Technical Paper

83

Neural classifiers for automated visual inspection

D T Pham, BE, PhD and E J Bayro-Corrochano, MS, PhD

School of Electrical, Electronic and Systems Engineering, University of Wales College of Cardiff

This paper discusses the application of a back-propagation multi-layer perceptron and a learning vector quantization network to the

classification of defects in valve stem seals for car engines.

Both networks were trained with vectors containing descriptive attributes of known flaws. These attribute vectors ('signatures’) were
extracted from images of the seals captured by an industrial vision system. The paper describes the hardware and techniques used and

the results obtained.

1 INTRODUCTION

Some critical automotive components require 100 per
cent inspection. The use of human inspectors is eco-
nomically not feasible when the volume of production is
high.

The purpose of the study reported in this paper was
to explore fast neural processors to assist the automated
visual inspection (AVI) of such high-volume critical
components. Only supervised neural nets were con-
sidered, namely the back-propagation multi-layer per-
ceptron (1,2) and the learning vector quantization
network (3, 4).

The study focused on two tasks: the recognition of
the shape of the inner perimeter of a valve stem seal in a
car engine (see Fig. 1) and the classification of surface
flaws on a seal. These tasks are currently carried out
manually on a sampling basis. They would be difficult
to perform using conventional algorithmic AVI tech-
niques as the artefacts to be recognized or classified are
not defined in precise mathematical or quantitative
terms. Instead, classes of artefacts are subjectively deter-
mined from representative samples provided by quality
control personnel.

The paper is organized as follows. A brief review of
neural network applications in image processing and

Inner sealing lip perimeter

Sealing lip surfaces

Fig. 1 Valve stem seal
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automated visual inspection is provided in Section 2.
The back-propagation multi-layer perceptron is
described in Section 3 and the learning vector quantiza-
tion network in Section 4. The test equipment is
explained in Section 5. Section 6 presents the results
obtained. Finally, the conclusions of the study are given
in Section 7.

2 NEURAL NETWORKS AND MACHINE VISION

A neural network is a computing system made up of
several interconnected elementary processing units
operating in parallel. Due to this parallelism neural net-
works are eminently suitable for machine vision appli-
cations, including automated visual inspection, which
can benefit from a high degree of concurrent operation.

A neural network is taught a particular task by being
shown examples rather than through programming.
This considerably simplifies its use and is one of the
most attractive features of neural computing. Another
often-mentioned advantage of neural networks is their
ability to a certain extent to make generalizations from
the examples with which they have been trained. This
enables them to deal with noisy input data and to
provide solutions to problems that they have not
exactly previously encountered.

In automated visual inspection, the main problem is
that of pattern recognition. Prior to a pattern of an
appropriate format being isolated for recognition pur-
poses, images must be processed (filtered, enhanced, re-
stored and segmented). Neural networks have been
described for a wide range of image processing and
pattern recognition applications, some examples of
which are presented in the following paragraphs. None
of these examples is directly related to the problem of
valve stem seal inspection which, to the knowledge of
the authors, has not previously been solved using neural
computing. The examples are cited to illustrate the
scope of the neural network approach and identify
general areas where it can most profitably be employed
in practice.

Tenorio and Hughes (5) developed a method for
real-time noisy image segmentation. They employed a
non-causal, Markov-field, neural-network-based seg-
mentation method which is insensitive to rotation,
scaling, translation and multiplicity of objects. Eich-
mann et al. (6) used Kohonen’s associative memory
method (3) for classification and restoration of degraded
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images. There are diverse applications using multi-layer
perceptrons and the back-propagation method
described by Werbos (1) and Rumelhart ez al. (2). One
relevant property of this approach is that it can solve
recognition problems in complex decision regions. For
example, Yang and Guest (7) have used a back-
propagation neural network for rotation-invariant
pattern recognition. Pham and Bayro-Corrochano (8)
have developed a back-propagation neural network for
noise filtering and edge operations.

Other basic pattern operations performed by a neural
net include pattern completion, filtering and recognition
(9, 10). Aleksander er al. (11) developed WISARD. a
multi-discriminator system which has each of iuts dis-
criminators (simple RAM networks) trained to recog-
nize a different class of object. WISARD has been
reported to have applications in security monitoring
and industrial visual inspection. Recently, Glover (12)
reported the development of a hybrid optical Fourier/
electronic neurocomputer machine vision system. In
this work, Glover attempted to demonstrate the capa-
bility of the system to perform effectively multi-class
pattern discrimination for manufacturing and pack-
aging inspection tasks based on global analysis of image
texture and shape information at speeds of up to
15 images/second. Back-propagation and counter-
propagation networks (13) were chosen for the experi-
ment. The back-propagation algorithm was found
consistently to perform as well as or better than the
Fisher linear-discriminant statistical pattern recognition
technique (14).

Using a different approach, Gouin (15) presented a
system consisting of a two-stage arrangement of
‘restricted Coulomb energy’ (RCE) networks imple-
menting a type of hierarchical filtering. One application
was the inspection of rivet-head formations in aircraft
floorboard assemblies, which is very subjective and hard
to describe algorithmically.

Another interesting application of neural networks
has been presented by Beck er al. (16). This is a self-
training visual inspection system using a standard back-
propagation  neural-network-based classifier. The
system consists of a control unit and a signal processing
unit, together with a connectionist classifier. The
control unit can both generate the training set and
perform the function of teacher to the classifier. The
signal processing unit compresses a two-dimensional
image into a one-dimensional signal, extracts poten-
tially significant flaws and sends them to the classifier.
The system has been applied to two inspection tasks
involving two-dimensional surfaces characterized by a
known intensity distribution.

From the above review, it can be noted that imple-
mentations of neural-network-based image processing
only exist in laboratory environments (5-8). This is
because the large amount of raw image data to be pro-
cessed by a neural network would necessitate large-scale
hardware to achieve the high speeds required for indus-
trial use. This hardware is not yet available at economic
prices. On the other hand, feature extraction and pattern
recognition applications [such as those described by
Gouin (15) and Beck et al. (16)] are practically feasible
since the amount of data involved is in general much
smaller and either modest hardware networks or simu-
lated software networks can be employed. In an indus-
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trial application, such as the inspection of valve stem
seals described in this paper, the most expedient
approach tends to be to use dedicated conventional
image processing hardware for routine tasks such as fil-
tering and segmentation and to reserve neural networks
for the high-level tasks of feature extraction and pattern
recognition.

3 BACK-PROPAGATION MULTI-LAYER
PERCEPTRON

The back-propagation multi-layer perceptron (BMLP)
is based on the perceptron, the oldest type of artificial
neural network (17). A BMLP normally consists of an
input layer, an output layer and one or more hidden
layers of neurons (see Fig. 2). Signals propagate in one
direction from the input through the hidden layers to
the output layer. Consequently, the network is known
as a feed-forward network.

The neurons in a BMLP usually have non-linear
output activation (that is a non-linear transfer function).
This enables a BMLP to perform arbitrary mappings
which could not be achieved by the original single-layer
perceptron.

As its name implies, a BMLP is trained to carry out a
particular mapping by applying the back-propagation
supervised learning algorithm (1, 2). Errors, or differ-
ences between the actual output of the network and the
desired output corresponding to some training input,
are back-propagated from the output layer towards the
input layer to determine the necessary adjustments to
the strengths (or weights) of the connections between
neurons in the network. The adjustments are made by
following the error gradient. The aim of the training is
to find the set of weights yielding the smallest error.

Training is controlled by a learning rate () and
momentum constant («), both in the range 0 to 1. The
learning rate affects the amount of weight modification
in response to a training input. Large values of n cause
network instability and conversely too small a value of
n slows the learning process unacceptably. In some
cases it might be useful to start with a large n and then
reduce it to achieve a gradual convergence to the global
minimum. The momentum constant o acts to smooth
the weight modifications. In general, a high value of «
will speed up the training.

The BMLP is one of the most popular neural net-
works due to the ease with which it can be imple-
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Hidden layer
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Input layer

Fig. 2 Back-propagation multi-layer perceptron
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mented. However, the application of BMLPs can be
problematical and necessitates that attention be paid to
the proper scaling of the input patterns, appropriate use
of activation functions, prevention of network paralysis
(input saturation caused by large weight values), correct
choice of the learning rate and momentum constant,
and avoidance of local error minima. There is no theo-
retical basis to guide a user who generally has to resort
to trial and error in determining the best way of apply-
ing this type of neural network.

For the classification of inner sealing lip perimeters, a
three-layer BMLP was used. This consisted of 20 input
neurons, 10 hidden neurons and 3 output neurons. The
20 input neurons were to accommodate the 20-
dimensional feature vectors representing the geometric
features of the perimeters. (Each feature vector is an
array of 20 components. As explained further in Section
5.2, these components are tallies for the numbers of
occurrences of particular geometric features in the
perimeter being inspected.) The 3 output neurons corre-
spond to the 3 classes of perimeters: good, oval and
irregular. ‘Good’ perimeters are approximately circular,
‘oval’ perimeters have a smooth shape but are not circu-
lar; ‘irregular’ perimeters are neither ‘good’ nor ‘oval’.
Note the qualitative definitions of the perimeter classes.

For the classification of seal surface flaws a similar
net was used. This had 2S5 input neurons, 10 hidden
neurons and 3 output neurons. The 25 input neurons
were to accommodate the 25-dimensional feature
vectors characterizing the geometric features of the
flaws. (The first 20 components of each feature vector
are of the same kind as for the feature vector of a
sealing lip perimeter. As detailed in Section 5.2, the
additional five components give further explicit geomet-
ric information such as the perimeter and area of the
flaw and the dimensions of the smallest rectangular box
enclosing the flaw.) The 3 output neurons correspond to
the 3 types of flaws: veins, circular marks and rough
patches. *Veins’ have a thick elongated shape; “circular
marks’ are thin and approximately circumferential lines:
‘rough patches' are amorphous blobs which could be
made up of smaller spots. Again, note the fuzzy defini-
tions of the flaw types.

In both BMLPs, the momentum value was 0.8 and
the learning rate was 0.7. All hidden and output
neurons had sigmoidal activation functions. (When a
neuron has sigmoidal activation, its output/input curve
has a shallow slope in the small-input range, followed
by a steep rise in the medium-input range and flattening
out in the high-input range. The sigmoidal function
simulates the thresholding action observed in biological
neurons.)

4 LEARNING VECTOR QUANTIZATION NETWORK

The learning vector quantization (LVQ) network 1s a
supervised-learning network developed by Kohonen (3,
4). An LVQ network comprises three layers (see Fig. 3).
The first layer is the input layer, the number of neurons
in which is equal to the dimension of the input space.
The second layer, called the Kohonen layer, is a hidden
layer. The neurons in this layer are known as the
Kohonen neurons. Their number determines the quanti-
zation level of the network, that is the finite number of
vectors that an input vector can be mapped into. The
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Fig. 3 Learning vector quantization network

third layer is the output layer. The number of neurons
here is equal to the number of classes used to differen-
tiate between the various input vectors. Each output
neuron is connected to a cluster of neurons in the
Kohonen layer. All neuron clusters are disjointed from
one another and all have the same number of Kohonen
neurons. Thus the number of output classes determines
the number of neurons in the Kohonen layer, which, as
already mentioned, is the number of vectors that the
input space can be quantized into.

In an LVQ network, linear activation (that is a pro-
portional input—output transfer function) is used for the
output neurons and a type of variable-threshold activa-
tion function is employed for the Kohonen neurons, as
explained below. The input neurons do not perform any
processing function and simply transmit the input signal
directly to the Kohonen neurons. The weights of
the connections between the Kohonen neurons and the
output neurons are fixed at unity, while those of the
input-to-Kohonen neuron connections are modified
during training.

The training of an LVQ network starts with the ran-
domizing of all the weights of the connections between
the input and Kohonen neurons. The Euclidean dis-
tances between the training input vector and the weight
vectors of the Kohonen neurons are computed. The
neuron with its weight vector closest to the input vector
is called the winner. If the winning neuron is within the
cluster assigned to the output neuron representing the
training vector’s class, its weight vector is moved
towards the training vector. Conversely, if it is the
wrong cluster, its weight vector is moved away from the
training vector. The effect of this training method 15 to
make the neurons associated with a class migrate to the
correct region dedicated to that class. This method
implements a form of ‘competitive learning” with the
neurons competing against one another to have their
weights modified. It can be contrasted with the back-
propagation technique described previously where
weight modification is carried out by following the
direction that most reduces the error between the
desired and actual outputs of the neural network.

In the recall mode, the Euclidean distance between
the nput vector and the weight vector of each Kohonen
neuron is computed. The neuron associated with the
shortest distance is again taken as the winner and made
to cross its ‘firing’ threshold. This activates the output
neuron connected to the cluster containing the winning
neuron, thus revealing the class of the input vector.

For the classification of inner sealing lip perimeters,
an LVQ network was used, consisting of 20 input
neurons, 30 Kohonen neurons (10 for each class of
perimeter) and 3 output neurons (1 for each class). For
the classification of surface flaws a similar net was
employed. It had 25 input neurons, 30 Kohonen
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Fig. 4 Automated visual inspection system

neurons (10 for each class of flaws) and 3 output
neurons (1 for each class).

5 INSPECTION SYSTEM AND IMAGE PROCESSING

5.1 Inspection system

The experimental hardware of the inspection system is
depicted in Fig. 4. There were three modules in the
system: the vision module, the lighting module and the
materials handling module.

The vision module comprised an image processor
connected to a host microcomputer and four CCD
cameras each with 512 x 512 pixels. The image pro-
cessor was a standard commercially available unit (18)
for storing images and carrying out low-level processing
tasks (filtering, thresholding, etc). It was also
responsible for the real-time implementation of the exe-
cutable code for the BMLP neural networks described
in Section 4. The host microcomputer was committed
for neural networks training and peripheral communi-
cation functions. One of the CCD cameras was used to
capture the top view of the seals which revealed the
inner sealing lip perimeter. (The top view of the seal
completely filled the 512 x 512 array so that the sealing
lip diameter only corresponded to 256 pixels approx-
imately. A better resolution would have been achieved
had the camera been focused just on the sealing lip and
its immediate surrounding. However, this was not done
as the camera also had to inspect other parts of the top
of the seal in the same operation.) The other CCD
cameras were for viewing the sealing lip surface. They
were positioned around a pitch circle so as to capture
equal segments of the sealing lip image.

The lighting module was in two parts, a diffuse
halogen lighting unit mounted beneath the seal being
inspected for back-lighting the inner lip and a ring of
red light emitting diodes located above the seal and
directing the illumination at the sealing lip surface to
highlight any blemishes.

The materials handling module comprised a bowl
feeder and an indexing machine. The bowl feeder
delivered 60 seals per minute via a gravity chute to the

Part D: Journal of Automobile Engineering

indexing machine. The latter had five stations, the inlet
station fed by the bowl feeder, the inspection station
located below the top-view CCD camera and three
outlet stations, one for good seals and two for rejects
and for parts to be reworked.

5.2 Image segmentation and feature signature extraction

The feature vectors required as inputs to the neural net-
works were obtained as follows. The grey-level camera
images were binarized using a thresholding technique
based upon modal analysis of the grey-level histogram
(19). Isolated noise pixels were removed from the bin-
arized images. A blob labelling operation for connec-
tivity analysis was undertaken to isolate the different
objects in the images. A Laplacian operator was applied
to these objects to obtain their 1 pixel wide outline. The
outline image of each object was separately fed to a
feature-extraction n-tuple network (8) which scans it to
construct the feature vectors for the original objects.
This network was implemented using the hardware
look-up truth tables of the vision system. The complete
preprocessing operation took approximately 350 ms. As
mentioned earlier, the feature vector for an inner sealing
lip perimeter had 20 components. The value of each
component was equal to the number of times a particu-
lar geometric feature was present in the outline image
being analysed. The 20 different geometric features
looked for are illustrated in Fig. 5. Only exact matches
between these standard features and segments of the
outline were counted.

The feature vector for a surface flaw had five addi-
tional components. These corresponded to other geo-
metric attributes, namely the area of the flaw, its
perimeter, the length and width of the smallest enclos-
ing rectangular box and the area of the latter. The aim
of providing both the linear dimensions and the area of
the rectangular enclosing box was to facilitate the train-
ing of the neural networks.

Examples of different feature vectors for diflerent
artefacts can be found in Figs 6 and 7. (Note that only
the first 20 components are shown for the feature
vectors of Fig. 7.)
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6 RESULTS

Two training sets, each containing 180 feature vectors,
were used to teach the neural networks the sealing lip
perimeter classification and the surface flaw recognition
tasks respectively. For the sealing lip perimeter classi-
fication task, the BMLP took 150000 training iterations
to reduce its global output error to below 0.01. The
training time was approximately 13 minutes. The LVQ
network required 3600 iterations and 8 minutes to
reach its minimum global output error of 0.02. For the
surface flaw recognition task, the BMLP needed 130000
training iterations to achieve a global output error less
than 0.001. The training time was almost 8 minutes. The
LVQ network took 2800 iterations and around 35
minutes to reach a minimum global output error of
0.001.

Two test sets, each with 100 feature vectors, were
employed to evaluate the generalization capability of
the neural networks in the sealing lip classification and
surface flaw recognition tasks respectively. None of the
test feature vectors were in the training sets. The BMLP
was consistently better than the LVQ network at gener-
alizing, that is dealing with new feature vectors. It was
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able correctly to classify 83 feature vectors for different
categories of inner sealing lip perimeters. The LVQ
network only succeeded with 74 feature vectors. Note
that the majority of the mistakes were in confusing a
perimeter containing small flaws (1 or 2 pixels in size)
with a good perimeter. In the surface flaw recognition
task, the BMLP accurately recognized 93 test feature
vectors and the LVQ network 85. The poorer per-
formance of the LVQ network in both tasks could be
attributed to its use of the Euclidean distance metric
which is not appropriate for classification problems
involving non-linear decision boundaries. However,
even the use of the LVQ network would significantly
improve on the existing situation, which only involved
sampling inspection, as already mentioned.

The time required for both networks to reach a deci-
sion, or recall time, was approximately 4 ms in the inner
sealing lip perimeter classification and surface flaw
recognition tasks. Although the LVQ network is slight-
ly larger than the BMLP in its hidden layer, it took a
similar amount of time to process a feature vector
because its processing is simpler, involving only the
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evaluation of linear activation functions rather than the
sigmoidal functions of the BMLP modules.

7 CONCLUSION

Automated visual inspection is a computer-intensive
task involving both image processing and pattern
recognition. This paper has focused on the pattern
recognition part and has described two types of neural
network pattern classifiers. The use of neural networks
in this kind of application has achieved three main
benefits: high speed of operation, ease of implementa-
tion and high reliability. In this latter respect, the back-
propagation multi-layer perceptron has proved to be
superior to the learning vector quantization network.
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