Characterization of keypoints in images
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ABSTRACT

In this contribution we investigate the performance of steerable functions to characterize keypoints. Steerable
functions were introduced recently by Perona® as an efficient method to calculate the response of a filter in a con-
tinuum of orientations, scales, and other parameters. For the analysis of points with events at multiple orientations,
funetions with a high orientational resolution are needed. We discuss criteria to judge the quality of a function to
serve for orientation analysis. To handle line as well as edge junctions, we use a complex function with the real
and imaginary part approximately in quadrature. An associated one-sided function allows to distinguish between
terminating and nonterminating edges and lines. To analyse thick lines and blurred edges the function is also steered
in scale.

1. INTRODUCTION

Points where several edges or lines meet are called junctions or keypoints. These points are important for object
recognition and scene analysis (occlusions), because of their invariance properties and their high information content.
Another important field of application is the matching of points in several images of the same scene, a problem that
oceurs in stereo vision, optical flow analysis, and multimodal medical imaging. Unlike isolated edges or lines which
have 1D models these points have a local 2D structure. Yet standard edge detectors which are tuned to 1D edge
models cannot detect or characterize 2D structures®®? . According to the many degrees of freedom of junctions,
more information about the neighborhood of the keypoint must be obtained.

Corner detectors were developed, among others, by Deriche and Giraudon®, Kitchen and Rosenfeld®, Nagel”,
and Nobel®. In principle all these approaches use some differential geometric measures derived from a local second
order Taylor approximation. Except Noble, who shows applications to T and Y junctions, the underlying models are
restricted to corners (L junctions). In none of these methods the detected keypoints are classified. The classification
of more complicated keypoints like T junctions or a mixture of lines and edges needs more information than is
contained in a second order Taylor approximation. Rosenthaler!! et.al. proposed a scheme based on oriented energy
maps to detect keypoints of every kind, but again without a classification.

Work on the classification of keypoints has been done by Guiducci®, Rohr!?, and Brunnstrém? et.al. . Guiducci
estimates the parameters of a L junction (amplitude, aperture, smoothness of edges) from second order Taylor
approximations. More complicated junctions are not dealt with. Rohr identifies junctions where several edges meet
by fitting wedge models to the image. Brunnstrom et.al. evaluate the local histogram in the neighborhood of the
keypoint to derive a hypothesis about the junction. The hypothesis is verified using the edge image, which is provided
by a Canny-Deriche edge detector. A weakness of this edge detector is its poor orientation selectivity and that it
gives no reliable response in the vicinity of keypoints®? . Neither the method of Rohr nor the one of Brunnstrém
et.al. is applicable to junctions of lines instead of wedges.

In this contribution we investigate the performance of steerable functions to characterize keypoints. Steerable
functions were introduced recently by Perona® and are explained in more detail in the next section. We assume
that the keypoints have already been detected by one of the methods mentioned above. As every other scheme, our
approach has an underlying range of models it can handle. It will be confused by image structures which do not fit
into this range. In section 4 the keypoints are junctions of step edges and thin lines with a rectangular profile. In
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section 5 we add some blur and allow thick lines. All basis functions to which the image is projected are centered
at the keypoint, so no convolution, even in a small neighborhood of the keypoint, is carried out.

2. STEERABLE FUNCTIONS

Functions which are used for convolution or projection in image processing usually have free parameters, e.g.
their orientation and scale. It is often desirable not to fix these parameters, but to know the response of the function
in a continuum of orientations, scales or other degrees of freedom. To avoid unreasonable computational costs this
problem should be solved by interpolation. If F is the function and @ the free parameter a finite number N of basis
functions Gy, k = 1...N and interpolation functions b are searched, so that:

N
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Convolution and projections commute with this interpolation, because they are linear operators. If I(Z) is the
image function then (the asterisk denotes complex conjugation): [ Fj(Z)I(Z)d*T = [ (3, b1 (0)G3(2)) I(2)d*Z =
S bE(0) [ Gi(8)1(Z)d*F. Of course not every function can be approximated by a small or finite number of basis
functions but one can ask for the best approximation with a given number of basis functions. A solution to this
problem has recently been proposed by Perona® who uses the singular value decomposition (SVD) to obtain the
functions G and bj.

In the following, we give a short derivation of the formulas to steer a function in its orientation, thereby intro-
ducing all concepts and notations which are necessary to understand the following sections. The derivation differs
slightly from the one given by Perona because we avoid arguing with Hilbert-Schmidt operators and the SVD. In
the case of rotations, Fy is a periodic function in # and the interpolation problem can be solved by ordinary Fourier
theory. This derivation is not applicable to the case of steering other parameters than the orientation. We will deal
with this in section 5.

The functions by are now complex exponentials and (1) becomes the Fourier decomposition of Fj with respect
to the parameter .

Fo@ = ). (@ (2)
k=-o0
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Now the crucial point is that the infinite sum in (2) must be truncated at some point. We have to know the basis
functions Ay which contribute the most to F' in the L? sense. Calculating the norm of Aj gives (the hat denotes
the Fourier transform):
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At (a) we changed the order of integration, introduced the new variable ¢ := 6 — 6" and exploited the fact that
[ F; Fgrd®F only depends on 6 — 6. At (b) the integration with respect to ¢’ gives merely a factor of 27 because the




integrand is independent of #’. As the result, we see that the contribution of Ay to F' is given by the k’th Fourier
coefficient h(k) of the function:

h(p) = ] F} Fod*z. (5)

This is not surprising because h(¢) is the autocorrelation function of " with respect to # which shows the angular
width or influence of F. In wavelet theory it is called the reproducing kernel which governs the sampling scheme for
complete wavelet bases [Antoinel ). To get a better understanding of the basis functions A we rewrite (3).
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In (a) polar coordinates & — p, ¢ (thus p and ¢ are functions of r) and in (b) a new variable ¢ := ¢ — @ are
introduced. Hence the Aj’s are polar separable with the k’th harmonic as their angular part and a radial part
which depends on F. Examples of such a decomposition are shown in Fig.5. Perona proves that this is the best
steerable L? approximation to F' with a given number of basis functions. This is a remarkable result, even though
in our application the best L' approximations would be better. In the continuum case the approximated function
is steerable without any unisotropy. In section 3.3, we show experimental results of the unisotropy in the discrete
case.

It should be emphasized that the basis functions Ay are not rotated copies of the function F as they are in the
work about steerable functions of Freeman and Adelson? . This fact has advantages as well as disadvantages. One
disadvantage is that not all L? errors impair the performance to the same extent. In most cases, small deviations from
the original function where it has the bulk of its energy do not disturb. Instead in the approximation (2) the missing
Ap’s of high angular frequency (large k) of the truncated sum put ripples to the approximation where the original
function has no energy (see Fig.4d for an example). This produces spurious peaks in the angular response. Another
disadvantage is that functions which need high frequency components for a good approximation are problematic
because the high frequency basis functions cannot be rendered in the discrete case without interpolating the grid
(see Fig.5d).

Nevertheless, these basis functions have one main advantage which makes them favorable for us. The symmetries
of the function and the corresponding symmetries of the basis functions can be exploited (1) to save half of the basis
functions (the negative frequencies) and (2) to steer, by the same basis functions, an one-sided kernel F'S associated
to F. If Iy = E?;_N Ay, then F3S ~ z,‘f:uAk. These functions are important in the analysis of keypoints in
section 4 because of their 27 orientational periodicity. In reality the sum will not run from zero to N because we
have to take the N Ay’s with the largest L? norm. Thus F' ~ Zf:u A,,, where ||[A, || > [|4u,]] > ... > ||Aunl]-
Examples of such one-sided functions are shown in Fig.2¢,d and Fig.4e,d. In the following k is the index for the
basis functions, ordered by their L? norm, and v the angular frequency.

3. ORIENTATION SELECTIVE FUNCTIONS
3.1. Quality criteria for orientation selective functions

We use the following criteria to judge the quality of a function serving for orientation analysis.

e The main criterion is the reproducing kernel h, which is defined in (5) and its Fourier transform h. As
discussed in section 2, h reveals the orientation selectivity of the function. If Af is the half amplitude width




of h, approximately 27/A#@ rotated copies of h would be necessary to have a complete basis of orientation
selective functions (Antoine! ) if the method of Perona were not used. In the optimal case, h has no side lobes.
Its Fourier transform h determines the number of basis functions that are necessary to steer the approximated
function. Thus h has to optimize an uncertainty relation. h; is a version of h that is sorted by the magnitude
of the coefficients h(v) (Fig.4f).

e The response to an ideal step edge g(f) := [ [, Fo(z, y)dzdy (F is centered at (0,0)). The energy as well as
the real and imaginary part are important. If the symmetry of an event is known, the real (even) or imaginary
(odd) part is used to derive the exact orientation. The function should have a zero DC response, that is g(8)
has no offset from the baseline.

e The quality of the associated one-sided function FjS: the energy of the one-sided function should be located
mostly on one side of the center (steering point), giving it an angular periodicity of 27. The functions h and
g can be calculated for this function too.

e The extension of the function in position space should be small to have low computational costs. Of course
there are limitations because of the size of the events and the discretization. A function of two pixels length
cannot determine exact orientations.

e The limitations in the discrete case as discussed in section 3.3 have to be considered. It makes no sense to use
a theoretically optimal function that loses its qualities in the discrete case.

e The quality of the approximation with a predefined number of basis functions has to be considered. In the I?
sense it is given by h, but not every L? error counts the same. Especially strong ripples in the approximation
can be disadvantageous (see Figs.4d,10).

As an example we show the functions h, h, and g for the first (G) and second (G'2) derivative of an isotropic
Gaussian in Fig.1. G is the kernel of the Canny edge detector. The half height width of g(#) for G, is =, thus
multiple orientations at one point cannot be resolved, even if they differ in their orientation by m/2. It should be
evident that there is no single benchmark for the quality of an orientation selective function nor is there a function
that is optimal for all the criteria. Different tasks will have different optimal functions.
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Figure 1: The reproducing kernel h(f), its Fourier transform h(v), and the angular response to an edge
g(0) for the first (G)) and second (G2) derivative of an isotropic Gaussian. For Gy the half amplitude
width of h is 27 /2 consistent with 2 nonzero Fourier components. Thus 2 basis functions are needed to
steer 1. Accordingly G5 needs 3 basis functions. h and g show the very poor orientational resolution of
both filters, making a detection of multiple orientations at one point impossible.

3.2. Double Hermite function

The example from Fig.1, where the functions are derived from an isotropic Gaussian, shows that we need elongated
functions. Figure 2 gives an example, derived from an elongated Gaussian. This function has the shortcoming that
the bulk of its energy is around the center. This has several drawbacks: (1) the one-sided function has its energy
also around the center, (2) for the angular resolution the discretization at the keypoint is worst, (3) for many real life




keypoints the immediate neighborhood of the center point has a confusing structure. As a consequence, we choose
a function that has the main part of its energy some distance away from the center. In the following we will refer
to it as the 'double Hermite function’. The complete description of a function with the criteria of section 3.1 would
need a wealth of data and we tried to figure out the most expressive data in Figs.3,4,5,6. There are functions that
perform better in some of the mentioned criteria, e.g. a sharper h(f) with a faster decay of h,, but with severe
shortcomings in other criteria. We found the double Hermite function a good compromise.
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Figure 2: The function used by Perona for junction analysis. In x-direction it is a Gaussian, in y-direction
it is for the real part (a) the second derivative of a Gaussian, for the imaginary part (b) the Hilbert
transform of the real part. (c¢) and (d) show the associated one-sided function. It has the shortcoming
that its energy is not at one side of the center. This is especially true for the real part where the center
is inside the dark blob. (e) and (f) show a cross-section in y-direction of (a) and (b). (g) is the energy
and (h) the phase of this cross-section.
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Figure 3: A cross-section in y-direction of the function from equation (7). The real and imaginary parts
are not exact Hilbert partners, thus the phase is not linear and the energy is at the borderline of not
being monomodal. In return the central peak is sharper than the peak for the function from Fig.2.

3.3 Limitations of steerability in the discrete case

In the continuous case the approximation to a function, given by a truncation of the sum in (2) is perfectly
(isotropic) steerable. The quality of the approximation in the L* sense is governed completely by h. In the discrete
case both statements are not exactly true. Fig.6 shows the L' norm of a double Hermite function steered in
orientation and scale (see section 5 for steering scale). As can be expected the error increases with a decreasing size
of the function. The source of this error is the nonsymmetric sampling of the different orientations in a rectangular
grid. For a basis function where the negative and positive parts are not symmetric with respect to the sampling grid
(real part of Ag in Fig.5b) this leads, besides other effects, to a nonvanishing DC-component. The DC-component
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Figure 4: The function from equation (7). (a) real part, (b) imaginary part. (c) and (d) are the
real and imaginary part of the associated one-sided function. The ring of ripples in (d) is the typical
approximation error. (e) is the reproducing kernel h(#), (f) is the sorted Fourier transform h,(k), that
gives the L? norm of the basis functions Ax. The faster it decays, the less basis functions are needed
for a good approximation. The angular response to a step edge, g(f), is depicted in (g) (real) and (h)
(imaginary).

of the approximated function can be zeroed by zeroing the DC-components of all basis functions, because the basis
functions are fix, and the approximation is linear.

Another limitation arises when basis functions with large angular frequencies (large v) are necessary for a good
approximation. Such basis functions cannot be rendered properly near the origin because of their polar separability.
Two consequences of this are (1) moiré effects as for the basis function in Fig.5d and (2) h, does not converge
to zero if it is calculated numerically. For the double Hermite function with ¢ = 3 that we used for the keypoint
characterization in the following chapter, this is not a limiting factor. The largest angular frequency that is used
to approximate it with 23 basis functions is v = 24 for k = 22. Nevertheless, functions with a higher orientational
resolution can have this problem.

4. KEYPOINT CHARACTERIZATION

In this section, we apply the steerable functions to the characterization of keypoints. The keypoints are junctions
of step edges and thin lines with a rectangular profile. We assume that the keypoint has already been detected by
one of the methods from the references. It is important to locate the center of the function as close as possible at
the real keypoint. The lines and edges are detected at the orientations of the maxima in the energy of the response.
The evaluation of merely the maxima limits of course the resolution. The two main limiting effects are described in
Fig.7.

The problems discussed in the caption to Fig.7 arise because of the linear superposition of the responses of all
events that are ’seen’ by the function. Looking to the response at just one orientation the information about the
number of events which caused the response and their relative strength is lost. The evaluation of just the maxima
can distinguish the events if for each event it is assured that there is an orientation where only this event is 'seen’.
Of course, in the whole angular response there is more information. E.g. the shape and symmetry of the peaks
could be analysed to improve the resolution. The drawback is that more sophisticated methods distinguish between
different events in the range of the models by exploiting more knowledge about the models. Hence, because there
are more assumptions about the analysed events, they are less robust when they are applied to events that are not
in the range of models.

The phase of the response at the orientation of the maximum in the energy shows the symmetry type of the
event. Lines (even events) have a phase near 0 or £, edges (odd events) have a phase near 7 /2. If the event is
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Figure 5: (a),(b),(c) show the first three basis functions for the double Hermite function (real part top,
imaginary part bottom). The angular frequencies are (a) v = 5, (b) » = 8, (¢) v = 7. (d) shows an
example of the moire effects for large angular frequencies (v = 40).
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Figure 6: Limitations of perfect steerability in the discrete case: The pseudo 3D plots show the I}
norm of the double Hermite function steered in orientation and scale (real part left, imaginary part
right). Perfect steerability would result in a constant norm and the graph should be flat. The plateau
is at L' = 1 and the largest deviations are -0.89 and +1.19 for the real part and -0.88 and +1.09 for
the imaginary part. The maximal deviations are at multiples of 90°, because at this orientations the
symmetry axses of the functions and the grid coincide. Parameters for the double Hermite function:
Omin = 0.75, Omaz = 2,€ = 2. For the reconstruction 23 basis functions in orientation and 5 in scale are
used.

of one of these pure types it is preferable to determine the exact localization in the real or imaginary part of the
response Fig.10.

For a function that is symmetric or anti-symmetric with respect to the center, the energy of the angular response
to an edge at a certain orientation @ is the same as for 4 7. Thus one cannot distingunish between lines or edges that
terminate at the junction and lines or edges that do not terminate. This information is contained in the response of
the one-sided function, because of its 27 periodicity. Remember that the calculation of this response needs no extra
computational costs, because it is derived from the same basis functions.

The angular responses of Figs.8,9,10,11 were all derived with 23 basis functions. The orientation # = 0 is from the
center to the right. Positive rotations are clockwise. To understand the one-sided responses note that the one-sided
function has its energy to the left of the center (orientation ) (Fig.4). The effect of using less basis functions is
shown in Fig.12.

5. STEERING SCALE

In section 2 functions were steered only in their orientation. Yet there are other parameters, especially the scale,
which are important in image processing. In the case of the scale the derivation from section 2 via the Fourier




BAVARV/

(a) (b) (c) (d)

Figure 7: Limitations of the angular resolution: (a) and (¢) are the analysed junctions. (b) is the energy
of the angular response to (a) and (d) the one to (c). If the two edges in (a) were a little closer in their
orientation the two peaks would melt to one. The problem in (b) is that the small peak of the low contrast
edge is swallowed by the large peak. In both cases some angular distance before the two peaks melt, the
maxima are shifted. In this case the lines and edges can be detected, but the orientation estimation will
be affected. The distinction of two weakly separated peaks as caused by two different events is impeded if
the function has side lobes in its edge response function g or if its approximation has ripples (see Fig.4d,
Fig.12).
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Figure 8: (a) keypoint, (b) phase, (c) energy, (d) energy for the one-sided function. The energy at the
peaks shows two events at 70° and 110° (modulo 180°). The phase at the orientation of the maxima in
the energy (1.78 and -1.78) reveals that they originate from two edges. The missing peaks at 250° and
290° in (d) show that the edges are terminating at the junction. Hence, the junction is a wedge.

transform is not applicable, but the general method of Perona” , using the SVD, can handle this case. We will give

here only a short sketch of the method to fix the notation and refer for the details to the reference.

To scale a function ' we scale all its basis functions A;. Because the Aj’s are polar separable (see (6)) it
suffices to scale the radial component Cy,(p) := Ck(sp) (s is the scale parameter). Steering scale here again means
interpolation as in (1). To arrive there we discretize p and s, and put all Cy,’s of different scales in one matrix as
in the Lh.s. of (8) (81 <82 <...< 8m).

C‘.h 1 (Pl) LA C‘kh(pﬂ) . n
(SVD) -
S ] Y e = (Setdenton) ®
p=Ll.m;e=1l..n

i=1

Ckx,..(pl] v C"kam(,on)

The rows of the I.h.s. matrix are the radial functions ' at the different scales, so this matrix carries all information
we need to scale F'. The middle of (8) is the SVD of the matrix. (U) is a m x n matrix with orthonormal rows u;,
(V) is a n x n matrix with orthonormal rows v;, and (W) is a diagonal matrix with the singular values w;. The r.h.s.
of (8) is just the middle written in another way and has the interpolation form of (1) where the v; are the basis
functions and the u; the interpolation functions. Because of the L? normalization of the u; and v; the singular values
w; determine their L? contribution to the l.h.s. matrix of (8). To have a good approximation of the matrix, we need
only a few components in the r.h.s. of (8). We used 128 x 128 matrices and the linpack library to perform the SVD.
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Figure 9: (a) keypoint, (b) phase, (c) energy, (d) energy for the one-sided function. The energy at the
peaks shows two events at 50° and 90° (modulo 180°). The phase at the orientation of the maxima in the
energy (1.77 and 1.79) reveals that they originate from two edges. The maximum of the edge at 230° is
slightly shifted by less than one degree because of the influence of the stronger edge at 90°. The missing
second peak at 230° in (d) shows that one edge terminates at the keypoint. Hence, the keypoint is a T
Jjunction.

To steer the scale parameter s, the basis functions Ap, can now be decomposed into the new basis functions By;.

. |
Aks(_f) = ﬁ GJEME)Ck (sp(f)) ~
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For most functions F', which are of interest very few basis functions suffice to steer it in the scale. This is due to
the large variances of their autocorrelation function (reproducing kernel) with respect to the scale h(s) := [ F F,,d*z
(so is a reference scale). Figure 13 shows h(s) for the Hermite function and the double Hermite function. The usual
range of interest in the scale spans 2 to 4 octaves while the half amplitude width of h(s) is typically about 2 octaves.
This is a ratio of about 2, a relatively small number compared to the same ratio in the orientational case which is
about 15 for the function we used. Moreover, for step edges the scale is not a sensitive parameter. Accordingly, the
energy distribution against orientation and scale for the junction from Fig.14a reveals no strong dependence on the
scale. In addition, we are usually not interested in an exact analysis of the response in scale but merely to find an
appropriate scale for the orientation analysis. Hence, the common discretization of the scale in octave steps is not
as disadvatageous as discretizing the orientation.

Nevertheless, one can take benefit from steering the scale for junctions of lines of different widths and blurred
edges. The function F can be adapted in its size to improve the angular response and the width of the lines and
edges can be estimated. Results for the application of steerable functions to keypoints of blurred edges and thick
lines are shown in Fig.14.

6. CONCLUSIONS

We have shown that a wide range of keypoints can be characterized by steerable functions. Compared to previous
work by Guiducci, Rohr, and Brunnstrom our approach improves in handling edge as well as line junctions. Without
making the functions unreasonably large, it is not possible to distinguish two lines or edges which differ only by
a small angle in their orientation. To obtain a better resolution, it would be possible to evaluate not just the
extrema in the angular response signals. One could use as well the shape, width, and symmetry of the peaks for the
classification, but with the drawback of false results with image structures which do not fit in the range of models.
A more robust method would require more than just the evaluation of basis functions centered at the keypoint,
but also in a small neighborhood. Because of the high computational costs due to the relatively large set of basis
functions, this method is not intended to be applied by convolution to the whole image. Instead some preceding
keypoint detection or focus of attention is required.
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Figure 10: (a) keypoint, (b) phase, (c) energy, (d) energy for the one-sided function, (e) real and (f)
imaginary part of the response. The energy at the peaks shows two events at 45° and 90° (modulo 180°).
The phase at the orientation of the maxima in the energy reveals (jump from +7 to —m, -3.08) that they
originate from two lines. The missing second peak of the line at 225° in (d) shows, that it terminates
at the keypoint. The leftmost peak in (b) is relatively wide and not well shaped. In this case it is the
influence of the second line and not caused by a third event, but one cannot a priori know this. The
phase at the maximum of the energy at 45° has a jump from + to —m, indicating a line. Hence, the real
part of the response (e) is appropriate for the localization and has a better separation of the two peaks.
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Figure 11: (a) keypoint, (b) phase, (¢) energy, (d) energy for the one-sided function. The energy at the
peaks shows two events at 44° and 90° (modulo 180°). The phase at the orientation of the maxima in
the energy (3.00 and 1.77) reveals that they originate from a line at 44° and an edge at 90°. Due to the
influence of the dominating edge at 90° the maximum of the line is shifted by less than one degree, while
the jump in the phase (+7 to —) is slightly shifted in the opposite direction. The missing second peak
of the line at 225° in (d) shows, that it terminates at the keypoint.
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Figure 12: The main effect of using less basis functions for the approximation is not an increasing width
of the peaks but stronger ripples in the response. The energy responses to the keypoints of Fig.8 (left)
and Fig.11 (right) are depicted. Only 15 basis functions were used for the approximation. Using less
than 15 basis functions leads to many new peaks which cannot be distinguished from the peaks caused
by lines or edges.
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Figure 13: Reproducing kernel in scale h(o) for the Hermite function (left) and the double Hermite
function (right). The numbers at the scale axes are in units of the reference scales oy and ly. The range
of displayed scales is 4 octaves. The parameters are for the Hermite function: og = 4, 0min = |, Opar =
16, = 3, double Hermite function: oy = 4, 0min = 1, Omaz = 16,6 = 2.2, The half amplitude widths are
(in octaves) (a) 2.2, (b) 1.7. Compared to the range of interest in the scale, which is not more than 3 or
4 octaves for many tasks, the width is large.




Figure 14: The figure shows the results of steering the double Hermite function in energy and scale.
Depicted are from left to right the keypoint, the energy of the response as an intensity image (small
scales at the top), and and the energy as an pseudo 3D plot. In (a) the keypoint is a corner of step edges
and the response is approximately independent of the scale. The energy image displays the orientations
from 135° to 315°. The junction in (b) is the same as in (a) but blurred by an Gaussian with o = 3. At
small scales the edges are not seen The junction in (c) is a step edge and a line of 5 pixels width. The
energy is displayed in the range from 120° to 300°. At small scales the line is seen as two edges with an
incorrect orientation. The continuous scale energy image allows not only to detect the line properly at
coarse scales, but it gives also the information how the events at small scales are connected to those at
coarse scales.




