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Abstract— A pattern clustering method based on the Kohonen feature mapping algorithm and the back-
propagation multilayer perceptron is described. The method comprises two phases. First, the Kohonen
algorithm and a simple cluster labelling procedure is applied to the training data set to divide it into labelled
clusters. The data clusters are then employed to train a three-layer perceptron using the error backpropagation
technique. Thus the method is self-organizing by virtue of the Kohonen algorithm and natyrally produces
fuzzy outputs as a consequence of the backpropagation network. The results of using the proposed method
on two standard clustering problems are presented. These show that the method has superior performance
compared to crisp clustering networks such as the Kohonen feature map and the ART-2 network.
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1. INTRODUCTION

Many real pattern recognition or classification problems
are fuzzy: a given pattern does not necessarily belong
exclusively to one class or another but can have varying
degrees of membership to several classes. It is useful
to employ pattern classifiers with continuous valued
outputs which indicate the extent to which a pattern
is a member of different classes. These fuzzy pattern
classifiers match the nature of real problems more
closely and thus tend to be more reliable than ordinary
crisp classifiers.

In a sizeable number of practical situations, the
available classes into which patterns should be grouped
are not known in advance. For those situations, there
are pattern clustering methods which automatically
assemble similar patterns together to form classes in a
self-organized manner. However, although most self-
organizing pattern classifiers can handle noisy or fuzzy
input patterns and, as such, are able to generalize, they
only have binary outputs, that is, they only act as crisp
classifiers.

This paper presents a pattern classification method
which is self-organizing and produces fuzzy outputs.
The proposed method is based upon two weil-known
neural network models, the self-organizing feature
map by Kohonen‘"’ and the backpropagation multilayer
perceptron by Werbos,'?’ Parker'!® and Rumelhart
et al'"¥ The paper is organized as follows. Section 2
briefly surveys previous work on fuzzy unsupervised
and self-organizing neural classifiers. Section 3 reviews
the main aspects of the Kohonen and backpropagation
networks. Section 4 describes the proposed pattern
classification method. Section 5 gives the results ob-
tained for two classification problems using the pro-
posed method, the original Kohonen network and the

Adaptive Resonance Theory (ART) network, another
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well-known self-organizing crisp neural pattern clas-
sifier developed by Carpenter and Grossberg.*

2 PREVIOUS WORK

There are two main types of neural fuzzy self-
organizing classification or clustering methods. They
are based on two major unsupervised neural network
paradigms, the above-mentioned ART network and its
family and the self-organizing feature map.

Fuzzy ART'® and the Fuzzy Min-Max neural net-
work,'” both developed by Simpson, are examples of
fuzzy clustering networks related to ART. These net-
works, divide the space of input patterns into fuzzy
sets. The fuzzy Min—Max network, which is an improved
version of Fuzzy ART, is trained by allowing the fuzzy
sets automatically to expand to cover the input space.
The expansion is controlled so that the crisp cores of
these sets do not overlap one another. Like the original
ART network, the fuzzy versions can incorporate new
input data and create additional clusters without re-
training. A previously unseen input pattern is assigned
to existing clusters with different degrees of membership
if it is related to patterns in those clusters, in other
words located sufficiently close to the cores of the
clusters. Otherwise, a new cluster is generated to ac-
commodate the given pattern. Note that there is another
clustering network also named Fuzzy ART.'® However,
that network only produces crisp outputs rather than
provide information regarding degrees of membership.

Fuzzy clustering networks which integrate the
fuzzy-c-means clustering technique'®'® and the
Kohonen algorithm for self-organizing feature map
construction have been proposed by Huntsberger and
Ajjimarangsee'’ "’ and by Bezdek et al.?’ Essentially
these networks have an additional layer of neurons
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located at the output of a Kohonen network. The task
of the additional neurons is to compute the cluster
membership values of the input pattern as a function
of the distance between that pattern and the different
cluster centres. They also feedback these membership
values to the Kohonen network to determine the learn-
ing rates for the latter: the larger the membership value
for a cluster, the higher the learning rate for the associ-
ated neuron in the Kohonen network.

3. KOHONEN SELF-ORGANIZING FEATURE MAP AND
BACKPROPAGATION NETWORK

For completeness, this section briefly reviews the
main aspects of the two neural network paradigms
making up the proposed self-organizing classification
scheme.

3.1. Kohonen self-organizing feature map

A Kohonen self-organizing feature map (see Fig. 1)
consists of a 1D or 2D array of nodes (or neurons).
Associated with each node is a feature vector of the
same dimension as the patterns to be classified. The
components of a feature vector are the weights of the
connections between its node on the map and the input
neurons where the components of the patterns to be
classified are presented. Initially these weights are given
small random values. As the feature map undergoes
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training, they are gradually modified so that neigh-
bouring nodes on the map have similar feature vectors,
the euclidean distance being used as the measure of
similarity.

The training of a feature map, described in more detail
in Appendix A, consists of feeding patterns taken from
a training set or directly from an on-line process to the
map via its input neurons. Upon presentation of a
training pattern, the node on the map with the feature
vector closest to that pattern is identified. That feature
vector and the vectors belonging to nodes in the neigh-
bourhood of its associated node are modified slightly
to bring them closer to the training pattern. The
amount of weight change within the neighbourhood
is inversely related to the distance from the identified
node. A different pattern is then presented and the
training procedure is repeated. The size of the neigh-
bourhood is reduced with each training iteration. At
the end of this process, the feature map is automatically
organized into regions where nodes have similar feature
vectors as mentioned above. Usually an additional
labelling operation is then needed to identify the different
regions with the natural data clusters in the training
set. An unknown pattern is subsequently recognized
as belonging to a particular data cluster if it activates
anodein the region labelled as representing that cluster.
A node is activated by an input pattern if that pattern
is closer 10 its feature vector than to the feature vectors of
other nodes. The classification decision is purely binary.
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Each data cluster, like its corresponding feature map
region, is regarded as a crisp set. Either a patiern
belongs to a given cluster or it does not. Partial mem-
bership is not permitted.

3.2. Backpropagation multilayer perceptron

A backpropagation multilayer perceptron or back-
propagation network (Fig. 2) consists of a layer of
input neurons (the input layer), onc or more inter-
mediate layers of hidden neurons (the hidden layers)
and a layer of output neurons (the output layer).
Normally, the input neurons only act as buffers for
the input data and do not perform any processing.
Neurons in the hidden and output layers carry out
simple operations such as summing up the signals at
their inputs and perhaps passing the result through a
“squashing” activation function. There are no con-
nections between neurons in the same layer. Neurons
in consecutive layers are linked together such that
signals propagate in one direction from the input layer
to the output layer via the hidden layers. The influence
of one neuron on a neuron linked to it in the next layer
is determined by the weight of the connection between
them. The objective of training in a backpropagation
network is to determine the values of all the weights
for it to produce the correct output signals in response
1o the patterns in a training set. The backpropagation
algorithm used in the training operation employs a
type of gradient descent technique. It first obtains the
difference between the actual output of the network
and the target output for a training pattern. Then it pro-
pagates that difference from the output layer backwards
through to the input layer to compute the amount of
weight changes to reduce the difference. Thus, unlike
the feature mapping algorithm, the backpropagation
algorithm requires a priori knowledge of the target
output for each training pattern. Furthermore, the
backpropagation algorithm produces a network with
the ability to interpolate and thus generate outputs
indicating the degrees of membership of different
clusters for a pattern that does not exactly fit into a
single cluster.

sigmoid
tunctions
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The proposed classification method is implemented
in two phases. In the first phase, the Kohonen feature
mapping algorithm is employed together witha simple
automatic clustering procedure to divide the training
data set into labelled classes. In the second phase, a
backpropagation multilayer perceptron is configured
and trained to recognize the known data clusters ob-
tained in the first phase. Thus the proposed classification
method has both the self-organizing characteristic of
a Kohonen network and the interpolation capability
of a backpropagation multilayer perceptron. Conse-
quently, it is not necessary to know in advance the
number of clusters present in the training data set nor
to predetermine the detailed structure of the final
neural classifier. At the same time, it is possible to
classify patterns into somewhat fuzzy clusters, attribut-
ing to each pattern varying degrees of membership to
the different clusters.

4.1. Phase 1: self-organized determination of data
clusters and rarge! outpul patterns

This phase comprises the following steps:

Step 1: formation of topologic feature map.

The Kohonen feature mapping algorithm is applied
to the training data set 1o construct a topologic feature
map and associated feature vectors for the given problem.

Step 2: identification of clusters of nodeson feature map.
A simple clustering procedure based on euclidean

distances'!! is used to group the feature vectors obtained

in Step 1, and thus their corresponding nodes on the

feature map, into individually labelled clusters. The
centroid of each cluster is also found.

Step 3: identification of data clusters and determination
of targer output patierns.

The labelled feature map of Step 2 is employed to
subdivide the training data set into crisp clusters.
Training patterns which excite nodes within a specified

Classes

fuzzy outputs

Output layer

Hidden layer

Input layer

Fig. 2. Backpropagation three-layer perceptron.
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distance of the centroid of a cluster are selected from
cach of the main data clusters for use in the second
phase to train the backpropagation network. A target
output pattern is defined for each training pattern
depending on the data cluster to which it belongs.
According to the problem, the same target output
pattern could be assigned to training patterns in the
same cluster or (a small number of) different target out-
put patterns could be used for training patterns cor-
responding to nodes at different distances from the
centroid.

4.2. Phase II: construction of fuzzy classifier

Step 1: configuration of the backpropagation network.

A backpropagation network consisting of three
layers is formed. The number of neurons in the input
layer is equal to the dimension of the input training
patterns. The number of neurons in the output layer
is taken as the dimension of the target output patterns,
which is the same as the number of main data clusters
obtained in Step 3 of Phase I. The number of neurons
in the hidden layer is made equal to at least twice that
of output neurons. The input and output neurons have
linear activation functions and the hidden neurons,
sigmoidal activation functions.

Step 2: training of backpropagation network.

The backpropagation algorithm is employed to
teach the network configured in Step 1 to classify
the selected training data set using the input-output
pattern pairs identified in Step 3 of Phase L. Upon
successful training the resulting network should
reproduce the target output patterns when fed with
the corresponding training patterns. As previously
mentioned, due to its interpolative nature, the network
will yield slightly different output patterns if the input
patterns do not exactly match the training patterns.
This gives it the desired fuzzy behaviour.

.

5. RESULTS

The proposed self-organized classification method
was evaluated on two standard clustering problems.
These are described in this section together with the
results obtained. For comparison, the performance of
the original Kohonen self-organized feature mapping
algorithm and the ART-2 classifier on the same prob-
lems is also presented. As detailed below, different
configurations (1D, 2D) of the Kohonen feature maps
were experimented with. The ART-2 model used in the
tests was similar to the architecture depicted in Fig. 10
of reference (5) except that the FO layer was made iso-
morphic to the F1 layer (see also Fig. Bl in Appendix B).

5.1. Clustering problem 1: Iris data classification

The Iris data set, assembled by Anderson,*® consists
of measurements of the flowers of 50 plants from each
ofthethmespeciwlrisSeton.VenimlorandVirainka
Four measurements (sepal length, sepal width, petal
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length, petal width) were taken for cach flower and
normalized to have real values between 1.0 and 0.0,
Thus there are three natural clusters in the data set
according to the measurement statistics. The cluster ;
corresponding to the Iris Setosa is well separated from
the Iris Versicolor and Virginica clusters which overlap
each other slightly.

Of the 150 data samples (4-tuples) in the data set,
100 were used to train the various classifiers and S0 [
were retained 1o test their generalization ability. The
percentages of test samples accurately recognized by 1
the different classifiers are given in Table 1. Nine clas.
sifiers were evaluated in total: 1 ART-2 classifier, 4
Kohonen feature maps (a 1D map with 5 nodes, a ID
map with 12 nodes, a 2D map with 4 x 4 nodes and a i
2D map with 10 x 10 nodes) and 4 backpropagation
networks all with the same structure (4 input neurons,

6 hidden neurons and 3 output neurons). The back-
propagation networks were obtained using the method
described in Section 4. The four Kohonen feature maps
employed to create the training data clusters for these
networks were the same as those used in the evaluation.
For this problem, all data samples belonging to the
same cluster were assigned the same target pattern. .
Table 2 gives examples of outputs produced by the
third backpropagation network trained using the
2D Kohonen network with 4 x 4 nodes as detailed in
Table 1.

Table 1. Resuits for Iris clustering problem

Neural classifier Accuracy (°;)
ART-2 92
Kohonen
(i) (1D, 5 neurons) 80

(ii) (1D, 12 neurons) 92

(iii) (2D, 4 x 4 neurons) 92

(iv) (2D, 10 x 10 neurons) 92
Backpropagation (4/6/3)

(i) (1D, 5 neurons) 82
(i) (1D, 12 neurons) 96
(iii) (2D, 4 x 4 neurons) 96
(iv) (2D, 10 x 10 neurons) 96

Table 2. Sample outputs from backpropagation network (iii)
for Iris clustering problem

0(0) o(1) 0(2)
Class Setosa Versicolor Virginica
Setosa 091 0.01 0.00
Setosa 0.92 0.01 0.00
Setosa 0.92 0.02 0.00
Versicolor 0.01 0.92 0.01
Versicolor 0.01 0.88 0.03
Versicolor 0.01 0.65 0.14
Virginica 0.00 0.033 085
Virginica 000 4 . 0029 087 _
Virginica 0.00 0.01 0.92




5.2 Clustering problem 2: butterfly data set
o b

A bi-dimensional data set was created that is similar
tothepopuhrbunerﬂydauwlcommonlyuedtom
clustering algorithms, but with more data samples
(51 instead of only 15 as in the original butterfly data
ael].FigureBdepiusthedanaetmddeaﬂyshm
that there is much overlapping between the two clusters
forming the “wings™ of the butterfly. Three classifiers
were evaluated: an ART-2 classifier, a 1D Kohonen
feature map with 10 nodes, and a backpropagation
network with 2 input neurons, 4 hidden neurons and
Zoutputneumns'l'behwkpropagaﬁonmorkm
again configured according to the procedure detailed
in Section 4. The clustering and labelling of the data
used 1o train it was carried out with the help of the
1D Kohonen feature map. As with the Iris clustering
problem, all data samples in the same cluster were
assigned the same target pattern. Table 3 gives the
overall classification accuracies achieved by the dif-
ferent classifiers (that is, the accuracies obtained for the
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Table 3. Resuits for butterfly data set clustering problem

Errors in 40 Errorsin 11

Neural classifiers training samples  test samples
ART-using complement

coding: | = (x.x°)_ 0 5
Kohonen

(1D, 10 neurons) 4 4
Backpropagation (2/4/2)

(1D, 10 neurons) 0 0

complete data set, 40 of which had been used to train
the classifiers). Table 4 presents the decisions of the
classifiers regarding individual samples in the data set.

6. DISCUSSION AND CONCLUSION

Table 1 shows that provided there are sufficient
nodes in the Kohonen feature map used to pre-cluster
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Table 4. Outputs from neural classifiers for butterfly data set clustering problem
Neural classifiers
Kohonen Backpropagation
Coordinates ART-2 (1D, 10 (1D, 10 neurons)
No. x y = (x.x°) neurons) 0(0) om
1t 5 12 0 0 094 0.01
2t 0 19 0 0 0.94 0.01
3t 6 28 0 0 0.95 0.01
4 g 25 0 0 0.95 0.01
5t 8 2 0 0 0.95 0.01
6t 9 14 0 0 0.94 0.01
Tt 25 22 1 1 0.02 091
8t 10 28 0 0 0.95 0.01
9 10 32 0 0 0.95 0.01
10t 11 17 0 0 0.94 0.01
1t 11 19 0 0 0.94 0.01
12t 11 22 0 0 0.94 0.01
13t 12 11 0 1 0.93 0.01
14t 12 24 0 0 0.94 0.01
15t 13 26 0 0 0.94 0.01
16t 14 20 0 1 093 0.01
17t 14 23 0 0 094 001 ,
18t 14 30 0 0 094 001 '
19t 17 27 0 0 0.91 0.02
20t 18 24 0 0 0.85 0.04
2t 21 20 1 1 0.21 0.45
22t 21 26 0 1 0.39 0.28
23t 24 24 1 1 0.04 0.85
24t 26 3 1 1 0.02 091
25t 27 20 1 1 0.01 0.93
26t 27 26 1 1 0.02 0.93
n 31 19 1 1 0.01 0.94
28t 29 23 1 1 0.01 0.94
29t 32 21 1 1 0.01 0.94
30t 32 28 1 1 0.01 095
in 33 17 1 1 0.01 0.94
It 35 21 1 1 0.01 0.94
33t 35 24 1 1 0.01 0.94
4t 30 13 1 1 0.01 0.94
315 37 29 1 1 0.01 0.95
36t 38 17 1 1 0.01 0.94
N 40 24 1 1 0.01 0.94
38t 39 i3 1 1 0.01 0.95
N 23 16 1 1 0.03 0.85
40t 19 28 0 1 0.82 0.05
41r 14 11 0 1 091 0.01
42r 14 13 0 1 0.92 0.01
43r 13 15 , 0 1 093 0.01
44r 17 17 ? 1 0.84 0.03
45r 17 21 ? 1 0.88 0.03
46r 24 28 0 1 0.05 0.82
47r 21 31 0 1 0.56 0.17
48r 25 32 0 1 0.04 0.86
49r 25 37 0 1 0.07 0.81
50r 29 37 1 1 0.02 094
Sir 33 39 1 1 0.01 0.95

t, training data; r, recall (test) data: ?, unidentified class.

the training data set, the proposed neural classifier will  its own and in tandem with a backpropagation network
have superior performance compared to the crisp were not better than for smaller Kohonen networks. \i‘
Kohonen and ART networks. For the given problem Table 2 reveals the fuzzy nature of the outputs from
there was no difference in performance between back-  the backpropagation network. As expected, because of
propagation networks built using 1D and 2D Kohonen  theclear separation between the Setosa and Versicolo
networks. Also, there was no merit in employing large  clusters the network outputs were distinct for samples
Kohonen networks. The results obtained for the case  of these two clusters (the same applies to the out

of the Kohonen network with 10 x 10 nodes used on * puts corresponding to samples of the Setosa an
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Virginica clusters). The overlapping of the Versicolor

and Virginica clusters is reflected by less distinct out-
puts for certain samples of these clusters. :

Tabile 3 further illustrates the improvements achieved
with the proposed clustering technique. The crisp
Kohonen network was not able to learn the training
data set completely. It misclassified 4 out of 40 training
samples. However, the backpropagation network,
trained using a selected data set preclustered by the
same Kohonen network, was able to learn to classify
correctly all samples from the training data set. More-
over, it could classify 100%, of the test set without error
whereas there was a high proportion of misclassifications
with both the ART and Kohonen networks.

The robust performance of the backpropagation
network is even more evident from Table 4. For those
patterns in the region between the two butterfly wings,
the crisp classifiers failed in a brittle manner because
they had to make binary decisions regarding the cluster
to which these patterns belonged. Due to its inherent
“elasticity™, that is its ability to interpolate, the back-
propagation network proved to be much more resilient.

In conclusion, the neural-network-based clustering
technique proposed in this paper has the dual advan-
tage of being able to organize itself and produce outputs
indicating the degrees of membership of the different
clusters. In two typical pattern classification problems,
it has performed better than non-fuzzy pattern clustering
networks, in particular, the Kohonen network on which
it is partly modelled. Lack of detailed information
has precluded a direct comparison with existing fuzzy
pattern clustering networks. However, a clear merit of
the proposed method is that it results in a simple
and compact backpropagation network which can be
readily implemented in hardware for high speed real
time applications.
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APPENDIX A. KOHONEN'S FEATURE MAPPING
ALGORITH

Kohonen's feature mapping algorithm can be summarized
as follows:

Step (0). Setr=0.

Step (1). Initialize the components of the feature vectors w,
i.c. the weights w,, of the connections between the ith input
neuron (i = | to I) and the jth feature map node (j =1 to N).
to small random values.

Step (2). Present a new input pattern X(r) to the nput
neurons.

Step (3). Measure the Euclidean distance d; between the
input pattern x(r) and each of the feature vectors w (). where

-1
di= T (x(0—wini
i=]

Step (4). Select the output node corresponding to the smal-
lest d;. Call it node s. Modily the feature vectors of all nodes
according to the following equation:

wiit + 1) =w(1) + alr) NE, ArHx(r) = w (1))

where a(f) is a gain factor and NE, ;1) a “neighbourhood™
function that usually varies inversely with the distance meas-
ured on the feature map between the jth node and node s.
Botha(r)and NE, ,(t) are decaying functions of 1. Forexample

alt)=K,e' """ and NE,[(t)=K,, ;+ Ky, ;¢

where K,. T, and T, are constants. K, determines the maxi-
mum gain and T, the rate of decay of the gain. K ,, ;and K5,
define the limits of the neighbourhood of node s and T,
(<« T,) determines the rate of shrinking of that neighbourhood.
The effect of the above weight adaptation method is to pull
feature vectors towards a small number of clusters and thus
partition the input vector space into smaller subspaces.
Step (5). Increment ¢ by 1. I (1 < t,,,) then go 10 step (2).

APPENDIX B. ART-2

The ART-2 network used in this work is depicted in Fig. B1.
Note that the F, layer was made isomorphic with the F, layer
in order to decouple the input pattern I from the top-down
influence of the attentional subsystem. The input data was
formatted using the complement coding technique (I = (x, x“}®
for the butterfly data set. For the Iris data set, only x was
supplied 1o the network. The setting parameters used in both
clustering problems were: p = 08,6 =0001,a=b=50.c=0.1,
d =029. For the Iris data problem, 5 iterations of the whole
data set were required for the network 1o stabilize and for the
butterfly data problem, 4 iterations were needed.
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