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Abstract

We present a conceptually simple algorithm for dense image
point matching between two colour images. The algorithm
is based on the assumption that the topology only changes
slightly between the two images. Following this assumption
we use an iterative fuzzy inference process to find the likeli-
est image point matches. Advantages of this algorithm are
that it is fundamentally parallel, it does not need any exact
geometric information about the cameras and it can also
give image point matches within homogeneous areas of the
two images.

1 Introduction

Image point matching is important for many aspects of
Computer Vision. Most notably for stereo vision and op-
tical flow [1]. There are a number of strategies to reduce
the complexity of the problem in the case of stereo vision.
One is to simplify the task by extracting features in the two
images, which are then matched [2, 3]. An obvious draw-
back of this approach is, that only certain areas of the images
are matched. Of course, depending on the application, this
may be sufficient. However, feature based 3D reconstruc-
tion from a stereo image pair only gives us a sparse model
of the 3D world.

There are quite a number of algorithms which produce
dense disparity maps, given the geometry of the camera sys-
tem [4, 5, 6, 7]. Most of these algorithm make their decisions
locally without taking into account global constraints on the
image point matches. Marr and Poggio [8, 9] were one of the
first to apply global constraints to dense disparity map algo-
rithms. Their assumptions about stereo were uniqueness and
continuity of a disparity map. We apply similar constraints
directly to the images. An interesting paper in this context is
[10], where a scale-based connectedness on images is used
for image segmentation.

In [11] Barnard and Thompson present an algorithm
which also assumes a continuous disparity map. They use

this constraint to find the disparity of feature points in two
images, exploiting the fact that nearby feature points should
have similar disparity values. The probability of the cor-
rect disparity values is then estimated through an iterative
relaxation labeling technique. The basic ideas in [11] are
quite similar to our fundamental matching strategy. How-
ever, their algorithm only applies to feature points and the
actual implementation of the constraints is quite different to
ours.

Another approach to dense matching is to assume that
there is an affine transformation between the two images
[12]. Finding the appropriate affine transformation is then
a least squares problem. A drawback of this approach is that
the parameter search space might be quite big. Furthermore,
the approximation of what is really a projective transforma-
tion by an affine transformation, may fail for close range
objects.

In this paper we present an algorithm which attempts to
match two colour images pixel by pixel. To achieve this we
make somequalitativeassumptions about the geometry of
the camera system that took the images and the 3D objects
we look at. We donot need to know the exact epipolar ge-
ometry of the camera setup, though.

2 Theory

The general task of matching two images taken from quite
different view points of the same 3D object, is quite hard.
Here we try to simplify this task by making certain assump-
tions about the camera setup and the 3D objects we look at.

1. The two cameras are separated more or less horizon-
tally by a small distance.

2. The vertical axes of the two cameras are approximately
aligned and the optical axes point to the same area in
the 3D scene.

3. There are no depth discontinuities in the 3D scene.
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First of all note that these assumptions are only of aqual-
itative nature. That is, we do not need to know the exact
geometry of the camera setup. Assumption 3 is quite strict,
especially since there are typically quite a number of depth
discontinuities in 3D scenes. The effect of this assumption
will be discussed later on.

Assumptions 1 and 2 basically model the geometry of
the human visual system. They ensure that the changes in
the two generated images are not too big, i.e. in the order of
a few pixels. Taking the three assumptions together gives us
yet another bit of information. Let us denote the two given
images byA andB, respectively. A pixel at position(x, y)
in imageA is denoted byAx,y and similarly for imageB
by Bx,y. Let (Ai,j , Br,s) be a pixel match between images
A andB. Then it follows from the three assumptions that
pixel Ai+1,j should have a matchnearBr+1,s in imageB,
and similarly for the other pixels adjacent toAi,j . That is,
we basically assume that the topology of the two images is
similar.

In order to use this information we have to be able to
evaluate the similarity between two pixels. When using gray
images this is simply the difference between the gray values
of the pixels. However, gray images contain much less in-
formation than colour images, which is why we chose to
use the latter. Evaluating the similarity of two colour pixels
is not as straight forward as for gray pixels, though. The
method we used is described later. For now let us assume
that we have a functionψ(Ai,j , Br,s) which gives the simi-
larity between pixelsAi,j andBr,s. ψ returns a value in the
range[0, 1] ⊂ R, whereby1 denotes equality and0 inequal-
ity. Calculatingψ for each pixel in imageA with all pixels
in imageB gives a set of similarity distributions. We de-
fine Ψi,j

r,s ≡ ψ(Ai,j , Br,s), which can be regarded as a four
dimensional, discrete fuzzy set. For each(i, j) the matrix
Ψi,j
•,• is thus a 2 dimensional, discrete fuzzy set. Looking at

the similarity distributions in this way, we can start thinking
about applying fuzzy logic operators to these sets.

Before we start describing the algorithm, we will give
a very short introduction to fuzzy sets and fuzzy operators.
Fuzzy sets can be used to describe inexact or ”fuzzy” infor-
mation. With standard sets we can either say that an object is
an element of this set or not. That is, for any subsetA ⊂ X
of some setX there exists a functionfA : X → {0, 1},
which says for any elementx ∈ X whetherx ∈ A or not. If
fA(x) = 1 thenx ∈ A and if fA(x) = 0 thenx 6∈ A. The
idea behind fuzzy sets is to define adegree of membership
by a value between0 and1. In order to model a fuzzy setA
onX, a membership functionµA : X → [0, 1] is introduced
which returns the degree of membership of anyx ∈ X toA.
In our algorithm we can interpret eachΨi,j as a fuzzy set,
where the degree of membership of a pixelBr,s to this set is
given byΨi,j

r,s, the discrete membership function.
Fuzzy setsA,B can also be combinedA ∪ B and inter-

sectedA ∩B. This is done through their membership func-

tionsµA, µB , via two functionss, t : [0, 1]× [0, 1] → [0, 1],
the so calleds-norm andt-norm. That is,µA∪B(x) :=
s(µA(x), µB(x)) andµA∩B := t(µA(x), µB(x)). The ac-
tual form ofs andt depends on the application. The func-
tionss, t may for example be defined asmax,min, respec-
tively. In this way,s represents the logical OR operator and
t the logical AND operator. An appropriate choice ofs and
t is in fact quite important for our algorithm.

We will express the topological similarity between im-
agesA and B in the following way. As before, let
(Ai,j , Br,s) be an image point match. Then we say that pixel
Ai+1,j has probabilityρ0 to match with pixelBr,s, proba-
bility ρ1 to match withBr+1,s, probabilityρ2 to match with
Br+1,s+1 and probabilityρ3 to match withBr+1,s−1.

Figure 1:Schematic representation of similarity distribution patch
Ψi,j

r,s surrounded by neighbouring patches. Numbers0, 1, 2, 3 in-
dex pixels on imageB that are candidates for matching corre-
sponding pixel on imageA.

Figure 1 shows the similarity distributions
Ψi,j ,Ψi+1,j , . . ., for pixel Br,s and its adjacent pixels.
The indices0, 1, 2, 3 indicate the pixels on imageB that are
candidates for matching the corresponding pixel on image
A. For example, pixelAi+1,j has the similarity distribution
Ψi+1,j shown at the center right of figure 1. Assuming
that the topologies of imagesA andB are similar, pixel
Ai+1,j could match only with the pixels indexed0, 1, 2, 3 of
imageB, as shown in the figure. The indices0, 1, 2, 3 also
refer to the index of the probabilities{ρi} for each match.
Furthermore, we will writeΨi,j

k to denote the pixel with
index k in Ψi,j . The pixels indexed with1 give the main
topological direction. By this we mean that if imagesA
andB were identical, the pixels along the main topological
direction would give the correct match.

Now we can formulate the condition that a pixel match
has to satisfy, if it is a correct match. Note that this is a
fuzzy inference process, since we are working with fuzzy



sets. The AND (∧) and OR (∨) operators we will use in
the following therefore refer to fuzzy logic operators. In
principle they may be implemented with anyt-norm ands-
norm, respectively.

We evaluate the confidence that a point pair(Ai,j , Br,s)
is indeed an image point match, using the following expres-
sion. [ ∧

(u,v)

(∨
k

(ρkΨi+u,j+v
k )

)]
∧ Ψi,j

r,s, (1)

wherek ∈ {0, 1, 2, 3} and(u, v) ∈ S, with

S :=
{

(1, 0), (1, 1), (0, 1), (−1, 1),

(−1, 0), (−1,−1), (0,−1), (1,−1)
}
.

The inner OR operation of equation (1) goes over all in-
dexed pixels for the particularΨi+u,j+v similarity distribu-
tion. The outer AND operation counts over all similarity
distributions surrounding the central distribution. The setS
simply defines the appropriate offset vectors.

In words equation (1) says that the point pair(Ai,j , Br,s)
is an image point match if the pixels themselves are sim-
ilar AND pixel Ai+1,j is similar toBr,s OR Br+1,s OR
Br+1,s+1 ORBr+1,s−1, AND pixel Ai+1,j+1 is similar to
Br,s OR etc.

The confidence value returned by equation (1) lies in the
range[0, 1]. We could use this value directly or as the input
to some decision functionφ. To stay as general as possible,
we will use the latter. Applying equation (1) for each pair of
image points produces a new set of confidence values.

Φi,j
r,s := φ

([ ∧
(u,v)

(∨
k

(ρkΨi+u,j+v
k )

)]
∧ Ψi,j

r,s

)
. (2)

Φi,j
r,s gives a confidence measure that pixelAi,j corresponds

to pixelBr,s. Qualitatively, this is the same asΨi,j
r,s, since

higher similarity between pixel colours also means higher
likelihood that the pixels correspond to each other. Hence,
we could use equation (2) recursively by replacingΨ with
Φ.

EvaluatingΦ enhances the confidence measure for those
pixel matches that have a high confidence themselves and
whose neighbouring pixel matches also have high confi-
dences. The confidence measure of matches where this is
not the case is reduced. The effect of iterating equation (2)
once is that also the match confidence information from two
pixels distance to every pixel is taken into account. For ex-
ample, after the first evaluation ofΦ, the confidence measure
of Φi+1,j

r,s is based onΨi+2,j
r,s and other elements ofΨ. After

iterating equation (2) once the confidence measure ofΦi,j
r,s

is based onΦi+1,j
r,s , which in turn is based onΨi+2,j

r,s . If we
keep on iterating, larger and larger structures have an influ-
ence on the matching of every pixel. Therefore, it should

also be possible to match over homogeneous areas in im-
ages, as long these areas are bounded by borders and we
iterate long enough so that the whole structure is taken into
account. Note that the transformation between two images
is found here by allowing the topology to change slightly on
a pixel scale.

3 Implementation

Although the algorithm presented in the last section is quite
simple in principle, there are a number aspects we need to
give some more thought to, in order to implement it. We
need to give the exact form of the functionsψ andφ and
choose appropriatet- ands-norms for the AND and OR op-
erations in equation (2). Furthermore,Ψ andΦ can become
quite large and evaluating them is computationally expen-
sive. However, note that iterating equation (2) is emulating
a feedback process. In principle this algorithm could be im-
plemented as a large neural network which performs one it-
eration in a single step. Nevertheless, we implemented the
algorithm on a standard computer, which imposed a number
of constraints.

First of all we demanded in the last section thatΨ and
Φ are evaluated for each pixel in imageA over all pixel in
imageB. This is clearly not feasible for large images. In
order to reduce the computational load we define a ”source
patch” in imageA and a ”target patch size” for imageB.
Then Φ and Ψ are evaluated for each pixel in the source
patch of imageA over a target patch in imageB. However,
now we have the problem of where to place the target patch
in imageB. This means we need to have an initial image
point match(Ai,j , Br,s). Then the target patch for pixelAi,j

is centered aboutBr,s. In fact,(Ai,j , Br,s) does not need to
be an exact match. We only have to demand that the correct
match forAi,j lies within the target patch centered onBr,s.
Still, we might run into problems if the correct match for
Ai,j lies right at the border of the target patch. Note that by
”correct match” we mean the best match available. Due to
noise on the images and the transformations present, there
will typically not be anexactmatch.

Finding the first approximate match is quite simple in the
case of optical flow. We just choose the centers of images
A andB, since it is the same camera that took the two im-
ages within a short time. We could also select a number of
points from which the algorithm is started simultaneously.
Of course, there may be situations when this strategy fails.

The situation is more difficult for a stereo camera pair.
Here we would first need a method to adjust the cameras
until their optical axes cross near a point in the 3D scene.
Then we could again use the image centers of imagesA and
B as the approximate first match. Note that the concept of
attention will play an important role in such a method. If
we had a sufficiently fast implementation of the algorithm



presented here, we could use it to adjust the geometry of the
stereo camera system, until a proper match is found, using
the image centers as an approximate initial match.

For now we will assume that an approximate initial im-
age point match is given by(Ai,j , Br,s), say. Then we can
find Ψi,j for the target patch centered onBr,s. However,
if we center the target patch for pixelAi+1,j aboutBr,s, as
well, its correct match may not lie within this target patch.
Therefore, we center the target patch for someAi+u,j+v on
Br+u,j+v, i.e. on the pixel along the main topological direc-
tion. This means, of course, that the correct match for some
Ai+u,j+v may lie outside the corresponding target patch, if
the topology has deviated sufficiently from the main topo-
logical direction. In effect, this constrains the size of the
source patch.

In the following we will denote thenth iteration ofΦi,j
r,s

by nΦi,j
r,s, whereby we define0Φi,j

r,s ≡ Ψi,j
r,s. We can there-

fore write equation (2) as

(n+1)Φi,j
r,s = φ

([ ∧
(u,v)

(∨
k

(ρk
nΦi+u,j+v

k )
)]

∧ nΦi,j
r,s

)
,

(3)
with n ≥ 0. At each iterationnΦi,j

r,s is evaluated for each
pixel in the source patch over all pixel in the correspond-
ing target patch. Performing the inner OR operation is then
simply a component wise OR operation on the matrices
nΦi+u,j+v

k , with an appropriate offset. For example, the ma-
trix nΦi+1,j

1 has no offset, since it was evaluated along the
main topological direction and the target patches are cen-
tered on the pixel along this direction. The matrixnΦi+1,j

0

has to be offset by one pixel to the right before ORing it with
nΦi+1,j

1 (see figure 1). In this way the inner OR operation of
equation (3) is performed for all pixel in the target patch in
one step. Because the target patches are of finite dimensions,
offsetting a matrix introduces an additional row or column.
We set this extra row or column to zero before performing
the OR operation. This means that the pixels right at the
border of a target patch will not take into account as much
information as the inner pixels. Note that before ORing the
matrices we also multiply them component wise with the
probabilities{ρk}.

We found that the inner OR operation is represented
well by the max function. For the AND operation over
the elements ofS we investigated a number of fuzzy op-
erators. Two different operators produced good results: the
λ-operator and themean operation. Theλ-operator is a mix-
ture between the algebraic product and the algebraic sum. It
is defined as

fλ(a, b) := λ [ab] + (1−λ) [a+ b− ab] , λ ∈ [0, 1]. (4)

If λ = 0, fλ(a, b) gives the algebraic sum ofa andb, which
compares to an OR operation. Ifλ = 1, fλ(a, b) gives the
algebraic product ofa andb, which corresponds to an AND

operation. That is, theλ-operator can be something in be-
tween AND and OR. We found that forλ = 1 the itera-
tion converged quickly to a good match, because spurious
matches are eliminated quickly. However, sometimes cor-
rect matches are also eliminated prematurely, which makes
the iteration unstable. This is because the algebraic product
is a ”strict” AND operator: it is enough if one of the ele-
ments is zero in order to make the whole result zero. Thus,
if the confidence for a single pixel match goes to zero it
will propagate through the whole image and make all confi-
dences zero. This is clearly not what we intended. Smaller
values forλ reduce this effect but also increase the number
of iterations needed to obtain good matches.

A better way to express the AND operation is through
the mean operation. That is, AND becomes an oper-
ation ”between” OR and AND. Here we take the mean
component-wise over all matrices. In this way, a single, or
even a few, zero components do not make the result zero.
Using themean operation stabilizes the iteration process,
although more iterations are needed to obtain a good match.
However, this should also be somewhat desired, because we
want larger structures to have an influence on the matching
process. Nevertheless, for the outer AND operation in equa-
tion (3) we use the algebraic product. This gives a good
compromise between speed and stability.

Another important choice is the form of the functionφ.
So far we have not found a completely satisfactoryφ, al-
though the following implementation works quite well. Let
nΦ̄i,j

r,s be defined bynΦi,j
r,s = φ(nΦ̄i,j

r,s). Theφ we use scales

each matrixnΦ̄i,j
•,• separately, such that the largest compo-

nent of the matrix becomes1. This scaling is necessary be-
cause we are using a single byte for each confidence value
due to memory constraints. Furthermore, the confidence
values tend to become smaller and smaller with each itera-
tion. With this renormalization applied throughφ, we make
sure that each matrixnΦ̄i,j

•,• has at least one confident match.
This is also the disadvantage of using thisφ, because in real
3D scenes we do have depth discontinuities and thus occlu-
sion, which in turn means that not every pixel in imageA
needs to have a match in imageB. If occlusion occurs, the
algorithm will give the next best match for the pixel. Future
work will investigate how to incorporate occlusion into this
algorithm in a better way.

There is one part of the algorithm left which we have not
discussed, yet. This is the form of the functionψ. Recall
thatψ should give the similarity of two pixel. This may be
based on any kind of information, not just their colours. We
restrictedψ to give the similarity of two pixels only based
on their colours, though. Of course, this poses the question
which colour space to use and how to obtain a similarity
measure [13]. Since this is not essential to our algorithm,
we will use the simplest way to represent the colour of a
pixel, namely as a 3D-vector in an RGB-colour space. The
difference between two colours represented by colour vec-



torsc1 andc2 may then be calculated as||c1 − c2||. How-
ever, this means that black and white are more different from
each other than are black and red, say. Phenomenologically,
white should be regarded as as different from black, as red is
from black, though. For our purposes it would be desirable
that all pairs of colours black, white, red, green and blue, are
regarded as being equally dissimilar. This can be achieved
in the following way.

Let ∆ = c1 − c2, and denote the components of∆ by
(δr, δg, δb) with δr, δg, δb ∈ [0, 1]. Then we find the similar-
ity of coloursc1 andc2 as follows.

ψ(c1, c2) = 1− ||∆||
||∆/max(δr, δg, δb)||

, (5)

if c1 6= c2. Forc1 = c2 we defineψ(c1, c2) = 1.
To summarize, equation (3) takes the following form in

our implementation.

(n+1)Φ̄i,j
r,s =

[
1
8

∑
(u,v)

supk

(
ρk

nΦi+u,j+v
k

)]
∗ nΦi,j

r,s, (6)

and
nΦi,j

r,s =
nΦ̄i,j

r,s

supr,s

(
nΦ̄i,j

r,s

) (7)

4 Experiments

Figure 2:Initial image of mug.

We present here three experiments with real images to
show some aspects of the algorithm. Figures 2 and 3 show
two images of a coffee mug taken from slightly different po-
sitions. These images of the mug were taken with a digital
camera with a resolution of1024 × 768 pixels. This reso-
lution was reduced to200× 150 pixels in a post-processing
step. For the following test we used the center of the flower
at the top left as the starting point for the algorithm. The
source patch was41 × 41 pixels and the target patch7 × 7
pixels. Note that the source and target patches do not need
to be square. However, the target patch should have odd
dimensions.

Figure 3:Image of mug from a slightly different perspective.

Figure 4:Reconstructed image of translation test.

Figure 5:Flow field of translation test.

The {ρk} from equation (3) were set to the following
values: ρ1 = 1 andρ0 = ρ2 = ρ3 = 0.9. That is, the
main topological direction was slightly preferred. The re-
sult images are shown after20 iterations which took about 3



minutes and 20 seconds. The computer used was a Pentium
II with 233 MHz running Windows Me.

Figure 6:Image of mug rotated clockwise by 10 degrees.

Figure 7:Reconstructed image of rotation test after 7 iterations.

The implementation of the algorithm was not optimized
for speed but for adaptability. In any event, real time ca-
pability is most likely to be achieved by a hardware imple-
mentation of the network structure that lies at the root of the
algorithm.

First we present a simple test which shows the behaviour
of the algorithm with ideal data. In this experiment we used
the image in figure 2 as both, source and target image. How-
ever, the initial image point match used was off by two pix-
els to the right and two pixels down. The reconstructed im-
age after 20 iterations is presented in figure 4 and the corre-
sponding flow field in figure 5. Since the reconstruction and
flow field are drawn relative to the target pixel of the initial
image point match, we should expect the reconstruction to
be translated two pixels to the left and two pixels up, with a
corresponding flow field. This is exactly what we find. Note
that the correct flow is also found for homogeneous areas in
the image.

Figure 8:Reconstructed image of rotation test after 20 iterations.

Figure 9:Flow field of rotation test.

Figure 10:Comparison of reconstructed image with correspond-
ing flow field of rotation test.



Figure 11:Reconstructed image of third test.

Figure 12: Flow field of third test.

The reconstruction is done in the following way. Each
target patch is multiplied with the colour of its corre-
sponding source pixel. All target patches are then added
component-wise with the correct offsets using the algebraic
sum (see equation (4)). Therefore, if a number of differ-
ent target patches predict that their corresponding source
pixel lies at the same target pixel, the colours of the differ-
ent source pixels will be added with the algebraic sum. The
effect of this is that such a pixel will appear more white in
the reconstruction. If you have a good reproduction of this
paper and you take a close look at the pixels one pixel in
from the border of the image in figure 4, you will see that
these pixels are somewhat lighter. This is a border effect of
the algorithm. The pixels right at the border of the source

patch only obtain matching information from the inside of
the source patch. This makes their localization in the direc-
tion towards the inside of the source patch somewhat more
uncertain. Note that the arrows in the flow field point to the
pixel with the highest confidence in the target patch.

The next test of the algorithm is a bit harder. We take the
image from figure 2 as the source image, and a version of it
rotated clockwise by 10 degrees, as the target image. This is
shown in figure 6.

This test is harder because the rotation of the initial im-
age will have created pixels whose colour is an interpolation
between adjacent pixels. That is, pixels in the source image
will not necessarily have an exact colour match in the second
image. The image reconstructions after 7 and 20 iterations
are shown in figures 7 and 8, respectively. The correspond-
ing flow field after 20 iterations is shown in figure 9.

The results of this test show that the algorithm had some
more problems in finding the correct matches, especially to-
wards the border of the source patch. Nevertheless, most
pixels are still matches consistently, even in areas of nearly
homogeneous colour. Figure 7 shows very nicely how the
algorithm works. The confidence distributions in the target
patches converge more quickly to a single pixel match at
colour edges, whereas within homogeneous areas they are
more spread out. However, after some more iterations, the
border information ”propagates” into these homogeneous
areas and produced sharp pixel matches.

Note that we do not restrain the algorithm to give unique
pixel matches. The algorithm is free to match two or more
pixels from the source image to the same pixel in the target
image. It may also match a source image pixel to many
pixels in the target image. Although this freedom is initially
desired, it can create problems, especially in the presence of
occlusion.

The black spots in the reconstructed image show pixels
which are not matched with any source pixel. Comparing
the areas where this happens with the corresponding areas in
the flow field shows that these black spots can appear where
the change of flow closer to the center of the image happens
faster than further on the outside. Figure 10 shows a com-
parison of black spots in the reconstructed image with the
corresponding holes in the flow field. This effect is basically
due to the discrete nature of the algorithm.

The last test of the algorithm we present here uses figure
2 as source image and figure 3 as target image. This time we
have two images taken at different times. This means that
there will be different noise on the images. Furthermore, due
to the changed perspective, the colours will appear slightly
different. For this last test we will use the sun at the top
right of the mug. The starting match was inside the sun. If
you look closely, you will see that figure 3 was taken from a
position slightly left of the position figure 2 was taken from.
This means that the sun in figure 3 is slightly compressed
compared to figure 2. The reconstructed image after 20 iter-



ations is shown in figure 11 and the corresponding flow field
in figure 12.

The bright lines in the reconstructed image point to com-
pression, since more than one pixel is reconstructed at the
same target image position. This can also be seen in the flow
field. Recall that the flow field is drawn relative to the tar-
get pixel in the initial image point match. Therefore, in the
center of the flow field there is no change of pixel positions.
However, the flow to the right points left and vice versa,
which shows that there is a compression of the sun along the
horizontal axis. This is exactly what we should expect. Still,
the reconstruction is not perfect. Spurious matches occur es-
pecially towards the borders.

5 Conclusions

In this paper we have presented a conceptually simple algo-
rithm for dense image point matching between two colour
images. The algorithm relies on the fact that the topol-
ogy of the two images has only changed slightly. It then
employs some fuzzy combinatorics to find the likeliest im-
age point matches. So far, a disadvantage of the algorithm
is that it cannot handle occlusion particularly well. Fur-
thermore, spurious matches cannot always be easily distin-
guished from proper matches, because the algorithm always
returns the likeliest match, independent of an absolute con-
fidence value. These are problems that will be addressed in
future research.

A big advantage of this algorithm is that it is fundamen-
tally a parallel algorithm. In fact, our implementation had to
emulate this parallelism. The structure of the algorithm also
readily lends itself to a hierarchical computation scheme, in
which the matching proceeds from low to high resolution
versions of the images.

The initial similarity measure between pixels does not
need to be constrained purely to colour information. Any
kind of information reflecting a property of a pixel can be
used. This may, for example, be the gradient at a pixel, or
even structural information from the structure tensor.

Another positive feature of the algorithm is that it gives
image point matches in homogeneous areas, away from
colour edges. This works because a certain topology is as-
sumed, which can only be changed slightly on a pixel basis.
Borders in an image therefore act like ”anchors” that con-
strain the change of topology between the two images. In
effect, the algorithm matches borders and interpolates be-
tween them. However, this is doneimplicitly, following a
simple iterative procedure. The advantage here is, that not
too many heuristical elements enter the algorithm, like de-
ciding what should count as an edge and what should not.

Although there are still a number of problems that need
to be addressed, we believe that our algorithm shows some
promise to become a good estimator for stereo matching and
optical flow.
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