
ing processing steps (fig. 3c, dark blob at the already detected right eye). The
procedure of localization and subsequent suspension is iterated until all salient
image regions are detected.

Invariance properties: The proposed preattentive strategy shows good invari-
ance properties. The robustness of the developed attentive mechanism is demon-
strated in fig. 4. The prominent facial regions are detected independently of their
orientation. Regions in differently scaled images can be detected without chang-
ing the control parameters. In addition, the proposed search algorithm is able to
handle relatively variable preconditions as illumination, brightness and noise (fig.
4). No special preprocessing of the image data is necessary, like normalization
or segmentation. For more details see [4].

Fig. 4. Demonstration of the invariance properties of the developed localization algo-
rithm. The localization of the regions is invariant with respect to rotation, noise and
illumination (from left to right).

4 Attentive processing

In this section we propose a filtering scheme for the attentive processing. A va-
riety of features and degrees of freedom have to be considered for the detailed
analysis of the preattentively localized regions. For this, a collection of different
filters are needed. Due to the large number of filters, it is unreasonable to con-
volve the regions with all filters as it is done in ’classical’ schemes. The idea for
the processing in the attentive part is that special filters are applied only for
certain positions and parameters where it is rewarding. For this, a priori knowl-
edge and information which is derived by preceding simpler and faster filters are
exploited. We therefore propose an efficient and flexible filtering scheme based
on steerable filters that supports such a strategy.

We start with the filters from fig. 1, steered in orientation and scale, that
we refer to as 'simple’ filters. The regions are convolved with the first 13 and 10
basis functions of the even and odd simple filter. Then we can reconstruct the
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simple filters for all scales and orientations and pixel-positions. By superposing
appropriate simple filters from different positions we can synthesize many differ-
ent complex’ filters. Examples are shown in fig. 5. Note that even the one-sided
filter in fig. 1 is a complex filter because it needs simple filters from different
positions if it is steered in orientation or scale.

The 23 basis functions are quite a few filters but (1) some of them already are
available from the preattentive processing, (2) they are reused for many different
complex filters, and (3) their size is much smaller than the size of the complex
filters. More basis functions for more accurate reconstructions of the simple filters
are added only where the responses of the ’fast’ versions are ambiguous.

Fig. 5. Depicted are some complex filters, all composed from the same simple con-
stituent filters from fig. 1. The upper row shows a double lobed and a one sided filter
(rotated about a shifted center). The lower row shows a filter with a higher orientation
selectivity and a circular filter. The circular filter is shown in a 'fast’ and 'slow’ version
with 90° and 10° spacing between the constituent filters.

It is obvious that the complex filters can also be steered in orientation, scale
and various other parameters (radius of the circular filter etc.). However, the
synthesis and steering of the filters will not be perfect because spatially the
simple filters are only available on a discrete grid. At larger scales or if no details
of the response are of interest, the quality is sufficient. For a more accurate
version we interpolate positions not on the grid by the four neighboring pixel-
positions. Then the complex flter is about 5 times slower but it is only applied
for some positions and parameters, sO that the overall performance is usually
close to that of the 'fast’ version.

This filtering scheme is very efficient for the following reasons: (1) The basis
functions are used for many different complex filters. (2) Several of the basis
functions have already been convolved with the region in the preattentive step.
(3) Only fast 'low quality’ reconstructions of the simple filters with a few basis
functions are applied in general. More basis functions are added only where the
response is ambiguous. This is supported by the properties of the basis functions
(section 2). (4) The complex filters can be adapted in speed and quality by
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varying the number of simple filters (for the circular filter, interpolation etc.).

One example for the performance is the following. The double lobed filter
from fig. 5 has been applied in [5] with a ’direct’ steering of this filter. The
proposed method is, dependent on the details, at least 10 times faster for the
same filter. It is even more efficient if many complex filters are used because they
are all based on the same basis functions.

Example of application: We now show examples where the proposed filtering
method is applied. Figure 6 shows an eye region of a face image. Within facial
images, a large response of a circular filter (fig. 5) is characteristic for the iris.
Therefore, we use the circular filter to detect and localize the eye. First, the fast
version with four constituent filters and 13/10 basis functions is applied. The
hypothesis of an eye region is rejected if there is no response above a certain
threshold. In the other case, the accurate filter is applied for those positions,
where the response is above the threshold. This is usually the case for only
about 1% of the pixels of the foveated region. Hence, we get the performance of
the perfect filter with the costs of the fast filter. The responses of both filters
are shown in figure 6.

Fig. 6. Eye region with eye-corners and iris (left). Response of the circular filter to this
region; 'fast’ filter (90° spacings, 13/10 basis functions) middle, accurate filter (10°
spacings, 40/30 b. fct.) right. The response is set to zero at the border of the region.

Another example is the characterization of the right eye corner using a one
sided filter (fig. 7). The expensive interpolated filter is only applied for those
orientations where the fast filter has a (significantly) non-zero response. This
example has also been treated in [5] but the presented filtering method is much
faster. It is also more flexible because it supports an easy variation of parameters
like the shift of the center of the one sided filter or the combination with other
complex filters.
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Fig. 7. Orientational signature at the right eye corner for the one-sided filter. The
non-interpolated response (left) and the 4 nearest neighbor interpolated and low-pass
filtered response (right) are depicted. The jaggedness is an artifact from the pixel
discretization. The interpolated response has no visible difference to the true response.
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5 Conclusions

In this paper we argued that computer vision systems that exploit a variety
of complex features need attentional strategies to cope with the huge amount
of data. We demonstrated that the prominent regions in face images can be
detected by a preattentive localization mechanism applying only simple and fast
filters. The attentive processing of the detected regions uses a variety of different
complex filters. We proposed a filtering scheme based on steerable filters for the
efficient calculation of their responses. All filters of the preattentive and attentive
processing are based on the same set of basis functions. The multiple reuse of
these basis functions for the different filters makes this scheme very efficient.
The speed and accuracy of the filters can easily be adjusted by the number of
basis functions that are used.

We are currently developing a computer based system that automatically
detects and localizes a set of keypoints in face images (eye corners, mouth ends
etc.). This system is based on the attentional strategies presented in this paper.
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