Detection and Classification of P Waves Using Gabor Wavelets
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Abstract

The wavelel transform of an ECG with a complex Ga-
bor filter can be changed to two representations where
the real and imaginary part are combined in a nonlin-
ear way to an energy signal and a phase signal. The
energy signal is used to delect and localize P waves,
whereas the phase signal is used to classify the P waves
as monophasic, M-shaped or biphasic.

1. Introduction

Automatic P wave detection is still a not satisfyingly
solved problem in surface ECG analysis. The difficul-
ties in P wave detection are due to the low amplitudes,
widely varying shapes, low signal-to-noise ratios, and
adjacent QRS complexes or T waves. Mostly, P wave
detection is based on local measurements like deriva-
tives, amplitude, or spatial velocity [3, 4, 8]. Even
though these quantities allow an efficient measurement
of signal activities connected to the presence of P waves,
they are likely to fail in the presence of noise or small
amplitudes, because they do not take into account the
signal energy of the P wave as a whole.

To improve this weakness, we use a wavelet trans-
form of the ECG signal in our approach. Whereas
wavelet transforms became a widely used tool for the
analysis of nonstationary signals in general during the
last years [1], their application to ECG analysis is re-
stricted to a few investigations [6]. The mother wavelet
of our transform is a complex Gabor function with con-
siderably fewer oscillations (& 1) than those used in
most other applications (see Fig.1). This means that at
coarse scales, where the size of the wavelet is approx-
imately the size of a P wave, the wavelet transform is
rather a template matching for P waves than a local
frequency analysis of the signal. At the small scales,
it is qualitatively a first (real part) and second (imag-
inary part) derivative of the signal. These derivatives
are used to localize the onset and offset of the P wave.
The scales in between offer additional information be-
cause they provide the connection from events at small
scales to the detected P wave at a coarse scale.
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The real and the imaginary part of the transform
are combined in a nonlinear way to the two new rep-
resentations ’energy’ and 'phase’. The energy allows
the detection of P waves independently of their shape
whereas the phase distinguishes between the different
shapes.

2. Material

We used twelve lead resting ECGs with a record
length of 5 sec. The sampling rate was 250 per sec with
a resolution of 12 bit for the range of £5mV. From a
large data base 50 cases were selected, covering a vari-
ety of P wave shapes (monophasic, M-shaped, biphasic,
noisy, and low voltage signals) according to different
atrial diseases and also different signal conditions. Be-
cause of the exploratory character of the studies, beside
a weak low pass filtering, no pre- or postprocessing like
averaging several beats or using information from par-
allel leads was made, even though this would improve
the performance of the method.

3. Methods

The procedure to detect, localize and classify P waves
relies basically on a representation of the ECG signal
where three parameters are made explicit: (1) scale by
using a wavelettransform, (2) energy, and (3) phase by
using a complex (pseudo) quadrature pair of filters as
the mother wavelet.

3.1. Quadrature Filters

Quadrature filters are complex filters where the imag-
inary part is the Hilbert transform [7] of the real part.
The Hilbert transform changes the symmetry type of
a function from odd to even. The complex response of
such a filter to a signal can be changed to an energy
and phase representation:

I
energy = |Re|? + |Im|? phase = arg (R—r;l) (D
The response signal from linear filtering is never an
unambiguous measure of signal energy because it al-
ways mixes the presence of signal structure (energy)
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and the symmetry type of the signal structure which
results from the structure shape and the displacement
to the filter function (phase).

3.2. Gabor-Wavelets

The detection of patterns in nonstationary signals is
closely connected to local frequency analysis. This im-
plies that a filter should have a good localization in the
time domain as well as in the frequency domain. Now
the uncertainty principle (D. Gabor 1946 [2]) limits this
joint localization. If oy and o, are the variances of a
function in the time and the frequency domain, the joint
localization cannot be better than oo, > 1/2. Taking
this into account, several methods were developed re-
cently to solve the problem of detection and localization
of signal structure [9]. One of these methods is the Ga-
bor wavelet transform, introduced by J. Morlet [5]:

Go(t) = e T AT (2)

Here ’¢’ is a fixed constant which gives the number
of oszillations of (2) (Fig.1). The parameters ¢ and g
indicate the scale and the shift in the time domain of
the function g. The projection on such a set of functions
with varying o and {; is called a wavelet transform.

4, Detection of P Waves

The choice of the parameter ’¢’ in (2) is of crucial
importance. A larger ¢’ leads to more oszillations of the
function giving it a better localization in the frequency
domain, but, according to the uncertainty principle, at
the cost of its localization in the time domain. Figure
1 shows two Gabor functions with ¢ = 1.9 and e = 5.3
which is used in most other investigations. Figure 2
shows the energy distribution by time and scale for a P
wave for these functions.
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Figure 1: Gabor wavelets (a) ¢ = 1.9, (b) ¢ = 5.3.

The Gabor function as well as the energy distribution
is better localized in the time domain for ¢ = 1.9 than
for ¢ = 5.3. This helps localizing and classifying the
P wave, and separating it from the energetically much
more prominent QRS complex. Compared to the Gabor
function with ¢ = 5.3, the one with ¢ = 1.9 roughly
resembles a P wave or the first and second derivative of
a Gaussian. Therefore the interpretation of the wavelet
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Figure 2: Energy distributions for a P wave for the
Gabor wavelets with (a) e = 1.9 and (b) ¢ = 5.3.

transform in our case is a template matching for the
P wave at coarse scales and taking the derivatives of
the ECG signal at fine scales. We also examined the
wavelet transform with Gaussian derivatives, but we
got better results using Gabor functions.

The choice of ¢ = 1.9 has two drawbacks. First the
real part of (2) has a not negligible DC component that
is remedied by the following modification (N is a nor-
malization to L1(g) = 1+ i):

el 1 (t=1g)?
Goto(t) = N(S52 _ =3~ 4458 (3)

Second, the real and imaginary part are no longer in
quadrature. We accept this drawback, because it is not
too severe and, in addition, the exact Hilbert transform
of the real part has a very slow decay. Bevor trans-
forming the ECG signal, it is low pass filtered with a
Gaussian (o = 4...8ms).

Figure 3 shows an energy and phase image obtained
with the function (3). The detection of the P wave
is done by analysing the energy signal at some favor-
able scales which were determined empirically. The fig-
ures 3e-g show the energy at the scales ¢ = 4.8,9.6,
and 22ms. First the absolute maximum on a length of
+400ms, which stems from a QRS complex, is searched
at a coarse scale (22ms).

After detecting the QRS complexes, the P waves are
found by searching the energy maxima before the Q
onset at a scale of & 30ms. At this scale, the energy
maxima are caused by the P wave as a whole and not
just by its steep onset or offset. The details of the P
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Figure 3: Wavelet analysis of an ECG signal: (a) phase
and (b) energy. The scale ranges from ¢ = 3ms (top) to
o = 96ms (bottom). In the energy image the brightness
of the P and T waves is raised compared to the QRS
complex. (¢) ECG signal with short PQ distance in the
first beat, (d) detected P waves, (e) - (g) energy to the
scales o = 4.8, 9.6, 22ms.

wave and the noise are not visible. Now the next finer
scales are used successively to narrow down the region
of the P wave. The energy signal then divides into
several maxima; their connection is given by the coarse
scales. The procedure stops when the signal cannot be
distinguished from the noise any longer. At the cost of
a precise localization, the procedure ensures that the P
wave is entirely contained in the detected region.
Figure 4 shows an example of a noisy ECG signal
with a low amplitude P wave. Nevertheless the P wave
could be correctly detected, the localization, however,
is impeded. The energy signal which is used to detect
the P wave (o = 31.2ms) is not affected by the noise.

5. Classification of P Waves

Morphologically, three different shapes of P waves
are distinguished: monophasie, M-shaped, and bipha-
sic. The recognition of these shapes is essential for the
diagnosis of several atrial diseases. The information to

Figure 4: Example of a noisy lead with a low amplitude
P wave. (a) signal, (b) detected P wave area, (c) energy
to the scale o = 31.2ms.

classify a P wave as one of these types is comprised in
the phase.

The relative contribution of the even real part and
the odd imaginary part of the analysing function (3)
to the energy is given by the phase. For an odd sig-
nal structure the main contribution to its energy comes
from the imaginary part of (3). The phase will be ap-
proximately +m/2 or —7 /2. Accordingly, an even signal
structure has a phase of 0, +7 or —w. To classify the P
waves, we investigated two methods:

A: Interpretation of the phase at the absolute
energy maximum

The goal of this method is to classify the P waves in
a fast and simple way as biphasic or not biphasic. This
can be done by taking the phase at the absolute energy
maximum of the P wave. To make this maximum as
distinct as possible, the choice of ¢ = 1.9 in (3) is ad-
vantageous (see Fig.2). Figure 5 shows the result from
the classification of about 1100 P waves which where
automatically detected and extracted from the ECG
signal by the method desribed in section 4.

As the result in Fig.5a shows, the biphasic P waves
can be classified properly. Taking into account that the
majority of all P waves are nonbiphasic with a phase
outside the biphasic range, this method can classify
about 75% of all P waves as certainly nonbiphasic. The
nonbiphasic P waves cannot be properly classified for
the following reasons: (1) no proper localization of the
P wave, (2) an asymmetric shape of the P wave, (3) no
distinct energy maximum.

B: Detection of local extrema

To obtain a robust classification of all three types of P
waves, we have to examine the whole phase image. This
1s illustrated in Fig.6 showing a phase image where all
regions with negative phase are rendered dark and those
with positive phase bright. Now we are interested in the
lines of changing sign of the phase. At these locations
in time and scale, the signal locally shows a maximum
(phase 0) or minimum (phase 7). We are only interested
in those regions where the energy is high. At small
scales, this is the width of the P wave, at larger scales,
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Figure 5: Phase (angle) and energy (distance from cen-
tre) of about 1100 P waves, classified by an expert
as biphasic (a) or nonbiphasic (b), and analysed with
method A. The phase areas of the upper and lower
quadrants are assigned to odd structures (biphasic P
waves), the left and right quadrants to even structures
(nonbiphasic P waves).

it increases with the size of the analysing wavelet.

Biphasic P waves are characterized by having a max-
imum and minimum even at coarse scales. Hence the
phase image shows two lines of changing sign running
through all scales.

Accordingly, monophasic and M-shaped P waves only
have one line of changing sign running through all
scales. M-shaped P waves have, in addition, a maxi-
mum and a minimum which exists only up to a certain
scale. At the small scales, the exact localizations of the
maxima and minima can be detected. Their connection
to the larger scales distinguishes them from noise arti-
facts. This is used to determine the distance of the two
peaks in a M-shaped P wave.

6. Conclusion

We have presented a method which shows promise for
the detection of P waves in the surface ECG. A good
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Figure 6: (a) Biphasic, M-shaped, and monophasic
P wave. (b) The phase image used in classification
method B. Positive phases are represented in bright,
negative phases in dark.

performance is achieved by this method, even if no in-
formation of parallel leads or several beats of longer
recordings is used. The complex wavelet transform, we
employed for the detection of the P waves, includes the
phase information of the signal which allows the dis-
tinction between monophasic, M-shaped, and biphasic
P waves.
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