
Projetive Model for Central CatadioptriCameras using Cli�ord Algebra⋆Antti Tolvanen and Christian Perwass and Gerald SommerInstitut für Informatik und Praktishe MathematikChristian-Albrehts-UniversitätChristian-Albrehts-Platz 4, 24118 Kiel, Germanyant,hp,gs�ks.informatik.uni-kiel.deAbstrat. A new method for desribing the equivalene of atadiop-tri and stereographi projetions is presented. This method produes asimple projetion usable in all entral atadioptri systems. A projetivemodel for the sphere is onstruted in suh a way that it allows the e�e-tive use of Cli�ord algebra in the desription of the geometrial entitieson the spherial surfae.1 IntrodutionCatadioptri ameras allow for a very large �eld of vision. This, in omparison topinhole ameras, enables the system to pereive more visual information with onesingle image. The non-Eulidean geometry of the image enables more e�ientself-alibration of the amera and redues the omplexity of algorithms neededto omplete this task [5℄.The mathematis used to model atadioptri ameras is slightly more ompli-ated than for pinhole ameras. The main problem in the appliation of Cli�ordalgebra to this modeling task is the loal nature of the vetor spae struture ona urved manifold. This problem is solved in the following setions for entral(single viewpoint) atadioptri systems, i.e. ameras with mirrors whose ross-setions are oni setions [1℄. A projetive model for paraboli, hyperboli andellipti mirrors is onstruted taking the sphere as the unifying geometry. Thismodel allows us to develop mathematial tools using Cli�ord algebra that areappliable to all these mirror geometries and works as a basis for our futureresearh.Cli�ord algebra has proven to be a powerfull tool in 2D-3D pose estimation(for example in [11℄,[12℄). Using the model presented in this paper we hope thesebene�ts gained in the Eulidean ase of pinhole ameras will also be available inthe omnidiretional vision using atadioptri ameras.2 Uni�ed mirror geometriesIn [5℄ Geyer and Daniilidis present a uni�ed model for single viewpoint atadiop-tri systems. In this model the world is �rst projeted to the surfae of a sphere
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with projetive lines emerging from the enter of the sphere. Stereographi pro-jetion from this spherial surfae orresponds to the orthogonal projetion froma paraboli mirror. Moving the projetion point from the north pole of the sphereone may present perspetive projetions from the surfaes of elliptial and hy-berbolial mirrors. Following the elegant desription for the equivalene of thestereographi projetion and orthogonal projetion from a parabola by Penroseand Rindler [9℄, the uni�ed model for single viewpoint atadioptri systems isreonstruted using a di�erent mathematial method. This leads to simple pro-jetions for the di�erent mirror geometries with a lear orrespondene to thepoints on the sphere.2.1 Modi�ed Stereographi ProjetionThe stereographi projetion is a one-to-one mapping between a sphere and aplane. Usually the sphere is de�ned along with the onept of ball:De�nition 1. A n-ball of radius r entered at the origin is the set B(0; r) =
{x ∈ R

n+1 | x2 ≤ r2}.The surfae S2 = {x ∈ IRn+1 | x2 = 1} of the unit 2-ball, is alled the sphere.Instead of using this more ommon onept of sphere as a subset of IR3 thesphere is now formed in the 4-dimensional Minkowski spae IR3,1, i.e. vetorspae with the signature (-,+,+,+). This is done in order to stay onsistent withthe referene [9℄ and it o�ers the possibility to indue movement of points onthe sphere by using Lorentz transformations whih are known to be loally anglepreserving.The vetors x ∈ IR3,1 with x2 = 0 form a one alled the null one. Letthe vetors in IR3,1 have the oordinates (t,x,y,z). The intersetion of the nullone and the plane t = 1 forms a sphere. In stereographi projetion a point
P (1, x, y, z) on this surfae is projeted to a plane T with z = 0 and t = 1 (see�gure 1). The projetive line is the line passing thru the north pole N and thepoint P . The intersetion of this line and the plane T gives the oordinates ofthe projeted point. To avoid inonsistenies in the projetion of the point Nthe plane T has to be omplex. This also enables the desription of the projetedpoint with just two parameters. Point A in �gure 1 orresponds to the omplexnumber x + iy. The x and y oordinates tell the position of the point P ′ in theomplex plane and this is desribed by the omplex number ζ = x′ + iy′. As thephase angle of the omplex number ζ = x′ + iy′ is the azimuthal angle of thepoint (P ′ has the same diretion from point C as point A) P (1, x, y, z) on thesphere one has

A = hP ′ i.e x + iy = hζ, (1)where h is a real oe�ient. The value of h is by geometri dedution (see �gure1)
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Using spherial oordinates (0 ≤ φ ≤ 2π, 0 < θ, π) to parameterise the sphereone gets
ζ =

x + iy

1 − z
= eiφ cot

θ

2
. (3)As in the model by Geyer and Daniilidis the onnetion of di�erent mirrorgeometries and the sphere is ahieved by the movement of the projetion point

N . We start by moving the projetion point N along the z diretion whihhanges equation (2) to
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= 1 − β−1z, (4)and equation (3) to
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= eiφ sin θ

1 − α cos θ
, where α = β−1. (5)

Fig. 1. Stereographi projetion from sphere S to plane T . Only half of the Sphere Sis drawn.2.2 Connetion to Coni SetionsThis movement of the projetion point is related to di�erent oni setions inthe following way. Let a null one in IR3,1 be interseted by the plane t− z = 1.This intersetion forms a parabola. Let Q be a point of intersetion of that planeand a line from the vertex of the one to the point P given by q = up, where
0 ≤ u ≤ 1, q is the vetor pointing at the point Q and p is the vetor pointingat P (this is illustrated in the right part of �gure 2). Solving the intersetion of



the line de�ned by p and the plane t − z = 1 gives u = 1

1−z
. Thus point Q hasthe oordinates
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, (6)from whih the oordinates in the x − y-plane given by orthogonal projetionare
P ′(X ′, Y ′) =
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)

. (7)Labeling the points in the (x − y)-plane with omplex numbers the point Q isprojeted to a point ζ = x+iy
1−z

as in (3). This equivaleny of the stereographiprojetion from a sphere and the orthogonal projetion from a parabola an beshown by interseting planes. Let plane t = 1 interset the null one with vertex
O. This intersetion is the spherial surfae S2. Let the north pole N of thesphere be at (1, 0, 0, 1) and point Q be the intersetion of the null line from O to
P and the plane t − z = 1. The points O, Q, P, P ′ and N are oplanar and thepoints P, P ′ and N are ollinear [9℄. Thus the point P ′ is also the stereographiprojetion from the sphere S to the (x − y)-plane (see �gure 2 representing thesituation in one dimensional ase).

Fig. 2. Orthogonal projetion from parabola and stereographi projetion from irle.The parabola is formed by the intersetion of the one and the (non-transparent)
t − z = 1 plane.Tilting the t − z = 1 plane to the plane t − αz = 1 hanges the oordinatesof Q to

Q =

(

1

1 − αz
,

x

1 − αz
,

y

1 − αz
,

z

1 − αz

)

, (8)and the oordinates of the projeted point to
P ′(X ′, Y ′) =

(

x

1 − αz
,

y

1 − αz

)

, (9)



where α is the eentriity of the oni setion. Exatly as in (1) the projetedpoint has the oordinates
ζ =

x + iy

1 − αz
. (10)Moving the projetion point N in the x diretion in the stereographi projetionorresponds to keeping the points O, P, P ′, Q and N oplanar. This is illustratedin �gure 3.

Fig. 3. Moving the point N keeps the points O, P, P ′, Q and N oplanar for di�erentoni setions (enter of the oni O not seen in image). The image on left shows thehyberboli ase and the image on right the ellipti ase.In order to use the equation (10) in ellipti and hyperboli ases the orthog-onal projetion has to be hanged to a perspetive projetion [2℄. Let c be thedistane between the foi and d the distane of the image plane from the seondfoal point. Then the point ζ will be projeted to the point
ζ′ = −

d

c
ζ (11)in the hyperboli ase and

ζ′ =
d

c
ζ (12)in the ellipti ase.With this onstrution the projetions from di�erent oni setions have sim-ple equations whih are easy to implement in appliations.3 Spherial spae and Cli�ord algebraIn this setion a projetive model for the sphere is onstruted in suh a way thatit allows the desription of geometrial entities on the sphere with simple alge-brai expressions. In ontrast to the previous setion the sphere is now embeddedto IR3 as usual. This means that we onsider only the subspae (1, x, y, z) of IM4



and this subspae has the same struture as IR3. In this subspae the sphere anbe desribed with the set of vetors r(θ, φ) = sin(θ) cos(φ)e1 + sin(θ) sin(φ)e2 +
cos(θ)e3.3.1 Cli�ord algebra in parameter spaeLet (V, g) be a vetor spae V equipped with a symmetri bilinear form (i.e. innerprodut) g. Algebra A over a ring R is ompatible with the inner produt spae
(V, g) if V is a subspae of A and for eah x ∈ V , x2 = g(x, x). Cli�ord algebra
Gp,q,r is the ompatible algebra for IRp,q,r [8℄, where p, q, r are the numbers ofunit vetors with positive, negative and null signature.Let {e1, e2, . . . , en} be an orthonormal basis for IRn. Then the Cli�ord al-gebra Gn has dimension 2n and basis {eǫ1

1 eǫ2
2 . . . eǫn

n |ǫi = 0, 1}. For example theCli�ord algebra G3 of IR3 has the basis {1, e1, e2, e3, e1e2, e1e3, e2e3, e1e2e3}In pratie it is useful to separate the geometri produt of Cli�ord algebrain it's symmetri and antisymmetri parts: xy = 1

2
(xy + yx) + 1

2
(xy − yx) =

x·y+x∧y, where (·) is the inner produt and (∧) is the outer produt ([6℄ ontainsa good introdution to the geometri produt from a pratial viewpoint).Cli�ord algebra has proven to be a helpful tool in many appliations withstrong relation to geometry. Geometri transformations an be presented withsimple geometri produts and the inner and outer produt null spaes are asimple way to present geometri entities of any dimension [10℄.With the usual de�nition 1 of the sphere these bene�ts are lost as the innerand outer produt null spaes desribe the geometrial entities of the embeddingspae instead of the sphere itself. For example a line in IRn has at most two pointsommon with the sphere. A onformal model for spherial geometry applyingthis kind of embedding an be found in [7℄. Another possibility would be to usethe Cli�ord algebra in the tangent spaes of S2, whih is rather useless beauseit an only desribe in�nitesimal entities on the manifold.A sphere an be parameterized in a number of ways. Parameterization withthe least amount of ambiguities is the stereographi projetion to the omplexplane desribed in the previous setion. In this projetion the geodesi urves aremapped to urves in the omplex plane, a fat whih ompliates their desrip-tion with Cli�ord algebra. Instead, using the parameterization with azimuthaland polar angles (φ, θ), 0 ≤ φ < 2π, 0 < θ < π the geodesi lines have a simpledesription. Retangular objets in projetion on to the sphere an be desribedwith lines in the (φ, θ) spae and thus retain the 'retangularity'. Figure 4 showshow the image aptured with a paraboli mirror is transformed to the V (θ, φ)spae using (3).To remove the periodiity in φ and θ on the image the following saling isused:
φ′ =

φ

2π − φ
and θ′ =

θ

π − θ
. (13)The vetor spae V (θ′, φ′) equipped with the Eulidean inner produt is learlyisomorphi to IR2. Using the Eulidean inner produt in V (θ′, φ′) areas alu-lated in parameter spae di�er from areas on the sphere. When needed a saling



Fig. 4. Image aptured with a parabolial mirror and its mapping to V (φ, θ).between these areas an be alulated. Frequently used angular size ∆α of anobjet is, for example, given by ∆α =
√

(φ2 − φ1)2 + (θ2 − θ1)2. Instead of usingjust the parameter spae V (φ′, θ′) a projetive model is de�ned.3.2 Cli�ord Algebra in the Projetive ModelDe�nition 2. The projetive model of the sphere is the spae SP = V (φ′, θ′) ×
{IR\0} equipped with the Eulidean inner produt. The basis of SP is {eφ′ , eθ′, ep}.The orresponding Cli�ord algebra G(SP ) ∼= G(IR3) has the basis

{1, eφ′, eθ′ , ep, eφ′eθ′ , eφ′ep, eθ′ep, eφ′eθ′ep}. (14)A vetor in x ∈ V (φ′, θ′) is embedded in SP with the mapping
P : x ∈ V (φ′, θ′) 7→ x + ep ∈ SP . (15)The inverse of P is

P−1 : A ∈ SP 7→
1

A · ep

[(A · eφ′) eφ′ + (A · eθ′) eθ′ ] (16)In this projetive model Eulidean inner and outer produt null spaes, NIE and
N⋊E , give a simple desription for points, lines and planes on the parameterspae V (φ′, θ′). As an example let A, B, C ∈ SP . Now

NO(A ∧ B) = {C ∈ SP | A ∧ B ∧ C = 0} . (17)As only the perpendiular omponent of C ontributes to (17) one gets
NO(A ∧ B) = {C ∈ SP | A ∧ B ∧ C⊥ = 0} , (18)i.e. C lies in the plane spanned by A and B. The orresponding eulidian outerprodut null spae is given by the projetion of the plane A ∧ B to V (φ′, θ′):

NOE (A ∧ B) = P−1 (NO(A ∧ B)) =

P−1 (αA + βB) = P−1 (αA − αB + αB + βB) =

P−1 [α(A − B) + (α + β)B] = b +
α

α + β
(a − b)

= b + t(a − b), t ∈ IR, (19)



whih is a line in through points a and b in V (φ′, θ′). In a similar manner
NOE(A) = a.In order to onsider also the radial position of objets in the enviromentof the amera one has to add also the radial dimension er to the model. Thisaddition does not have any other e�et on the model than the addition of oneextra dimension.4 ConlusionIn this paper a simple method for unifying entral atadioptri systems waspresented. Using Cli�ord algebra on the parameter spae of the sphere allowsan e�ient method for desribing retangular objets that are also mapped toretangular objets in the parameter spae. This has not been possible in theprevious models using Cli�ord algebra [3℄,[4℄.Using the parameter spae of the sphere the distane ∆φ between points onthe geodesis of the sphere have the simple form ∆φ =
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