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Abstract. The paper develops three extended Kalman filters (EKF)
for 2D-3D pose estimation. The measurement models are based on three
constraints which are constructed by geometric algebra. The dynamic
measurements for these EKF are either points or lines. The real monoc-
ular vision experiments show that the results of EKFs perform more
stable than that of LMS method.

1 Introduction and problem statement

The paper describes the design of EKFs which are used to estimate pose param-
eters of known objects in the framework of kinematics. Pose estimation in the
framework of kinematics will be treated as nonlinear optimization with respect
to geometric constraint equations expressing the relation between 2D image fea-
tures and 3D model data.

The problem is described as follows. First, we make the following assump-
tions. The model of an object is given by points and lines in the 3D space.
Further we extract line subspaces or points in an image of a calibrated camera
and match them with the model of the object. The aim is to find the pose of
the object from observations of points and lines in the images at different poses.
Figure 1 shows the scenario with respect to observed line subspaces. The method
of obtaining these is out of scope of this paper.

To be more detailed, in the scenario of figure 1 we describe the following
situation: We assume 3D points {y;} and lines {S:}, ¢ = 1,2, ..., belonging to
an object model. Further we extract points {b;} and lines {l;} in an image of a
calibrated camera and match them with the model.

Three constraints can be depicted:

1. Point-line constraint: A transformed point, e.g. 1, of the model point y1
must lie on the projection ray Ls,, given by the optical center ¢ and the
corresponding image point b;.

2. Point-plane constraint: A transformed point, e.g. Z1, must lie on the projec-
tion plane P2, given by c and the corresponding image line I;.

3. Line-plane constraint: A transformed line, e.g. L., of the model line §; must
lie on the projection plane Pi2, given by ¢ and the the corresponding image
line 14.

We want to estimate optimal motion parameters based on these three con-
straints which formally are written [1, 2] in motor algebra [3, 4, 5] as
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Fig.1. The scenario. The solid lines at the left hand describe the assumptions: the
camera model, the model of the object and the initially extracted lines on the image
plane. The dashed lines at the right hand describe the actual pose of the model, which
leads to the best fit of the object with the actual extracted lines.

Point-line constraint: XiLy, — Ly, X1 =1I(mq1 —ny xx1) =0,
Point-plane constraint: Pj,X,; — X1Py2 =1I(dy +p1-x1) =0,
Line-plane constraint: Ly Py + Pi2Ly = uy - p1 + I(diuy — py ¥ v1) = 0.

In above equations, we denote the point X3 = 1+ Iz, the lines Liyy =
n1 + I'm; and Ly = u; + ITv; and the plane P12 = py + Id;. More detailed
derivation and interpretation of these constraints are described in [1, 2]. We
use rotor algebra to describe points and their 3D kinematics and motor algebra
to present lines and to model their kinematics. The reason we use rotor and
motor algebra instead of matrix algebra is as follows. In EKF we define the state
vector to be estimated is the parameter vector of rotation and translation. By
rotor and motor algebra, there are 7 and 8 parameters, respectively. If we directly
use matrix algebra, there will be up to 12 parameters (9 for rotation and 3 for
translation). It is obviously that rotor or motor algebra will be more efficient.
Moreover, using motor algebra we linearize the 3D Euclidean line motion model
straightforwardly.

There are several approaches of optimal pose estimation based on least square
methods [6]. Our preference is to use EKF for pose estimation because of their
incremental, real-time potential and because of their robustness in case of noisy
data. The robustness of the Kalman filter results from the fact that stronger
modeling of the dynamic model is possible using additional priors compared to
usual LMS estimators.

Because EKF means a general frame for handling nonlinear measurement
models [7], the estimation of each considered constraint requires an individually
designed EKF. The commonly known EKFs for pose estimation are related to
3D-3D point based measurements. The only EKF for line based measurements
has been recently published by the authors [3]. But also that one has to esti-
mate the motion of a line from 3D-3D measurements in motor algebra and not
from 2D-3D measurements as in this paper. Zhang and Faugeras [8] used line
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segments in the frame of a point based standard EKF. Bar-Itzhack and Oshman
[9] designed a quaternion EKF for point based rotation estimation.

The paper is organized as follows. After introduction and problem statement,
in section two we will present three EKF approaches for motion estimation. In
section three we compare the performance of different algorithms for constraint
based pose estimation.

2 The Extended Kalman Filter for pose estimation

In this section we want to present the design of EKFs for estimating the pose
based on three constraints. Because an EKF is defined in the frame of linear
vector algebra, it will be necessary to map the estimation task from any chosen
algebraic embedding to linear vector algebra (see e.g. [3]), at least so long no
other solution exists. We present the design method in detail for constraint no.1
in subsection 2.1. The design results for constraints no.2 and 3 will be given in
subsections 2.2 and 2.3, respectively.

2.1 EKF pose estimation based on point-line constraint

In case of point based measurements of the object at different poses, an algebraic
embedding of the problem in the 4D linear space of the algebra of rotors g;",o,o,

which is isomorphic to that one of quaternions IH, will be sufficient [4, 3]. Thus,
rotation will be represented by a unit rotor R and translation will be a bivector
t. A point y; transformed to &, reads

r1 = Ry]_R + .
We denote the four components of the rotor as
R =19+ 110003 + 120301 +7130102.

To convert a rotor R into a rotation matrix R, simple conversion rules are
at hand:

ré +r13—r3—1r3 2(rira+7ror3) 2(rirs —rorT2)
R = 2(rira —Tor3) T8 — 713+ 713 —13 2(rors +roT1)

2(rirs +1or2)  2(rorz —7ror1) T8 — 7 —713 4713

In vector algebra, the above point transformation model can be described as
X1 = Ryl + t.

The projection ray L, in the point-line equation is represented by Pliicker
coordinates (nj,m;), where n; is its unit direction and m; its moment. The

point-line constraint equation in vector algebra of R® reads
fl =1mj; —1nj XX3 =13 —1ng X (RYI +t):0.

Let the state vector s for the EKF be a 7D vector, composed in terms of the
rotor coefficients for rotation and translation,

S (RT: tT)T = (TO'.! r1,7T2,T3, tl: ta, t3)T
The rotation coefficients must satisfy the unit condition
fb=R"R-1=r2+r2+r2+r2-1=0.

The noise free measurement vector a; is given by the actual line parameters
n; and m;, and the actual 3D point measurements yj,

. T o TNT i
ai—(ni » M, ¥ ) —(nﬂ;nz‘%nzﬂ;mﬂ,mizamiB:yilayi%yi:ﬂ) .
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For a sequence of measurements a; and states s;, the constraint equations

& f1; _(mj —n; X ('R’.iyi -+ ti) -
fiai, &) = (fzi) a (RiTRi —1 =0

relate measurements and states in a nonlinear manner. The system model in this
static case should be

Si+1 = Si + (i,
where (; is a vector random sequence with known statistics,
E[¢;] =0,
E[¢{ ¢u] = Qidix,

where d;i is the Kronecker delta and the matrix Q); is assumed to be nonnegative
definite.

We assume that the measurement system is disturbed by additive white noise,
i.e., the real observed measurement a! is expressed as

a: = a;+n;.
The vector n; is an additive, random sequence with known statistics,
E[ni] - O:
Enin.] = Widix,
where the matrix W;j is assumed to be nonnegative definite.
Since the observation equation is nonlinear (that means, the relationship
between the measurement a; and state s; is nonlinear), we expand fj(aj, s;) into

a Taylor series about the (aj, 8;/;_1), where a] is the real measurement and §; fi—1

is the predicted state at situation 7. By ignoring the second order terms, we get
the linearized measurement equation

z; = His; + &;,
where = of; (a‘-', 8i/i—1) .
z; = fi(a},8i/i-1) — — 165-1/1 Si/i-1

ml = n! X (R — iyl + L
. Af}" ],. ( i/i pigs i/i 1) +Hi§i/i—1-
R/ —1Riji-1 —1

The measurement matrix H; of the linearized measurement z; reads

_ Ofi(ay,8i/i-1) (Cnépﬁyf Cu; )

H: =
! Os; Dr 01x3

where
~ T &
_ Ry 1Ry — 1)
o OR;
= (=2F(/i-10 —2F@/i-11 —2F@/i—1)2 —2F@/i-1)3 )

R
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IRy [ % B te B
Ryl = IR, = 4 —az dz —a
—ds —dy4 di da
dy = 2@(:‘/»;-1)0’9’21 =+ f{i/i—l)ayiz - f'(z‘/i—l)zyis):
d2 = 2(F(i/i—1)1Y51 + Flijim1)2Yia + T(i/i-1)3Yi3)»
ds = 2(—?‘“(1-/3-_1]2?;;1 g0 7:(1'/'1'—1)1:9';2 - ﬁ(z‘/ﬂi—l)o’!,i’;s)a
da = 2(—F(;/i—1)3Yi1 + T(i/i—1)0Yie + T(i/i-1)1¥i3)-

D

2

The 3 x 3 matrix C,,; is the skew-symmetric matrix of nj. For any vector y,
we have C,/y = n; x y with

! !
(? —TNyg ”i%
Cn; = ”zfg [3 —Ni
—Tgp Ty 0

The measurement noise is given by

ofi(aj, 8i/i—1) _ Ofi(ay,8i/i-1)

& = 9a: (ai — aj) o 7;
1 1
- (Cii/i—-l 13X3 _Cn:ﬁ'ifi-- 1) 7?_
O1x3 Oixs 01x3 w55

where I3y 3 is a unit matrix and Cx, o is the skew-symmetric matrix of X;/;_1
with . R
Xifi-1 = Risi—1yi + tizi—1.

The expectation and the covariance of the new measurement noise §; are
easily derived from that of a; as

E[&;] = 0,
afi(af,éi i— ) 8fi(af,§i i—1)
T - ir2ifi—1 $3 9%/
E[£1 £i] - vl - ( 6ai 83;

The EKF motion estimation algorithms based on point-plane and line-plane
constraints can be derived in a similar way. We list the results below.

IWi( }F

2.2 EKF pose estimation based on point-plane constraint

The projection plane P12 in the point-plane constraint equation is represented
by (di,p1), where d; is its Hesse distance and p; its unit direction. The point-

plane constraint equation in vector algebra of R® reads
d]_ - plT(‘Rxl + t) =}

: 5 i
With the measurement vector a; = (d;, piZ,yi?) and the same state vector
s as above, the measurement z; of linearized measurement equation reads

dl =P TR i vt + s
z; = an P; S i/i 1y1+ i/i 1) +%i§i/i—1-
Riji—1Riji1 -1

The measurement matrix #; of the linearized measurement z; now reads
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; T
iy = (plTDﬁyf Pi ) ‘
Dr O1x3

The measurement noise is given by
& = (1 ~(Riji—1vi + ti/im1)T — (0 Ry — 1)) .
. O 01 >3 01 x3 2%T !

2.3 EKF pose estimation based on line-plane constraint

Using the line-plane constraint, the reference model entity in Gio1 [3, 4] is the

Pliicker line S1 = ny + Imq. This line transformed by a motor M = R+ IR’
reads

Ly =MS;M=Rn,R+ I(Rnlfi’ + R'niR+ lef{) =wuj + Iv;.
We denote the 8 components of the motor as
M=R+IR'

=To +T172Y3 +T2vav1 + r3vive + I(rg + r1727y3 + Ty Y31 + T3Y172)-
The line motion equation can be equivalently expressed by vector form,

u; = Rlll,
vi =An; + Rm;,,
with aii aiz ais
A= az1 Q22 Q23 |,

431 Q32 433
a1 = 2(roro + i1 — ToT2 —T57T3), Q12 = 2(riro + rhry + TiT2 + T4T3),
ais = 2(—7"27'[] -+ Té?‘_‘[ - TE}T‘Q —+ ?‘iT3), as; = 2(—1"%7‘0 -+ rérl -+ T‘i’f‘g — 7‘61‘3),
a2z = 2(roro — 7171 + T2 —TET3), a3 = 2(riro + 141 + ThT2 + 1h7T3),
az1 = 2(roro + 1471 + 4T +7h7T3), ass = 2(—riro — Tor1 + T47T2 + ThT3),
aszz = 2(roro — 171 — T4 + T473).

The line-plane constraint equation in vector algebra of R® reads

fi) _ (pi"w _ (Pi"(Rny) —0
diuag + Vi X p1 diRnq + (.«4111 -+ le) X P1 )

We use the 8 components of the motor as the state vector for the EKF ,

s = (ro,71,72,73,79,7],Th,75)"T

and these 8 components must satisfy both the unit and orthogonal conditions:
f3 =7‘S +*rf +r§+'r§ —1=0,
fa =rorg + rir] + rorh + 137 = 0.

The 10D noise free measurement vector a; is given by the true plane param-
eters d; and p;, and the true 6D line parameters (nj, m;),

TAT T
)= (di,Pﬂ,Piz;Pz‘s,nz‘l,mz,ﬂis,mn,mﬁz,mia) .
The new measurement in linearized equation reads
T i !
P; (Risi—1nj) A A
r ' ! ! !
dig_?—i/i — 1105 + (Aiji— 1n{ + Ry _ 1m}) x p|

I" T
aj = (di)pi y i, 1T

Rjj[i —1Riji1 -1 + #HiSijio1-

Ri/i — 1R{/i._.1

1
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The measurement matrix ; of the linearized measurement z; reads

—P;Tpﬁ_nr O1x4
%i _ _d’i’D'ﬁ.n’ -+ Cp'; (Dinf -+ D.Rmf) CP;Dﬁn’ ’

Dr 01x4

DR; %DR
(R ;i _ 1)) 8(R, ) _,m)) o(A, s _ n;)
where D, + = 'éhil —, Dy = lgRil =, D gy = léi:lil )

- T ~ ~ T -
Ry — 1R ;1) 1 o(Risi—1R{/; )

The 3 x 3 matrix Cp is the skew-symmetric matrix of pj.
The measurement noise is given by

0 nf"Ryioa P Risioa 01xs3
&= | Risi—1ng Cs; diRisi—1—CptAizi—1 —CpiRizi—1 | T
0243 0243 O2x3 O2x3

where Cy, is skew-symmetric matrix of ¥;, and v; is defined as
Vi = Ajsi —10{ + Ryi - 1my.
Having linearized the measurement models, the EKF implementation is straight-
forward and standard. Further implementation details will not be repeated here
[2, 7, 3, 8]. In next section, We will denote the EKF as RtEKF, if the state ex-

plicitly uses the rotor components of rotation R and of translation t, or MEKF,
if motor components of motion M is used.

2.4 Some notes about the algorithms

Here we will give some specific notes on EKF algorithms.

The EKF algorithm requires an initial guess of motion not very far from
the true one. One reasonable hypothesis is that the motion is “small”. So we
can set the initial guess as “no motion”: s;0 = (1 0 0 0 0 0 0)* and

si0=( 0 0 0 0 0 0 0)7 for R&EKF and MEKF, respectively. In
experiments, the estimate converges rapidly from the initial guess to near the
true one within 4 or 5 runs, but for a qualified estimation, more than 15 runs
are required.

In our experiments, we find, if the translation ||t|| >> 1, the algorithms based
on constraints no. 1 and no. 3 will frequently diverge. The reason is that these
constraints contain cross product terms. Such situation can be analyzed by the
equation of measurement noise &;. In constraint no. 1, suppose we set the origin
of the coordinate system at somewhere on the reference model. If the estimated
translator ||€;|| > 1, then, (usually) ||$i]| > 1. That will directly cause the
components of the covariance matrix V; to be far greater than that of the original
covariance matrix Wj. Such enlarged noise will easy make the EKF diverging.
To solve this problem, we simply multiply the measurement function by a scalar
as follows. At the beginning of the algorithm, we check the distance, ||my ||, of the
projection line Ly, . If ||m;]| > 1, we can use a modified measurement equation

fi /||lmi|| = m;/||lm;|| — n; x (Riyi/||mis|| + ti/[jmisl]) = 0.
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At the end of the algorithm we multiply the estimated translation tr = €;/||myj||

by ||m;|| to recover the true estimation t;. Similar analysis can be done for
constraint no. 3. In case of constraint no. 3, we use the distance , d;, of projection
plane Pj;, that means, divide f; by d;. At the end of the algorithm, we multiply

the estimated dual part B;.;.'*, fi;." = Iii /di, by d; to recover the true estimation
i

3 Experiments

In this section we present some experiments by real images. The aim of the ex-
periments is to study the performance of the EKF algorithms for pose estimation
based on geometric constraints. We expect that both the special constraint and
the algorithmic approach of using it may influence the results. This behavior
should be shown with respect to different qualities of data.

In our experimental scenario we took a B21 mobile robot equipped with a
stereo camera head and positioned it two meters in front of a calibration cube.
We focused one camera on the calibration cube and took an image. Then we
moved the robot, focused the camera again on the cube and took another image.
The edge size of the calibration cube is 46 cm and the image size is 384 x 288
pixel. Furthermore we defined on the calibration cube a 3D ob ject model.

In these experiments we actually selected certain points by hand and from
these the depicted lines are derived and, by knowing the camera calibration, the
actual projection ray and projection plane parameters are computed.

The results of different algorithms for pose estimation are shown in table 1
In the second column of table 1 RtEKF and MEKF denote the use of the EKF,
MAT denotes matrix algebra, SVD denotes the singular value decomposition of
a matrix to ensure a rotation matrix as a result. In the third column the used
constraints, point-line (XL), point-plane (XP) and line-plane (LP) are indicated.
The fourth column shows the results of the estimated rotation matrix R and
the translation vector t, respectively. The fifth column shows the error of the
equation system. Since the error of the equation system describes the Hesse
distance of the entities [1], the value of the error is an approximation of the
squared average distance of the entities.

In a second experiment we compare the noise sensitivity of the various ap-
proaches for pose estimation. Matrix based estimations result in both higher
errors and larger fluctuations in dependence of the noise level compared to EKF
estimates. This is in agreement with the well known behavior of error propaga-
tion in case of matrix based rotation estimation. The EKF performs more stable.
This is a consequence of the estimator themselves and of the fact that in our
approach rotation is represented as rotors. The concatenation of rotors 1s more
robust than that of rotation matrices.

4 Conclusions

In this paper we present three EKF algorithms for 2D-3D pose estimation. The
alm of the paper is to design EKFs based on three geometric constraints. The
model data are either points or lines. The observation frame is constituted by
projection lines or projection planes. Any deviations from the constraint corre-
spond the Hesse distance of the involved geometric entities. The representation
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no. R —t Constraint Experiment 1 Error|

0.986 0.099 —0.137 —35.66
R = t= | —203.09 4.5
156.25

—0.127 0.969 —0.214)
0.986 0D.115 —0.118 —37.01
2 |[RtEKF — RtEKF| XP-XP |R = —0.141 0.958 —0.247 t = —198.55 5.5

1 |[RtEKF — RtEKF| XL-XL
0.111 0.228 0.967

0.085 0.260 0.962 154.86

0.985 0.106 —0.134 —53.30

(—0.133 0.968 —0.213 t = (-—214.37 2.6
138.53

—=BT.78

t = —227.73

123.90

0.108 0.228 0.968
—66.57
—216.18 g
100.53

0.985 0.106 —0.134
4 MEKF — MAT LP-LP |R = —0.133 0.968 —0.213

Table 1. The results of experiment 1, depending on the used constraints and algorithms

to evaluate their validity.

3 | MEKF — MEKF | LP-LP |R

(]
=~

0.108 0.228 0.968

0.149 0.289 0.945

0.976 0.109 —0.187
5 SVD — MAT LP-XP |R = —0.158 0.950 —0.266 t
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Fig. 2. Performance comparison with increasing noise. The EKF's perform with more
accurate and more stable estimates than the matrix based method.




