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Abstract

Here we present a 3D-reconstruction algorithm which reconstructs a scene
from two static images if a set of image point matches and some parallel world
lines are known. The algortihm exploits the fact that we can express the
collineation of the plane at infinity in terms of a camera matrix. The algorithm
we find is fast and robust and is investigated with synthetic and real data.
Using synthetic data shows that the quality of the fundamental matrix and
the epipoles is not of high importance. Unlike other reconstruction algorithms
that use vanishing points, our algortihm also works with three pairs of parallel
lines that do not point in mutually orthogonal directions.
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1 Introduction

In the following we will consider a system of two pinhole cameras looking at
a scene in the world. Our goal is to create a 3D-reconstruction of the world
scene from the images taken by the pinhole cameras. We will show that such
a 3D-reconstruction is possible if we know a number of point matches between
the images and also some parallel world lines.

3D-reconstruction is currently an active field in Computer Vision, not least
because of its many applications. It is applicable wherever the “real world”
has to be understood by a computer. This may be with regard to control
movement (robots), to survey a scene for later interpretation (medicine), or to
create and mix artifical with real environments (special effects).

Research on 3D-reconstruction can roughly be separated into three areas:

1. Reconstruction with calibrated cameras. [1, 2, 3, 4, 5, 6, 7] In this case,
a set of images is taken of a scene with one or more calibrated cam-
eras. However, the camera positions are unknown. To perform a 3D-
reconstruction we therefore first have to reconstruct the camera posi-
tions. To do this it is assumed that point matches between all the points
are known.

2. Reconstruction from sequences of images. [8, 9, 10, 11, 12, 13, 14] Here a
series of monocular, binocular or trinocular images is taken. To perform
a reconstruction it is then assumed that point matches between the views
in space and over time are known, and that the relative camera geometry
and their internal parameters do not change. A popular method in this
area is the use of the Kruppa equations [15, 16].

3. Reconstruction from static views. [17, 18] A set of images of a scene
taken with unknown cameras, from unknown positions is given. We still
assume that we have point matches over the images. However, note that
we cannot assume anymore that the internal parameters of the cameras
that took the images are the same.

The least information about a scene is given in point 3. In fact, there is so little
information that a correct 3D-reconstruction is impossible. Therefore, some
additional information is needed. Such information could be the knowledge of
lengths, angles or parallel lines.

Our approach to 3D-reconstruction falls into the area of Reconstruction

from static views. We have two images taken with unknown cameras from
unknown positions and assume that apart from the point matches we also
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know the projections of a number of sets of parallel world lines. The latter
are used to find vanishing points but also to constrain the reconstruction.
Furthermore, we take the 3D-coordinate frame of the first camera as the basis
of the Euclidean space we reconstruct in, and find the rotation, translation and
the internal parameters of the second camera relative to the first. Note that
relative translation, rotation and internal parameters are not found explicitly.
This is a disadvantage if these values have to be known, but an advantage if
we are only interested in a 3D-reconstruction.

Other advantages of our algorithm are that it is fast1 and robust2. Further-
more, our derivation hinges crucially on Geometric Algebra (GA), although
probably not all readers will call this an advantage. With GA we are able to
derive the relation between the collineation of the plane at infinity (Ψ∞) and
a camera matrix. This forms the basis of our reconstruction algorithm.

In the following discussion of our 3D-reconstruction algorithm we use the
same notation as in [19]. We will also assume that the reader is familiar with
our description of reciprocal frames, pinhole cameras, camera matrices and the
basic form of the fundamental matrix [19, 20]. Of course, all this assumes some
familiarity with GA. For a complete introduction to GA see [21, 22] and for
other brief summaries see [3, 23, 24]. A good introduction geared towards the
use in the computer sciences can be found in [25].

2 Image Plane Bases

Our general setup is that we have two pinhole cameras described by frames
{Aµ} and {Bµ}, respectively. The frame {Aµ} is also regarded as the world
frame which we use for our reconstruction.

The basic form of our calculation is as follows. We start with the image
points obtained from real cameras, i.e. in E3. These image points are then
projected up into P3. All our calculations are then performed in P3 and the
resultant reconstruction is projected back into E3. This method forces us to
take note of two important concepts.

1. Correct Basis. The power of GA in this field derives from the fact that
we are not working purely with coordinates, but with the underlying

1On a PentiumII/233MHz under Windows 98 it took on average 160ms for a calibration
(10000 trials). This time includes updating of dialog boxes and OpenGL windows. In an
optimised program this time could probably be reduced to less than half.

2Robustness depends mostly on the set of vanishing points used. The more similar the
directions the vanishing points describe, the less robust the algorithm is.

7



geometric basis. Therefore, we have to make sure that the basis we are
working with is actually appropriate for our problem.

2. Scale Invariance. The projection of homogeneous vectors into E3 is
independent of the overall scale of the homogeneous vector. Calculations
in P3 may depend on such an overall scale, though. We have to make sure
that all our calculations are invariant under a scaling of the homogeneous
vectors, because such a scaling cannot and should not have any influence
on our final result. Furthermore, since we are initially projecting up from
E3 to P3 we are not given any particular scale. Any expression that is
invariant under a scaling of its component homogeneous vectors will be
called scale invariant.

As mentioned above, the frames {Aµ} and {Bµ} define two pinhole cameras.
Since {Aµ} also serves as our world frame in P3 we can choose that A4, the
optical centre of camera A, sits at the origin. A1, A2 and A3 define the image
plane of camera A. If we want to be true to our previously stated concepts,
we need to give some thought as to how we should choose the {Ai}.

Note here that we use latin indices to count from 1 to 3 and greek indices to
count from 1 to 4. We also make use of the Einstein summation convention, i.e.
if a superscript index is repeated as a subscript within a product, a summation
over the range of the index is implied. Hence, αiAi ≡

∑

3

i=1
αiAi.

The images we obtain from real cameras are 2-dimensional. Therefore,
the image point coordinates we get are of the form {x, y}, which give the
displacement in a horizontal and vertical direction3 in the image coordinate
frame. However, in P3 an image plane is defined by three vectors. Therefore,
a point on a plane in P3 is defined by three coordinates. A standard way given
in the literature to extend the 2D image point coordinates obtained from a
real camera to P3 is by writing the vector {x, y} as {x, y, 1}. This is a well
founded and very practical choice, and if we just worked with matrices and
tensors we would not need to do anything else. However, since we want to tap
into the power of GA, we need to understand what kind of basis is implicitly

assumed when we write our image point coordinates in the form {x, y, 1}.

The best way to proceed, is first to describe a 2D-image point in a 3D basis
and then to project this point up into P3. An image point {x, y} gives the
horizontal and vertical displacements in the 2D-image plane coordinate frame.
Let the basis corresponding to this 2D frame in E3 be {a1,a2}. If we define
a third vecor a3 to point to the origin of the 2D frame in E3, then an image

3Note that although we call these directions horizontal and vertical, they may not be at
a 90 degree angle to each other in general.
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point with coordinates {x, y} can be expressed as follows in E3.

xa = x a1 + y a2 + 1 a3 = α̂i
ai, (1)

with {α̂i} ≡ {x, y, 1}. The {α̂i} are the image point coordinates corresponding
to image point {x, y} in E3. Now we project the point xa up into P3.

xa
P3

−→ Xa = xa + e4 = α̂iAi, (2)

where we defined A1 ≡ a1, A2 ≡ a2 and A3 ≡ a3 + e4. That is, A1 and A2 are
direction vectors, or points at infinity, because they have no e4 component4.
However, they still lie on image plane A. More precisely, they lie on the
intersection line of image plane A with the plane at infinity. Note that A1 and
A2 do not project back to a1 and a2, respectively. For example,

A1

E3

−→
A1 · e

i

A1 · e4
ei =

a1

0
−→ ∞ (3)

Nevertheless, {Ai} is still the projective image plane basis we are looking for,
as can be seen when we project Xa down to Euclidean space.

Xa
E3

−→ xa =
Xa · e

i

Xa · e4
ei =

α̂i
ai

α̂3
= x a1 + y a2 + 1 a3 (4)

What is important here is that neither α̂1 nor α̂2 appear in the denominator.
This shows that by writing our image point coordinates in the form {x, y, 1}
we have implicitly assumed this type of basis. We will call this type of frame a
normalised homogeneous camera frame. The camera frames we will use
in the following are all normalised homogeneous camera frames.

It might seem a bit odd that we have devoted so much space to the de-
velopment of normalised homogeneous camera frames. However, this has far
reaching implication later on and is essential to understand our derivation.

In P3 a point on the image plane of camera A can be written as Xa = αi Ai

in general. We can normalise the coordinates without changing the projection
of Xa into E3. That is, Xa ≃ ᾱi Ai with ᾱi ≡ αi/α3. The symbol ≃ means
equality up to a scalar factor. In this case we clearly have {ᾱi} = {α̂i}.

4This shows very nicely that a Euclidean vector interpreted as a homogeneous vector is
a direction.

9



A 1́

A 2́

A 3́

O

A 3 A 1

A 2

O

Figure 1: Transformation from general basis to a particular basis
in which image points have coordinates of the type {x, y, 1}.

A general point in P3 can be written as X = αµ Aµ in the A-frame. We can
normalise the coordinates of Xa in the same way as before to obtain X ≃ ᾱµ Aµ

with ᾱµ ≡ αµ/α3. If we project this point down to E3 we get5

X
E3

−→ x =
X ·ei

X ·e4
ei =

(αµAµ)·ei

(αµAµ)·e4
ei

=
αi

α3 + α4
ai =

ᾱi

1 + ᾱ4
ai

= α̂i
ai ; α̂i ≡

ᾱi

1 + ᾱ4

(5)

Therefore, if ᾱ4 = 0, then X is a point on the image plane of camera A. Also,
if ᾱ4 = −1 then X is a point at infinity. We will call ᾱ4 the projective depth
of a point in P3.

In P3 a general plane is defined by three homogeneous vectors that give
points on that plane. We will now show how we can transform such a gen-
eral basis into a normalised homogeneous camera frame. Figure 1 shows this
transformation.

Let the {A′
i} be normalised homogeneous vectors, i.e. A′

i · e4 = 1. This
can be assumed without loss of generality, because any homogeneous vector
can be normalised without changing the point it corresponds to in E3. A point

5Recall that A4 = e4 (the origin of P3) and that the {Ai} are a normalised homogeneous
camera frame.
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X ′
a on plane P ′

a ≡ A′
1∧A′

2∧A′
3 may then be given by

X ′
a = ά1A′

1 + ά2A′
2 + ά3A′

3

= ά1(A′
1 − A′

3) + ά2(A′
2 − A′

3) + (ά1 + ά2 + ά3)A′
3

≡ α1A1 + α2A2 + α3A3

= Xa

(6)

where we identified A1 ≡ A′
1 − A′

3, A2 ≡ A′
2 − A′

3 and A3 ≡ A′
3. Also

α1 ≡ ά1, α2 ≡ ά2 and α3 ≡ (ά1 + ά2 + ά3). A1 and A2 are directions now, i.e.
A1 ·e4 = A2 ·e4 = 0, but we still have P ′

a = A1∧A2∧A3. That is, the {Ai},
which are a normalised homogeneous camera frame, are also a valid basis for
plane P ′

a. As before we now have {α̂i} = {ᾱi}.

3 Plane Collineation

A4
B4

X p

X 4
b

X 4
a

P

L

Figure 2: Schematic representation of a plane collineation. Im-
age point Xa

4
is projected to Xb

4
under the P -collineation.

Before we can get started on the actual reconstruction algorithm, we need
to derive some more mathematical objects which we will need as tools. The
problem we want to solve is the following. Let us assume we have three image
point matches in cameras A and B. That is, if three points in space, {Xi},
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are projected onto image planes A and B to give images {Xa
i } and {Xb

i }
respectively, then we know that the pairs {Xa

i , Xb
i } are images of the same

point in space. If the three points in space do not lie along a line, they define
a plane. This plane induces a collineation, which means that we can transfer
image points from camera A to camera B through that plane. For example,
let Xa

4
be the image point on image plane A which we want to transfer to

camera B through the plane. First we have to find the intersection point of
line A4∧Xa

4
with the plane6, and then we project this intersection point onto

image plane B (see figure 2). This transformation can also be represented
by a 3 × 3 matrix, which is called a collineation matrix. Our goal is to find
the collineation induced by the plane P ≡ X1∧X2∧X3 by just knowing the
projections of the points {Xi} onto image planes A and B. Faugeras presents a
method in [16] for doing this7. We will follow this method to obtain a 3×3×3
collineation tensor.

3.1 Calculating the Collineation Tensor M

We start by defining three points Xi = αµ
i Aµ. The projections of these three

points onto image planes A and B are Xa
i = ᾱj

iAj and Xb
i = β̄j

i Bj, respectively.
We know the coordinates {ᾱj

i} and {β̄j
i }, and we know that the pairs {ᾱj

i , β̄
k
i }

are images of the same point in space. We want to find the collineation induced
by the plane P = X1∧X2∧X3.

Unfortunately, it turns out that we cannot find the collineation directly as
shown in figure 2, because we only know the normalised coordinates of the
{Xa

i } and {Xb
i }. Instead we have to use a two step construction.

Step 1:

X 1
a

X 1
b

a
X 4

X p
a

b
X p

4BA 4X p
a
^ ^

E ba

X 3
a

X 2
a

X 2
b

X 3
b

A 4 4B

L
b
p

Lp

6Recall that A4 is the optical centre of camera A.
7In [16] this method is called the Point-Plane procedure.
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Let Xa
4

= αi
4
Ai be the image point we want to project

onto image plane B under the P -collineation. Now con-
sider the intersection point Xa

p of lines Xa
3
∧Xa

4
and Xa

1
∧Xa

2
.

The intersection point of line Lp ≡ A4∧Xa
p with an arbi-

trary plane in P3 obviously lies on Lp. Denote the projec-
tion of Lp onto image plane B by Lb

p. Obviously Xa
p can

only be projected to some point on Lb
p, independent of the

collineation. We also know that Xa
p has to project to some

point on the line Xb
1
∧Xb

2
under the specific P -collineation.

Hence, Xb
p is the intersection point of lines Lb

p and Xb
1
∧Xb

2
.

We can also write this as

Xb
p = (Xa

p ∧A4∧B4) ∨ (Xb
1
∧Xb

2
) (7)

Step 2:

4B

X 1
a

X 1
b

A 4

a
X 4

X p
a

b
X p

E ba

b
X 4

4BA 4
a

X 4 ^ ^

L4
b

L4

X 3
a

X 2
a

X 3
b

X 2
b

Now that we have calculated the point Xb
p, we can project

Xa
4

under the P -collineation in an analogous way. We form
a line L4 = A4∧Xa

4
which we project onto image plane B.

Xb
4
, the projection of Xa

4
under the P -collineation, is then

the intersection point of Lb
4

and line Xb
3
∧Xb

p. This can also
be expressed as

Xb
4

= (Xa
4
∧A4∧B4) ∨ (Xb

3
∧Xb

p) (8)

Now we will perform this two step calculation, starting with Xa
p .

Xa
p = (A4∧Xa

3
∧Xa

4
) ∨ (Xa

1
∧Xa

2
)

= [[A4X
a
3
Xa

1
Xa

4
]]Xa

2
+ [[A4X

a
2
Xa

3
Xa

4
]]Xa

1

= φ1

paX
a
1

+ φ2

paX
a
2

(9)
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with φ1

pa ≡ [[A4X
a
2
Xa

3
Xa

4
]] and φ2

pa ≡ [[A4X
a
3
Xa

1
Xa

4
]]. Xb

p is then found by

Xb
p = (Xa

p ∧A4∧B4) ∨ (Xb
1
∧Xb

2
)

= −[[Xa
p Xb

1
A4B4]]X

b
2
+ [[Xa

p Xb
2
A4B4]]X

b
1

= −φ2

pa[[X
a
2
Xb

1
A4B4]]X

b
2
+ φ1

pa[[X
a
1
Xb

2
A4B4]]X

b
1

= φ1

pbX
b
1
+ φ2

pbX
b
2

(10)

with φ1

pb ≡ φ1

pa[[X
a
1
Xb

2
A4B4]] and φ2

pb ≡ −φ2

pa[[X
a
2
Xb

1
A4B4]]. The step from

line 2 to line 3 in the previous calculation follows because [[Xa
i Xb

i A4B4]] = 0.
(Recall that the pairs {Xa

i , Xb
i } are projections of the same point in space.)

We are now in a position to calculate Xb
4
.

Xb
4

= (Xa
4
∧A4∧B4) ∨ (Xb

3
∧Xb

p)

= −[[Xa
4
Xb

3
A4B4]]X

b
p + [[Xa

4
Xb

pA4B4]]X
b
3

= −φ1

pb[[X
a
4
Xb

3
A4B4]]X

b
1
− φ2

pb[[X
a
4
Xb

3
A4B4]]X

b
2

+φ1

pb[[X
a
4
Xb

1
A4B4]]X

b
3
+ φ2

pb[[X
a
4
Xb

2
A4B4]]X

b
3

(11)

If we write Xb
4

= βk
4
Bk then the {βk

4
} are given by

βk
4

= −φ1

pb[[X
a
4
Xb

3
A4B4]]β

k
1
− φ2

pb[[X
a
4
Xb

3
A4B4]]β

k
2

+
(

φ1

pb[[X
a
4
Xb

1
A4B4]] + φ2

pb[[X
a
4
Xb

2
A4B4]]

)

βk
3

(12)

At this point we should think about whether we can use the normalised image
point coordinates {ᾱi

j}, {β̄
i
j} and {ᾱi

4
}, instead of their unnormalised coun-

terparts. If this is not the case, we cannot use equation (12). Let the {φ̄i
pa}

be the {φi
pa} calculated from normalised coordinates. They are related in the

following way.

φ1

pa = α3

2
α3

3
α3

4
φ̄1

pa (13a)

φ2

pa = α3

3
α3

1
α3

4
φ̄2

pa (13b)

Therefore, the relation between the {φ̄i
pb} and {φi

pb} is

φ1

pb = α3

2
α3

3
α3

4
α3

1
β3

2
φ̄1

pb (14a)

φ2

pb = α3

3
α3

1
α3

4
α3

2
β3

1
φ̄2

pb (14b)
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Hence, the {φi
pb} have the term (α3

1
α3

2
α3

3
α3

4
) in common. Therefore, we can

write equation (12) as

βk
4

≃ −β3

2
φ̄1

pb (αi
4
βj

3Fij) βk
1
− β3

1
φ̄2

pb (αi
4
βj

3Fij) βk
2

+
(

β3

2
φ̄1

pb (αi
4
βj

1Fij) + β3

1
φ̄2

pb (αi
4
βj

2Fij)
)

βk
3

≃ φ̄1

pb (ᾱi
4
β̄j

3Fij) β̄k
1

+ φ̄2

pb (ᾱi
4
β̄j

3Fij) β̄k
2

−
(

φ̄1

pb (ᾱi
4
β̄j

1Fij) + φ̄2

pb (ᾱi
4
β̄j

2Fij)
)

β̄k
3

(15)

where Fij ≡ [[AiBjA4B4]] is the fundamental matrix relating cameras A and
B. That is, we can find the {βk

4
} up to an overall constant from the {ᾱj

i}, {β̄
j
i }

and {ᾱj
4}. To obtain our final equation we will expand the {φ̄i

pa} and {φ̄i
pb}.

φ̄j1
pa = [[A4X̄

a
4
X̄a

j2
X̄a

j3
]]

= ᾱi
4

(ᾱk2

j2
ᾱk3

j3
− ᾱk3

j2
ᾱk2

j3
) [[A4AiAk2

Ak3
]]

≃ ᾱi
4

λ̄j1
a i

(16)

with

λ̄j1
a k1

≡ (ᾱk2

j2
ᾱk3

j3
− ᾱk3

j2
ᾱk2

j3
). (17)

To simplify the final equation we make the following definitions.

F (r, s) ≡ ᾱi
rβ̄

j
s Fij (18a)

f b
ir ≡ β̄j

r Fij (18b)

Now we can write the {φ̄i
pb} as

φ̄1

pb = ᾱi
4
λ̄1

a i F (1, 2) (19a)

φ̄2

pb = −ᾱi
4
λ̄2

a i F (2, 1) (19b)

Therefore, equation (15) becomes

βk
4
≃ ᾱi

4
ᾱj

4 Mk
ij, (20)

with

Mk
ij ≡

[ (

F (1, 2) λ̄1

a i β̄k
1
− F (2, 1) λ̄2

a i β̄k
2

)

f b
j3

−
(

F (1, 2) λ̄1

a i f
b
j1 − F (2, 1) λ̄2

a i f
b
j2

)

β̄k
3

]

(21)
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Note that since Mk
ij can be calculated from the normalised image point coor-

dinates, it is scale invariant.

To our knowledge a collineation tensor which can be used instead of the
collineation matrix has not been derived before. Faugeras describes the method
which we followed to find Mk

ij [16], but he does not obtain a simple tensor to
perform the collineation projection.

3.2 Rank of M

The tensor Mk
ij is not of full rank. This may be seen quite easily, if we reorder

the terms in equation (21).

Mk
ij =

(

F (1, 2) f b
j3 β̄k

1
− F (1, 2) f b

j1 β̄k
3

)

λ̄1

a i

−
(

F (2, 1) f b
j3 β̄k

2
− F (2, 1) f b

j2 β̄k
3

)

λ̄2

a i

(22)

Now, λ̄r
a 3

is a linear combination of λ̄r
a 1

and λ̄r
a 2

. The relation is

λ̄r1

a 3
= −

ᾱ1

r2

ᾱ3
r2

λ̄r1

a 1
−

ᾱ2

r2

ᾱ3
r2

λ̄r1

a 2
. (23)

Therefore, Mk
3j has to be linearly dependent on Mk

1j and Mk
2j. Hence, the

matrices M1

ij, M2

ij and M3

ij are of rank 2. Note that this rank condition is true,
independent of the points used to calculate Mk

ij.

We can use this fact to our advantage, if we wanted to reduce the storage
space needed for Mk

ij or increase the calculation speed of equation (20). This
may be achieved by applying a set of similarity transforms to Mk

ij until Mk
3j = 0.

4 The Plane at Infinity

It will be very useful to see what the collineation of the plane at infinity looks
like. Without loss of generality we can set A4 = e4. Also recall that A1 and
A2 are direction vectors, i.e. have no e4 component, by definition. Therefore,
the plane at infinity P∞ may be given by

P∞ = A1∧A2∧(A3 − A4) (24)

Now that we have the plane at infinity we can also find an expression for the
collineation matrix associated with it. We want to project a point Xa = αiAi
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on image plane A to image plane B under the P∞-collineation. First we have
to find the intersection point Xp of line L = A4∧Xa with P∞.

Xp = (A4∧Xa) ∨ P∞

= [[A4X
a]]·
(

(A1∧A2∧A3) − (A1∧A2∧A4)
)

=
∑

i1

(

[[A4X
aAi2Ai3 ]]Ai1

)

− [[A4X
aA1A2]]A4

= αj
∑

i1

[[A4AjAi2Ai3 ]]Ai1 − αj[[A4A1A2Aj]]A4

≃ αiAi − α3A4

(25)

Now we need to find the projection Xb
p of Xp onto image plane B.

Xb
p = Xp ·B

j Bj

≃
(

αi Ai ·B
j − α3 A4 ·B

j
)

Bj

=
(

αiKb
j
i
− α3εj

ba

)

Bj

(26)

where Kb
j
i
≡ Ai ·B

j is the 3 × 3 camera matrix minor of camera B, and

εj
ba ≡ A4 ·B

j is the epipole of camera B and also the fourth column of the full
camera matrix8. That is,

Kb
j
µ

= [Kb
j
i
, εj

ba] (27)

From equation (26) it follows that we can write the collineation of P∞ as

Ψ∞
j
i
≡ [Kb

j
1
, Kb

j
2
, Kb

j
3
− εj

ba] (28)

where i counts the columns. Then we can write, as before

βj
∞ ≃ αiΨ∞

j
i

(29)

for the projection of image point Xa under the P∞-collineation.

What does the P∞-collineation describe geometrically? If Xa is an image
point in camera A and Xb is its projection under the P∞-collineation, then
from the construction of the collineation it follows that the lines La = A4∧Xa

8The full camera matrix is given by Kb
j
µ

= Aµ·B
j . See [20] for details on camera matrices

and epipoles.
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and Lb = B4∧Xb meet in a point on P∞. If two lines meet in a point on
the plane at infinity, they are parallel. Therefore, the P∞-collineation tells us
which two image points Xa and Xb on image planes A and B, repectively,
correspond such that the lines A4∧Xa and B4∧Xb are parallel. Obviously, this
tells us something about the relative orientation of the two cameras.

Unfortunately, we cannot calculate Ψ∞ directly from a number of {αi, βj
∞}

point pairs, because of the unknown scale in the point coordinates. However,
we can use our knowledge of the relation between Ψ∞ and the camera matrix
to find the depths of a set of world points whose projections are known in both
cameras, if we also know the projections of at least three pairs of parallel lines.

We will assume for the moment that for each point pair {ᾱi, β̄j} we also
know β̄j

∞, which is the projection of ᾱi under the P∞-collineation. We will
show later how the {β̄j

∞} may be calculated. From the definition of the camera
matrix we know that

βj = αiKb
j
i
+ α4εj

ba. (30)

Furthermore, equation (29) may be rewritten as

βj
∞ ≃ αiKb

j
i
− α3εj

ba (31)

First of all note the ≃ symbol, which means that we cannot use this equation
directly. Secondly, we do not actually know the {αi}, {βi} and {εi

ba} but only
the normalised coordinates9 {ᾱi}, {β̄i} and {ε̄i

ba}, because in practical applica-
tions we find all our image point coordinates in the form {x, y, 1}. Therefore,
we have to rewrite equations 30 and 31 so that they are independent of the
unknown scales. Equation 30 becomes

β̄j =
βj

β3
=

ᾱiK̄b
j
i
+ ᾱ4ε̄j

ba

ᾱiK̄b
3
i
+ ᾱ4

⇐⇒ ᾱiβ̄jK̄b
3
i
+ ᾱ4β̄j = ᾱiK̄b

j
i
+ ᾱ4εj

ba,

(32)

and equation (31) becomes

β̄j
∞ =

βj
∞

β3
∞

=
ᾱiK̄b

j
i
− ε̄j

ba

ᾱiK̄b
3
i
− 1

⇐⇒ ᾱiβ̄j
∞K̄b

3
i
− β̄j

∞ = ᾱiK̄b
j
i
− ε̄j

ba.

(33)

9Recall that ᾱi ≡ ᾱi/ᾱ3 and similarly for the other coordinates.
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Note that K̄b
j
i
≡ Kb

j
i
/ε3

ba. Subtracting equation (33) from equation (32) gives

ᾱiK̄b
3
i
(β̄j − β̄j

∞) + ᾱ4β̄j + β̄j
∞ = ᾱ4εj

ba + ε̄j
ba

⇐⇒ ᾱiK̄b
3
i
(β̄j − β̄j

∞) + β̄j
∞ − ε̄j

ba = ᾱ4(ε̄j
ba − β̄j)

⇐⇒ ᾱ4 = ᾱiK̄b
3
i

β̄j
∞ − β̄j

β̄j − ε̄j
ba

−
β̄j
∞ − ε̄j

ba

β̄j − ε̄j
ba

; j ∈ {1, 2}.

(34)

The last equation may be written more succinctly as

ᾱ4 = ᾱiK̄b
3
i
ζj
1 − ζj

2 ; j ∈ {1, 2}. (35)

with

ζj
1 ≡

β̄j
∞ − β̄j

β̄j − ε̄j
ba

; ζj
2 ≡

β̄j
∞ − ε̄j

ba

β̄j − ε̄j
ba

(36)

Since equation (35) has to give the same result for both j = 1 and j = 2
independent of K̄b

3
i
, it follows10 that ζ1

1
= ζ2

1
and ζ1

2
= ζ2

2
. Therefore, we will

discard the superscript of the ζs in the following.

Equation 35 by itself is still not useful, since we neither know ᾱ4 nor K̄b
3
i
.

However, if we had some constraints on the depth components ᾱ4 for a number
of points we could find K̄b

3
i
. Once K̄b

3
i
is known for a particular camera setup,

we can use it to calculate the depths for any point matches. Before we show
how K̄b

3
i
can be evaluated, we will take a closer look at how to find the {β̄j

∞}.

5 Vanishing Points and P∞

We mentioned earlier that the {βj
∞} are the projections of the {αi} onto im-

age plane B under the P∞-collineation. We have also shown that the P∞-
collineation Ψ∞ cannot be found from point pairs {ᾱi, β̄j

∞}. However, we can
find a P∞-collineation tensor, M∞ as described in equation (20), if we know
the projection pairs of three points on P∞ and the fundamental matrix (F ).

If two parallel world lines are projected onto an image plane, their projec-
tions are only parallel if the image plane is parallel to the world lines. The

10The ζs are only equal for different j if the image points they are calculated from are
perfect. For real data they are not.
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Vanishing Point

Figure 3: The figure demonstrates that the projections of two parallel world
lines onto an image plane, are only parallel if the image plane is parallel to the
world lines. The intersection point of the projections of two parallel world lines
is called a vanishing point.

intersection point of the projections of two parallel world lines is called a van-

ishing point (see figure 3).

Two parallel world lines meet at infinity. In projective space P3 this may
be expressed by saying that the intersection point of two parallel world lines
lies on P∞. Points on P∞ may also be interpreted as directions. Therefore,
intersecting a line with P∞ gives its direction. In this light, a vanishing point
is the projection of the intersection point of two parallel lines. Or, in other
words, it is the projection of a direction.

If we knew three vanishing points which are projections of three mutually
orthogonal directions, we would know how a basis for the underlying Euclidean
space E3 projects onto the camera used. This information can be used to find
the camera calibration [18]. Here our initial goal is not to find the camera
calibration, but to reconstruct a scene in E3 directly. We will show that to
achieve this, we do not require the vanishing points to relate to orthogonal
directions. However, the more mutually orthogonal the directions related to
the vanishing points are, the better the reconstruction will work.

5.1 Calculating Vanishing Points

Before we go any further with the actual reconstruction algorithm, let us take
a look at how to calculate the vanishing points.
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5.1.1 Vanishing Points from Parallel Line Pairs

Suppose we have two image point pairs {ᾱi
u1

, ᾱi
u2
} and {ᾱi

v1
, ᾱi

v2
}, defining two

lines on image plane A, which are projections of two parallel world lines. The
vanishing point is the intersection of lines Lu and Lv where

Lu = λu
i L

i
a ; Lv = λv

i L
i
a (37)

and

λu
i1
≡ ᾱi2

u1
ᾱi3

u2
− ᾱi3

u1
ᾱi2

u2
; λv

i1
≡ ᾱi2

v1
ᾱi3

v2
− ᾱi3

v1
ᾱi2

v2
(38)

are the homogeneous line coordinates. Also note that Li1
a ≡ Ai2 ∧Ai3 (see

chapter [20]). Since lines Lu and Lv lie on image plane A we know that their
join is simply J = A1∧A2∧A3. Therefore, J−1 = A3∧A2∧A1. The intersection
point Xa

uv of lines Lu and Lv is then given by

Xa
uv = Lu ∨ Lv

=
(

Lu ·(A
3∧A2∧A1)

)

·Lv

=
∑

i1,j1

λu
i1

λv
j1

(

(Ai2∧Ai3)·(A
3∧A2∧A1)

)

·(Aj2∧Aj3)

=
∑

i1,j1

λu
i1

λv
j1

Ai1 ·(Aj2∧Aj3)

=
∑

i1

(λv
i2

λu
i3
− λv

i3
λu

i2
)Ai1

= αi
uvAi ; αi1

uv ≡ (λv
i2

λu
i3
− λv

i3
λu

i2
)

(39)

First of all note that the {αi
uv} give a point in P2. Since we defined A1 and

A2 to be directions, the image point coordinates {x, y} in E2 corresponding
to the {αi

uv}, are found to be {ᾱ1

uv, ᾱ
2

uv} through the projective split, where
ᾱi

uv ≡ αi
uv/α

3

uv. Note that points which lie at infinity in E2 can be expressed
in P2 by points which have a zero third component. Such points will also be
called directions.

The fact that points at infinity in E2 are nothing special in P2 shows an
immediate advantage of using homogeneous coordinates for the intersection
points over using 2D-coordinates. Since we are looking for the intersection
point of the projections of two parallel world lines, it may so happen, that
the projections are also parallel, or nearly parallel. In that case, the 2D image
point coordinates of the vanishing point would be very large or tend to infinity.
This, however, makes them badly suited for numerical calculations. When
using homogeneous coordinates, on the other hand, we do not run into any
such problems.
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5.1.2 A Closer Look at Vanishing Points

It will be instructive to see what the homogeneous intersection point coordi-
nates look like for certain sets of lines. We rewrite the {αi

uv} from above as

α1

uv = λv
2
λu

3
− λv

3
λv

2
= ᾱ1

v1
ᾱ1

v2
d3

vd
1

u − ᾱ1

u1
ᾱ1

u2
d3

ud
1

v (40a)

α2

uv = λv
3
λu

1
− λv

1
λv

3
= ᾱ1

v1
ᾱ1

v2
d3

vd
2

u − ᾱ1

u1
ᾱ1

u2
d3

ud
2

v (40b)

α3

uv = λv
1
λu

2
− λv

2
λv

1
= d1

ud
1

v

(

d2

u

d1
u

−
d2

v

d1
v

)

(40c)

with

d1

u ≡ ᾱ1

u1
− ᾱ1

u2
; d2

u ≡ ᾱ2

u1
− ᾱ2

u2
; d3

u ≡
ᾱ2

u2

ᾱ1
u2

−
ᾱ2

u1

ᾱ1
u1

(41a)

d1

v ≡ ᾱ1

v1
− ᾱ1

v2
; d2

v ≡ ᾱ2

v1
− ᾱ2

v2
; d3

v ≡
ᾱ2

v2

ᾱ1
v2

−
ᾱ2

v1

ᾱ1
v1

(41b)

d1

u and d2

u define the direction of the line Lu in E2. Hence, d1

u = 0 if Lu is
parallel to A2, and d2

u = 0 if Lu is parallel to A1.

ᾱ2

u1
/ᾱ1

u1
gives the gradient of the line from the origin of E2 to the point

{ᾱ1

u1
, ᾱ2

u2
}. Therefore, d3

u gives the difference in gradients between the lines
passing through the origin of E2 and {ᾱ1

u1
, ᾱ2

u1
} or {ᾱ1

u2
, ᾱ2

u2
}, respectively.

Hence, d3

u = 0 if the line Lu passes through the origin of E2.

Now we can see the effect of some special cases of line sets {Lu, Lv} on the
homogeneous coordinates of their intersection points.

1. If Lu and Lv are parallel then α3

uv = 0. That is, the homogeneous
coordinates of their intersection point are of the form {x, y, 0}.

2. If Lu and Lv are both parallel to the A1 direction, i.e. ᾱ2

u1
= ᾱ2

u2
and

ᾱ2

v1
= ᾱ2

v2
, then d2

u = d2

v = 0. Thus, the intersection point of Lu and Lv

in homogeneous coordinates is of the form {x, 0, 0}.

3. If Lu and Lv are both parallel to the A2 direction, i.e. ᾱ1

u1
= ᾱ1

u2
and

ᾱ1

v1
= ᾱ1

v2
, then d1

u = d1

v = 0. Then the intersection point of Lu and Lv

in homogeneous coordinates is of the form {0, y, 0}.

4. If Lu and Lv both pass through the origin of E2, i.e. the principal point of
the image plane, then the homogeneous coordinates of their intersection
point are of the form {0, 0, w}.

From these special cases it becomes clear that if we knew three vanishing points
on image plane A of the types 2, 3 and 4 from above, and also knew how these
vanishing points project onto image plane B, we would know the 3× 3 camera
matrix minor Kb

j
i
of camera B. This may be seen as follows.

22



5.1.3 A Special Set of Vanishing Points

Let {αi
n, βj

n} be three sets of matching vanishing points in cameras A and
B. That is, the direction that projects to αi

nAi on camera A, projects to
βj

nBj on camera B. Now suppose that αi
1

= {α1

1
, 0, 0}, αi

2
= {0, α2

2
, 0} and

αi
3

= {0, 0, α3

3
}. Then we can write

βj
n = αi

n Ai ·B
j

⇐⇒ βj
1 = α1

1
A1 ·B

j ; βj
2 = α2

2
A2 ·B

j ; βj
3 = α3

3
A3 ·B

j

⇐⇒
βj

n

αn
n

= An ·B
j

(42)

Note that this calculation does not give the internal calibration of the cameras.
It only tells us how the two camera frames are related. However, we can always
take the {Aµ} frame as the world frame. If we furthermore knew the correct
scale of the epipole on camera B, we could use it in conjunction with Kb

j
i
to

find the depths of image point matches in the A-frame. The problem with
this approach, apart from the unknown scale of the epipole, is that vanishing
points of the form needed are hard to obtain in real life situations.

5.1.4 Vanishing Points from Multiple Parallel Lines

Above we described how to find a vanishing point from the projections of two
parallel world lines. In practical applications the lines will only be known with
a finite precision and will also be subject to a measurment error. Therefore,
we could improve on the quality of a vanishing point if sets of more than two
parallel lines are known. In particular, the vanishing point quality is improved
if these parallel lines are taken from varying depths within in world scene.

How can we find the vanishing point of more than two projections of parallel
lines? Let the {Ln} be a set of N projections of parallel world lines onto image
plane A. We are looking for the point Xv that is closest to the intersection
points of all lines. Xv is an intersection point of all lines {Ln} if Ln∧Xv = 0 for
all n. That is, finding the best vanishing point means minimising a measure ε
which is given by

ε2 =
∑

n

(

(Ln∧Xv)·P
−1

a

)2

(43)

where P−1

a ≡ (A1∧A2∧A3)
−1. Note that if Ln∧Xv is not zero, it gives a scalar

multiple of Pa = A1∧A2∧A3. That is, in general we have Ln∧Xv = τn Pa,
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where τn is a scalar. The closer Xv is to line Ln, the smaller is τn. Since
we are interested in minimising τn, we take the inner product of Ln∧Xv with
P−1

a , which cancels the Pa and leaves us with τn. We then take the sum of the
squares of τn for all n to obtain an overall quality measure.

Let Ln = λniL
i
a and Xv = αi

vAi, then

(Ln∧Xv)·P
−1

a =
∑

i1,j

λni1α
j
v

(

(Ai2∧Ai3)∧Aj

)

·P−1

a

= λni α
i
v

(

(A1∧A2∧A3)·(A
3∧A2∧A1)

)

= λni αi
v

(44)

The above expression is equivalent to taking the inner product of vectors11 ~ln ≡
[λn1, λn2, λn3] and ~v ≡ [α1

v, α
2

v, α
3

v]. If we define a matrix Λ ≡ [~l1,~l2, . . . ,~lN ],
then ~v has to minimise the length of the vector ~ε given by

~ε = Λ ~v T (45)

~ε is related to the measure ε2, which we try to minimise, via

ε2 = ~ε 2 = ~v (ΛT Λ) ~v T (46)

To find the best ~v we can now simply perform a Singular Value Decomposition

(SVD) on the matrix Λ2 = ΛT Λ. This will give us the ~v that minimises Λ2 ~v T

and thus minimises ε2. That is, we found the best fitting vanishing point in
homogeneous coordinates, in the least squares sense.

Note that in [17] vanishing points are found as 2D-image point coordinates,
which means that only parallel world lines can be used that are not parallel
in the image. In [18] the projections of at least three parallel world lines
have to be known to calculate a vanishing point. The implementation of our
algorithm switches automatically between finding a vanishing point from two
parallel lines, and calculating it from multiple parallel lines, depending on how
much information is available.

Also in both [17] and [18] vanishing points that define an orthogonal basis
of the world have to be known. Our algorithm does not have this restriction.
However, we also do not find the internal calibrations of the cameras.

11We use here the notation with the arrow above a letter to describe a vector in some
orthonormal frame. This notation is used to distinguish these vectors from vectors in E3.
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5.2 M∞ from Vanishing Points

Now we return to our reconstruction algorithm. We discussed vanishing points
since they are projections of points on P∞. If we know three vanishing point
matches over cameras A and B, then we can use equation (21) to find M∞

k
ij
, the

P∞-collineation tensor, from the homogeneous image point coordinates of the
vanishing points. Once we have M∞

k
ij

we can find the projections of some image

points {ᾱi
n} on image plane A, onto image plane B under the P∞-collineation.

That is,

β̄k
n∞ ≃ ᾱi

n ᾱj
n M∞

k
ij

(47)

We can now use the {β̄j
n∞} to find the {ζn} for equation (35). It is worth

repeating this equation.

ᾱ4

n = ᾱi
n K̄b

3
i
ζ1n − ζ2n (48)

with

ζ1n ≡
β̄j

n∞ − β̄j
n

β̄j
n − ε̄j

ba

; ζ2n ≡
β̄j

n∞ − ε̄j
ba

β̄j
n − ε̄j

ba

(49)

where j is either 1 or 2.

6 The Reconstruction Algorithm

Now that we have found M∞ and thus can calculate the {ζn} from equation
(48), we can think about how to find the correct depth values for the image
point matches {ᾱi

n, β̄j
n}.

We will perform our reconstruction in the frame of camera A. We are free
to choose this frame. Of course, it is important to understand what effect this
choice has on our final reconstruction. When we plot our final reconstructed
points we will assume that the A-frame forms an orthonormal frame of E3.
However, we do not need to assume anything about the frame of camera B,
since we will find the translation, rotation and internal calibration of camera
B relative to camera A.

The assumption that the camera frame is an orthonormal frame of E3, is
quite good for most modern cameras. If we still needed to find the internal
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camera calibration of camera A relative to an orthonormal frame of E3, we
would need to know the projection of this orthonormal set of directions onto
camera A [18]. Note that we would not need to find the internal calibration of
camera B separately, since it would be found by our algorithm relative to the
internal calibration of camera A.

We have already found sets of parallel lines to calculate vanishing points. We
can reuse these sets of lines to constrain the depth values found with equation
(48). In particular, we will regard the {K̄b

3
i
} as free parameters. If we now

take the image point matches that define the projections of two parallel world
lines, we can use this extra information to constrain the {K̄b

3
i
}. That is, we

vary the free parameters until the reconstructed points define a pair of parallel
world lines again.

6.1 The Geometry

A 4

B4

B2
B1

Xb
A 3

A 2

A 1

Eab

B3

Eba

Xb

8

Xa

X

Figure 4: This figure shows the geometry behind equation (48). A point X
is projected onto cameras A and B, giving images Xa and Xb, respectively.
Projecting Xa onto image plane B under the P∞-collineation gives X∞b . We
choose A4 to be the origin of E3. Kb

3
i

gives the components of A1, A2 and A3

along B3.

Before we start developing an algorithm to find the best {K̄b
3
i
} we should

understand what varying the free parameters means geometrically. In figure 4
we have drawn the geometry underlying our reconstruction algorithm.

A4 and B4 are the optical centres of cameras A and B, respectively. We
have also chosen A4 to lie at the origin of E3. Recall that A1, A2 and B1, B2

are direction vectors in P3. We have drawn these vectors here as lying on the
image planes to indicate this.

A world point X is projected onto image planes A and B giving projections
Xa and Xb, respectively. X∞

b is the projection of Xa onto image plane B under
the P∞-collineation. Also, Eba is the epipole of camera B.
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Now we can see what the {ζ1n, ζ2n} components from equation (48) express.

ζ1n ≡
β̄j

n∞ − β̄j
n

β̄j
n − ε̄j

ba

gives the ratio of the distance (in x or y direction)
between X∞

b and Xb, and Xb and Eba.

ζ2n ≡
β̄j

n∞ − ε̄j
ba

β̄j
n − ε̄j

ba

gives the ratio of the distance (in x or y direction)
between X∞

b and Eba, and Xb and Eba.

6.1.1 Some Special Cases

1. If Xb = X∞
b then X is a point on P∞, for example a vanishing point.

In this case ζj
1n = 0 and ζj

2n = 1. Hence, equation (48) gives ᾱ4

n = −1.
From equation (5) it follows that this does indeed give a point on P∞.

2.

Xa

A4 Eba

Xb
Xb

8

B4
Eab

X

Suppose we move a world point
X along a line towards A4 (see
figure). In that case, Xa and
X∞

b will stay constant, but Xb

will move towards Eba. There-
fore, ζj

1n → ∞ and ζj
2n → ∞,

and thus ᾱ4 → ∞ (from equa-
tion (48)) and α̂i → 0. That
is, in the limit that X = A4,
X will be reconstructed to lie
at the origin, which is A4.

3.

A4 Eab

Xa

B4Xb

8

Xb
Eba

X

Now suppose we move a world
point X along a line towards
B4 (see figure). Now Xb will
stay constant, whereas Xa →
Eab and X∞

b → Eba. There-
fore, ζj

1n → −1 and ζj
2n → 0.

In the limit that X = B4 we
have Xa = Eab and thus equa-
tion (48) gives ε̄4

ab = −ε̄i
ab K̄b

3
i
.

That is, we have found the po-
sition of B4 in the A-frame.

The equation for the projective depth of the {ε̄i
ab} given above can also be

27



derived as follows.

B4 = B4 ·A
µ Aµ = εµ

ab Aµ

⇒ B4 ·B
j = εµ

ab Aµ ·B
j

⇒ 0 = εµ
ab Kb

j
µ

; Kb
j
µ
≡ Aµ ·B

j

⇒ ε4

ab = −εi
ab

Kb
j
i

Kb
j
4

(50)

What we have done here is first to express B4 in the A-frame. Then we project
B4 onto image plane B. In the third line we use the fact that B4 ·B

j = 0 by
definition. The resultant equation has to be valid for each j ∈ {1, 2, 3}. If we
choose j = 3 we can write

ε̄4

ab = −ε̄i
ab K̄b

3
i
. (51)

6.1.2 The Meaning of the Free Parameters

Let us return to figure 4. Recall that Kb
3
i

= Ai ·B
3, that is, it gives the

components of the {Ai} along B3. Therefore, varying the {Kb
3
i
} means that

we are moving B3, which is the principal point on image plane B. Since X∞
b

cannot change when we vary Kb
3
i

the relation between B3 and B4 is fixed.

Thus, changing B3 means changing B4. In this respect, finding the correct
{Kb

3
i
} means finding the correct translation of camera B relative to camera A.

The relative rotation has already been fixed through finding P∞.

However, it is the relative sizes of the {K̄b
3
i
} that are really important.

An overall scale factor will only change the depths of all reconstructed points
simultaneously. Therefore, we can fix the depth of one image point, to fix the
scale of K̄b

3
i
.

6.2 The Minimisation Function

We mentioned before that we will use our knowledge of parallel lines once
again to constrain the {K̄b

3
i
} from equation (48). Let La

u = Xa
u1
∧Xa

u2
and

La
v = Xa

v1
∧Xa

v2
be the projections of two parallel world lines onto image plane

A. In general we define world points and their corresponding images on image
plane A as

Xur ≡ ᾱµ
urAµ ; Xa

ur ≡ ᾱi
urAi

Xvr ≡ ᾱµ
vrAµ ; Xa

vr ≡ ᾱi
vrAi







r ∈ {1, . . . , n}. (52)
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Furthermore, if we know the image points on image plane B corresponding to
Xa

u1
, Xa

u2
, Xa

v1
and Xa

v2
, and we have found M∞, then we can calculate the

corresponding ζs from equation (49). Equation (48) will now allow us to find
the projective depths for Xa

u1
, Xa

u2
, Xa

v1
and Xa

v2
. Therefore, we can calculate

the world lines Lu = Xu1∧Xu2 and Lv = Xv1∧Xv2.

Now, we know that Lu and Lv are supposed to be parallel, which means
that they have to intersect P∞ in the same point. This will be the constraint
which we will use to find the correct {K̄b

3
i
}. Let X∞

u and X∞
v be defined as

X∞

u ≡ Lu ∨ P∞ ; X∞

v ≡ Lv ∨ P∞. (53)

Lines Lu and Lv are parallel iff

X∞

u ∧X∞

v = 0 (54)

Instead of using this condition we could also project Lu and Lv into E3, and
then check that they are parallel. However, projecting into E3 means dividing
through by the projective depth, which means that our free parameters are
now in the denominator of a minimisation function. Apart from creating a
minimisation surface with singularities, the derivatives of such a minimisation
function will be more complicated and thus cost more computing time.

6.2.1 Finding the minimisation parameters

We will now derive an expression for X∞
u in terms of the {ᾱi

u1
, ᾱi

u2
}.

X∞
u = Lu ∨ P∞ = (ᾱµ

u1 ᾱν
u2

Aµ∧Aν) ∨ P∞

=
(

λ̄u
µ1µ2

Aµ1
∧Aµ2

)

∨
(

A1∧A2∧(A3 − A4)
)

= λ̄u
µ1µ2

(

[[Aµ1
Aµ2

A1A2]] A3 + [[Aµ1
Aµ2

A3A1]] A2

+[[Aµ1
Aµ2

A2A3]] A1

)

− λ̄u
µ1µ2

(

[[Aµ1
Aµ2

A1A2]] A4 + [[Aµ1
Aµ2

A4A1]] A2

+[[Aµ1
Aµ2

A2A4]] A1

)

≃ (λ̄u
13

+ λ̄u
14

) A1 + (λ̄u
23

+ λ̄u
24

) A2 + λ̄u
34

(A3 − A4)

= χi
u A∞

i

(55)

where

χi
u ≡ (λ̄u

i3 + λ̄u
i4) ; λ̄u

µ1µ2
≡ ᾱµ1

u1 ᾱµ2

u2 − ᾱµ2

u1 ᾱµ1

u2, (56)
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and

A∞

1
≡ A1 ; A∞

2
≡ A2 ; A∞

3
≡ A3 − A4 (57)

The free parameters we have are the {K̄b
3
i
}. To make future equations

somewhat clearer we will define ϕi ≡ K̄b
3
i
. Hence, equation (48) will be written

as

ᾱ4

n = ᾱi
n ζ1n ϕi − ζ2n. (58)

Substituting equation (58) into equation (56) gives

χi
u = ᾱi

u1
ᾱ4

u2
− ᾱi

u2
ᾱ4

u1
+ ᾱi

u1
− ᾱi

u2

= ᾱi
u1

(ᾱj
u2 ζ1 u2 ϕj − ζ2 u2)

− ᾱi
u2

(ᾱj
u1 ζ1 u1 ϕj − ζ2 u1) + ᾱi

u1
− ᾱi

u2

=
(

ζ1 u2 ᾱi
u1

ᾱj
u2 − ζ1 u1 ᾱi

u2
ᾱj

u1

)

ϕj

+ᾱi
u1

(1 − ζ2 u2) − ᾱi
u2

(1 − ζ2 u1)

(59)

This equation may be written more succinctly as

χi
u = Dij

u ϕj + pi
u (60)

with

Dij
u ≡ ζ1 u2 ᾱi

u1
ᾱj

u2 − ζ1 u1 ᾱi
u2

ᾱj
u1

pi
u ≡ ᾱi

u1
(1 − ζ2 u2) − ᾱi

u2
(1 − ζ2 u1)

(61)

The reason for defining the {Dij
u } and {pi

u} is, that they can be calculated for
every parallel line pair available before we minimise over the {ϕj}. In this way
we reduce the calculation time at each minimisation step.

Recall that lines Lu and Lv are parallel iff X∞
u ∧X∞

v = 0. We can now write
this expression in terms of the {χi}.

X∞
u ∧X∞

v = (χi
u A∞

i )∧(χj
v A∞

j )

=
∑

i1

(χi2
u χi3

v − χi3
u χi2

v ) A∞

i2
∧A∞

i3

= Λuv
i Li

∞ ; Li1
∞ ≡ A∞

i2
∧A∞

i3

(62)
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with

Λuv
i1

≡ χi2
u χi3

v − χi3
u χi2

v (63)

Each of the {Λuv
i } has to be zero if X∞

u ∧X∞
v = 0. Therefore, from an analytical

point of view, the expression we should try to minimise for each parallel line
pair {Lu, Lv} is

∆uv : ϕj −→
3
∑

i=0

(Λuv
i )2. (64)

6.2.2 Improving computational accuracy

However, for a computer with finite floating point precision, this equation
poses a problem. The culprits in this case are the {χi}. Recall that they
give the direction of a line in homogeneous coordinates. Before they are used
in equation (63) they should be normalised to improve the precision of the
equation on a computer. We normalise the {χi

u} in the following way.

χ̂i
u ≡

χi
u

√

∑

i (χ
i
u)

2

(65)

Therefore, the minimisation function we will use is

∆uv : ϕj −→
3
∑

i=0

(Λ̂uv
i )2. (66)

where

Λ̂uv
i1

≡ χ̂i2
u χ̂i3

v − χ̂i3
u χ̂i2

v (67)

Since the {χ̂i
u} are normalised it might seem possible on first sight to use

as minimisation function

∆uv : ϕj −→
3
∑

i=0

(χ̂i
u − χ̂i

v)
2. (68)

This would be faster to calculate and also have much simpler derivatives. How-
ever, this equation is sensitive to an overall sign change of the {χ̂i}, but we are
only interested in whether two lines are parallel, not in whether the vectors
that define them point in the same or in opposite directions.
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6.2.3 The derivatives

The derivative of ∆uv is computationally not a particularly expensive expres-
sion. Therefore, we can use a minimisation routine that also uses the deriva-
tives of the minimisation function. This will make the minimisation process
more efficient and robust.

The partial derivatives of the {χ̂i
u} are

∂ϕr
χ̂i

u =
Dir

u
√

∑

k (χk
u)

2

−
χi

u

∑

k (χk
u Dkr

u )
3

√

∑

k (χk
u)

2

, (69)

and the partial derivatives of the {Λ̂uv
i } are

∂ϕr
Λ̂uv

i1
= (∂ϕr

χ̂i2
u ) χ̂i3

v + χ̂i2
u (∂ϕr

χ̂i3
v ) − (∂ϕr

χ̂i3
u ) χ̂i2

v − χ̂i3
u (∂ϕr

χ̂i2
v ). (70)

Now we can calculate the partial derivatives of the minimisation function ∆uv.

∂ϕr
∆uv = 2

3
∑

i=0

(Λ̂uv
i ∂ϕr

Λ̂uv
i ) (71)

6.2.4 Implementing the depth constraint

At the moment the minimisation function ∆uv depends on three parameters:
the {ϕj}. However, we mentioned earlier that we can fix the depth of one
point. This will reduce the number of free parameters to two.

If we choose to fix the depth of point Xu1 it follows from equation (58) that
the following condition must hold.

0 = ζ1 u1 ᾱi
u1

ϕi − ζ2 u1 − ᾱ4

u1

= ξi
u1

ϕi − ωu1

(72)

with

ξi
u1

≡ ζ1 u1 ᾱi
u1

; ωu1 ≡ ζ2 u1 + ᾱ4

u1
(73)

With regard to equation (5) a good choice for ᾱ4

u1
is −0.5, which means that

α̂3 = 2. However, if the point we chose to fix has a much larger depth value
than the other points we are trying to reconstruct, then some points may be
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reconstructed to lie behind the optical centre. In this case, we will invariably
get a bad reconstruction.

We can rewrite equation (72) as

ξ̄i
u1

ϕi = 1 ; ξ̄i
u1

≡
ξi
u1

ωu1

(74)

Of course, we have to make sure that ωu1 6= 0, which means we have to be
somewhat careful with the choice of ᾱ4

u1
.

Our minimisation routine should only search over that parameter space
where equation (74) is satisfied. We can achieve this by reparameterising the
equation.

ξ̄i
u1

(τ1 Φ1

i + τ2 Φ2

i + τ3 Φ3

i ) = 1 ; τ3 ≡ 1 (75)

with

ϕj = τi Φ
i
j (76)

and

ξ̄i
u1

Φ1

i = 0 ; ξ̄i
u1

Φ2

i = 0 ; ξ̄i
u1

Φ3

i = 1 (77)

We have replaced the {ϕi} with the {τi}. Therefore, {τ1, τ2} are now the free
parameters, while τ3 is fixed at unity.

The question now is how we can find the appropriate Φj
i matrix. First of

all we can set the vector Φ3

i to be the inverse of the vector ξ̄i
u1

.

Φ3

i =
ξ̄i
u1

∑

j (ξ̄j
u1)

2
=⇒ ξ̄i

u1
Φ3

i =

∑

i (ξ̄
i
u1

)2

∑

j (ξ̄j
u1)

2
= 1 (78)

We find the remaining first two rows of Φj
i with the help of an SVD. We do

this by creating a 3 × 3 matrix H whose three rows are all given by Φ3

i . That
is, H ≡ [Φ3

i , Φ
3

i , Φ
3

i ]. Therefore, H is of rank 1 and has a nullity of 2. Applying
an SVD to H will find a set of three orthogonal vectors, two of which span
the null space of H, while the remaining one is just a scaled version of Φ3

i . We
first should find that scale and apply it to H. The null space of H is exactly
the space we want our minimisation routine to search over. Hence, we set Φ1

i

and Φ2

i to be the correctly scaled null space vectors found with the SVD. This
satisfies equation (77), and therefore equation (75) will stay unchanged when
varying τ1 and τ2.
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6.2.5 Image Point Normalisation

Before we can calculate the collineation tensor for the P∞-collineation we have
to find the fundamental matrix (F ) for the two views (see equation (21)). For
the calculation of the F we cannot use the pixel coordinates directly, because
they are typically too large to obtain good accuracy in our numerical calcula-
tions. This is also true for all other calculations performed here. Therefore,
we need to scale the image point coordinates so that they are of order 1.

In [26] Hartley suggests that the scales and skews applied to the image
point coordinates are found in the following way. The skew is given by the
coordinates of the centroid of all image points. Then the average distance of
the skewed image points from the origin is calculated. The inverse of that
distance gives the scale.

This is a good method if we just wanted to calculate F . However, it turns
out that for our purposes such a scaling is not suitable. In fact, we found it
is important to conserve the aspect ratio of the images (separately), and to
ensure that the origin of the image plane is chosen in the same way in both
images.

We choose the image plane origin to be in the centre of each image plane
and then scale the image points by dividing their x and y coordinate by the
image resolution in the x-direction. This preserves the aspect ratio.

6.2.6 Calculating the Fundamental Matrix

In recent times a lot of effort has gone into the analysis of the fundamental
matrix (F ) and the trifocal tensor (T ), in order to find constraints so that
they may be calculated as accurately as possible [26, 27, 23, 28, 29, 30, 31].
However, as our experimental results will show, the quality of F is not of
particular importance for our reconstruction algorithm. In retrospect this will
justify the simple calculation method we use for F .

We calculate F with a simple SVD method by writing the components of
F as a column vector ~f . If we have N point matches {ᾱi

n, β̄i
n} then the F we

look for has to satisfy

ᾱi
n β̄j

n Fij = 0, (79)

for all n. In matrix notation this can written as

A ~f = 0 (80)
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with

A ≡



















ᾱ1

1
β̄1

1
ᾱ1

1
β̄2

1
ᾱ1

1
β̄3

1
ᾱ2

1
β̄1

1
. . . ᾱ3

1
β̄3

1

ᾱ1

2
β̄1

2
ᾱ1

2
β̄2

2
ᾱ1

2
β̄3

2
ᾱ2

2
β̄1

2
. . . ᾱ3

2
β̄3

2

...
...

...
...

...

ᾱ1

N β̄1

N ᾱ1

N β̄2

N ᾱ1

N β̄3

N ᾱ2

N β̄1

N . . . ᾱ3

N β̄3

N



















(81)

For real data there will typically not be an F that satisfies equation (79)
perfectly. Therefore, what we try to calculate is the F that satisfies these
conditions as well as possible. This is equivalent to finding the vector that has
the least influence on the range of A. This can be achieved by performing an
SVD on A.

A = U D V T , (82)

where U and V are orthogonal matrices and D is a diagonal matrix [32]. The
column vector in V that corresponds to the smallest diagonal value in D is the
~f that we are looking for. Note that at least nine point matches have to be
known to find F in this way.

As was shown in chapter [20], F is of rank 2. An F found with the above
method from real image point matches, usually does not satisfy this constraint.
An indication that the image point matches are particularly bad is that there
are two or more diagonal values in D of the same order of magnitude.

A linear method to enforce the rank of F is to project the initial F to the
nearest F that satisfies the rank constraint. This may be done by performing
an SVD on F , i.e. F = UDV T , then setting the smallest diagonal value in D
to zero, and recalculating F = UDV T with the changed D. However, this did
not have any significant effect on our reconstructions.

6.3 The Minimisation Routine

We used a modified version of the conjugate gradient method to perform the
minimisation. This modified version is called MacOpt and was developed by
David MacKay [33]. It makes a number of improvements over the conjugate
gradient method as given in [32]. We will list the most important modifications
in the following.

• The initial step size in the line minimisation as given in [32] may be
too big, which can result in a lot of wasted computing power. MacOpt
rectifies this in two ways:
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1. the initial step size of any line minimization is inversely proportional
to the gradient,

2. the constant of proportionality is adopted during the minimisation.

• MacOpt uses the gradient information also for the line search. In this way
the line minimum can be bracketed with only two gradient evaluations.

• MacOpt does not evaluate the function at all, but only uses the gradient
information.

• The general purpose minimiser in [32] gives very high precision in the line
minimisations, which is actually not necessary. MacOpt only brackets
the minimum and then guesses where it is by linear interpolation.

To optimise the minimisation process we calculate the {Dij} and {pi} from
equation (61) for each parallel line pair, before we start MacOpt. During the
minimisation process we can then calculate the {χi} quickly with equation
(60). Unfortunately, we cannot precalculate anything else because of the nor-
malisation of the {χi} which we need to perform.

MacOpt assumes that the minimisation surface is fundamentally convex
with no local minima. However, our surface is not of that shape. It turns out
that the success rate of finding the absolute minimum can be improved if we
first use the unnormalised χs to step towards the minimum, and then use the
normalised χs to find the minimum with high accuracy. This is because the
minimisation surface for the unnormalised χs is of a convex shape, whereas
the minimisation surface for the normalised χs has a number of local minima.

The problems that may occur with MacOpt and a general discussion of
the minimisation surface, in particular with relation to the reconstruction, is
demonstrated by the program MVT. This program can be downloaded from
C.Perwass’ home page: www.perwass.de.
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7 Experimental Results

We can now outline the structure of our reconstruction algorithm.

Step 1: We find point matches and sets of projections of parallel
lines over the two images.

Step 2: We calculate three vanishing points and the fundamental
matrix. This allows us to find the P∞-collineation tensor
M∞.

Step 3: We select a set of parallel lines that we want to use to
constrain our minimisation. Note that one pair of parallel
lines may be enough. More pairs do not necessarily im-
prove the result, since they may not be consistent due to
errors.

Step 4: The image points on image plane A which define the cho-
sen parallel lines are projected onto image plane B under
the P∞-collineation with M∞.

Step 5: We can now find the {Kb
3
i
} by minimising equation (64)

or equation (66).

Step 6: Once we have found Kb
3
i
we can use it in conjunction with

M∞ in equation (58) to reconstruct any other image point
matches for this camera setup. Note that this method of
finding the image point depths saves us from performing
an additional triangulation [34], which would be necessary
if we first calculated the camera calibrations explicitly and
then tried to find the image point depths.

Figure 5 shows the data that has to be known and calculated as input to our
minimisation routine. The image points and parallel line indices are the source
data. The latter index which image point pairs form parallel lines. The inputs
to the minimisation routine are the image points, the parallel line indices, the
epipoles and the image points projected through the plane at infinity. The
fundamental matrix and the vanishing points are only intermediate calcula-
tions to find M∞. M∞ is also only needed once to project the image points
on image plane A onto image plane B under the P∞-collineation.

There are quite a number of factors that influence the reconstruction. These
are shown in figure 6. We can distinguish between two types of influences:
those on which we have no influence once we are given our source data (i.e.
image points and parallel lines), and those which depend on how we deal with
the source data. The former are indicated by red, rounded boxes and the latter
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by green, square ones. The pointed boxes indicate the calculations which we
need to perform before we can start the minimisation routine.

If we have real data we can only try to improve the reconstruction by varying
the choice of parallel lines, the choice of vanishing points and the method of
calculation of the fundamental matrix and the epipoles. However, if we use
synthetic data, we have a handle on all influences shown.
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7.1 Synthetic Data

Figure 7: The synthetic data was created from projections of the house
onto the cameras.

To test the quality of the reconstruction algorithm we use synthetic data.
One big advantage of using synthetic data is that we can get a geometric

quality measure of the reconstruction. Also if an algorithm fails with perfect
synthetic data, it is clearly unlikely to work with real data.

The lower picture in figure 7 shows a house with three cameras. The three
smaller pictures on top show the projections of the house onto the three image
planes. The house consists of 18 vertices, which were all used in our calcu-
lations. We performed two trials: trial 1 uses an orthogonal set of vanishing
points. Trial 2 uses two orthogonal vanishing points but the third vanishing
point is found from the two lines on the roof which are vertically sloping and
closest to the camera. In each trial we also tested two camera configurations:
the camera to the very left and the very right, and the two cameras which are
close together. The former will be called the far cameras and the latter the
close cameras configuration.

Recall that we can and, in fact, have to fix the depth of one point. Since we
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know the true points we can set this depth to its true value. Also remember
that we perform our reconstruction in the frame of one of the cameras. But
we also know this frame and can therefore transform our reconstructed points
to lie in the appropriate frame. The reconstruction obtained in this way can
then be compared directly with the true object.

In our experiments we added a Gaussian error with a mean deviation be-
tween 0 and 12 pixels to the image points. The camera resolutions were
600 × 600 pixels. For each setting of the mean deviation of the induced error
we calculated the {Kb

3
i
} 100 times, each time with different errors, to obtain

a statistically meaningful result. Each calculation of the {Kb
3
i
} can be used to

reconstruct any image point matches in the two images. Therefore, we pro-
jected the house again onto the two image planes, again introducing an error
of the same mean deviation. These image points are then reconstructed and
compared with the true points. This was done 20 times for each calculation
of the {Kb

3
i
}. This way we obtained a separation of the calibration and the

reconstruction.

The quality measure of a reconstruction is given by the root mean squared
error between the locations of the reconstructed points and the true points.
That is, we take the root of the mean of the sum of the distances squared
between the true and the reconstructed points. We evaluated the RMS error
over the 20 reconstructions for each calibration (i.e. calculation of the {Kb

3
i
}),

and also over all calculations of the {Kb
3
i
} for each mean deviation of the

induced error. The former will be called the “RMS/Trial” and the latter the
“Total RMS”.

Figure 8 shows the results when using an orthogonal set of vanishing points
and figure 9 when using a non-orthogonal set, as described above. Note that
the y-axis has a log

10
scale. The length of the house is 2 units, its total height

1.5 units and its depth 1 unit. The results for the close cameras configuration
are slighty displaced to the right, so that they can be distinguished from the
far cameras setup.

The first thing we can see from the graphs is that as the induced error
increases over 6 pixels we start to get error configurations where the algorithm
breaks down. This can be either due to the minimisation getting stuck in local
minima or because the absolute minimum is at a wrong position. The latter
is possible since the minimisation surface depends on M∞ and F.

Furthermore, it can be seen that the far cameras configuration is more
immune to induced errors than the close cameras configuration. Also the
non-orthogonal set of vanishing points fares worse than the orthogonal one.
Curiously, in trial 2 the far cameras configuration is worse than the close
cameras configuration.
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Reconstruction Quality
(Trial 1)
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Figure 8: Comparison of reconstruction quality for first trial.

Reconstruction Quality
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Figure 9: Comparison of reconstruction quality for second trial.
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Fundamental Matrix Quality
(Trial 1)
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Figure 10: Comparison of fundamental matrix quality for first trial.
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Figure 11: Comparison of fundamental matrix quality for second trial.
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Epipole Quality 
(Trial 1)
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Figure 12: Comparison of epipole quality for first trial.
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Figure 13: Comparison of epipole quality for second trial.
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In general it can be seen, though, that an error with a mean deviation of up
to 5 pixels still gives acceptable reconstructions. It might seem odd, though,
that if some error is introduced into the image points, the reconstruction can
actually be better than with no noise at all. This is because even if no ad-
ditional error is applied, there is still an error due to the digitisation in the
cameras. Particular configurations of induced error can compensate for that
by chance. However, the figures also show that the probability of the added
error improving the reconstruction is about as high as making the reconstruc-
tion worse (relative to the total RMS). Nevertheless, this fact supplies us with
an interesting idea: we might be able to improve our reconstructions from real
data by adding noise to the image points. Since our calibration algorithm
is very fast it seems feasible to employ maximum entropy methods. We will
discuss this in future work.

Figures 10 and 11 show the quality of the fundamental matrices that were
used for the respective reconstructions in figures 8 and 9. The quality measure
is the root mean square of the difference between the true and the calculated
fundamental matrix components.

The most obvious feature of the graphs is that the fundamental matrices are
of much better quality for the far cameras setup. Still, comparing figures 10
and 11 with figures 8 and 9 we can also see that this large difference in quality
is not translated directly into a quality difference between the reconstructions.
A similar effect can be seen for the epipole quality.

Figures 12 and 13 show the quality of the epipoles corresponding to the
reconstructions whose quality is shown in figures 8 and 9. The quality measure
is the root mean square of the difference between the true and the calculated
epipole coordinates.

The most obvious feature is again that the epipoles are much better for the
far cameras setup, but they are still quite bad in an absolute sense. This seems
to indicate that the error in estimation of epipoles is higher if the epipoles are
further away from the image centre (i.e. have larger coordinates) as they are
for the close cameras setup. Again the reconstruction quality does not seem
to be influenced a lot by the errors in the epipoles.

In conclusion we can say that calculating an accurate F and thus accurate
epipoles, is not very important for our reconstruction algorithm. The knowl-
edge of parallel lines seems to make up for the bad quality of F and the epipoles
in the minimisation. This is an interesting insight considering the amount of
research that goes into calculating F , or the trifocal tensor, which is a related
problem, as accurately as possible [26, 27, 35, 36, 23, 28, 29, 30, 31].
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Figure 14: Initial images with parallel lines used for the calculation of the
vanishing points and minimisation function indicated.

Figure 15: Reconstruction of the chessboard (Schachbrett).
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7.2 Real Data

The real test for any reconstruction algorithm is the reconstruction of a real
world scene. Figure 14 shows two views of a chessboard which we used for
reconstruction12. The original images had a resolution of 1280 × 960 pixels.
The lines indicate the parallel lines used to calculate the vanishing points.
The two sets of parallel lines on the front of the chessbox were used in the
minimisation routine. The fundamental matrix used was calculated from 13
point matches. The resultant reconstruction13 can be seen in figure 15.

The different views of the reconstruction show that the chessbox was recon-
structed quite well. However, the chessboard is not really square. Remember,
though, that we have only used two line pairs and one line triplet to find
three vanishing points. Furthermore, only two of the three vanishing points
relate to orthogonal directions in E3. The reconstruction could be improved
by exploiting all the parallel lines available, of which there are many on a
chessboard.

Also note that the front side of the chessboard is reconstructed very nicely,
at a proper right angle to its top side. The chess figure, which can be seen
best in the bottom left hand view of figure 15, is not reconstructed particularly
well. This is because it is very difficult to find matching point sets for round
objects.

8 Conclusions

We have presented here an algorithm for the reconstruction of 3D scenes from
two static images. The information we need is firstly point matches over the
two images, and secondly at least three sets of parallel lines. From this informa-
tion alone we implicitly14 find the internal calibration, rotation and translation
of the second camera relative to the first one. Assuming that the first camera
defines an orthonormal frame of E3 we can then create a 3D-reconstruction.

Disadvantages of our algorithm are that the internal calibration of the first
camera is not found, and that the algorithm is not automatic. This is because
apart from the point matches, combinations of vanishing points and parallel

12These pictures were actually taken by C.Perwass’ father, in a different country, with
equipment unknown to the authors. They were then sent via email to the authors. That is,
the only thing known about the pictures to the authors, are the pictures themselves.

13This and other reconstructions, as well as some more analysis of the reconstruction
algorithm are demonstrated by the program MVT. You can download this program from
C.Perwass’ home page: www.perwass.de.

14Future work will look at how these entities can be found explicitly.
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lines can be chosen freely. Also the information that certain lines in an image
are actually parallel in the world, is a knowledge-based decision that humans
are easily capable of, but not computers.

The advantages of the algorithm are, first of all, that it is fast and robust.
Also only a minimum amount of data has to be known. In particular, nothing
has to be known about the camera positions or the cameras themselves.

Another interesting aspect of our algorithm is that there does not seem to
be an easy way to derive its most important parts other than with GA. This
is especially true for our expression of the P∞-collineation (Ψ∞) in terms of a
camera matrix. The derivation of this equation was only possible because in
GA we are working with the underlying basis and not only with the coordi-
nates, as in matrix and tensor methods.

Faugeras discusses in [16] a 3D Euclidean interpretation of Ψ∞. He finds
that Ψ∞ is proportional to a rotation matrix which “is transforming the direc-
tions of the axes of the first coordinate system into those of the second.” This
also follows directly from our expression. However, we also get the additional
insight of how all this can be expressed in terms of a camera matrix, which
forms the basis of our reconstruction algorithm.

Furthermore, although the derivation of M∞ is somewhat tedious, it follows
from a straightforward application of the intersection of lines and planes. Since
GA gives intersection points directly as algebraic objects which can be further
manipulated, all the necessary intersection calculations can be combined and
reduced to a single tensor. This is certainly not easily possible with matrix
methods.

We believe that apart from presenting a good reconstruction algorithm we
have also shown that GA is a very useful tool which allows us to gain more
geometric insight than with standard matrix methods, in an easy (for “GAers”)
and straightforward, since geometric, manner.
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