
INSTITUT FÜR INFORMATIK

UND PRAKTISCHE MATHEMATIK

Analysis of Local Image Structure
using Intersections of Conics

Christian B.U. Perwass

Bericht Nr. 0403
Version 1.0, July 2004

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

KIEL





Institut für Informatik und Praktische Mathematik der
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40
D – 24098 Kiel

Analysis of Local Image Structure
using Intersections of Conics

Christian B.U. Perwass

Bericht Nr. 0403
Version 1.0, July 2004

e-mail: chp@ks.informatik.uni-kiel.de

Dieser Bericht ist als persönliche Mitteilung aufzufassen.





Contents

1 Introduction 1

2 The Algorithm 3

2.1 The Vector Space of Conics . . . . . . . . . . . . . . . . . . . . . 3

2.2 The Eigenvector Analysis . . . . . . . . . . . . . . . . . . . . . 4

2.3 Analyzing Line Pairs . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Analyzing Image Data . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.1 Intersection of Conics . . . . . . . . . . . . . . . . . . . 9

2.4.2 Finding Support for Lines . . . . . . . . . . . . . . . . . 10

2.4.3 Analyzing the Line Segments . . . . . . . . . . . . . . . 12

2.4.4 Analyzing Line Structures . . . . . . . . . . . . . . . . . 17

2.4.5 Translation Invariance of Structure Analysis . . . . . . 20

3 Experiments & Conclusions 23

3.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A Laboratory Example Image 27

B The Clifford Algebra Interpretation 37

B.1 The Clifford Algebra over D2 . . . . . . . . . . . . . . . . . . . 37

B.2 Representing C̀ (Rn) in R2n . . . . . . . . . . . . . . . . . . . . 38

B.3 An Isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . 40

i



ii CONTENTS

B.4 Solving for a Multivector . . . . . . . . . . . . . . . . . . . . . . 41

C Evaluating the Intersection of Conics 43

C.1 Finding Degenerate Conics . . . . . . . . . . . . . . . . . . . . 44

C.2 Analysis of Matrices representing Conics . . . . . . . . . . . . 46

C.3 Intersecting Lines with Conics . . . . . . . . . . . . . . . . . . . 49

C.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



CONTENTS iii

Abstract

We propose an algorithm for the analysis of local image structure
that is able to distinguish between a number of different struc-
tures like corners, crossings, y-junctions, t-junctions, lines and
line segments. Furthermore, parameters of the detected struc-
tures can be evaluated, as, for example, the opening angle of cor-
ners. The main idea of the algorithm is to fit the intersection of
two conics to the local image structure. The results of the algo-
rithm when applied to synthetic and real data will be presented.



iv CONTENTS



Chapter 1

Introduction

An important problem in Computer Vision is the recognition of objects from
images. In order to recognize objects, they have to be represented appropri-
ately. What an appropriate representation of an object is, is still a matter
of research. However, a promising approach seems to be the use of ”key
features” for an object [1, 2, 3]. At the lowest level, local image structures
that are intrinsically two dimensional (i2D), are the most useful ones, since
they can be identified with a specific position in an image. Intrinsically one
dimensional (i1D) structures, on the other hand, allow only for an exact lo-
calization in one dimension. Furthermore, i2D structures often stem from
defining elements of an object, like the corners of a cube, for example. Due
to the importance of i2D structures in many areas of Computer Vision, a
lot of effort has gone and still goes into the development of robust edge
and corner detectors, e.g. [4, 5, 6, 7]. Typically, corner detectors point to
places in an image where the intrinsic dimensionality is two. However, this
is the case for many different image structures like corners, line endings, line
crossings, y-junctions and t-junctions. It would certainly be advantageous
to tell these different types of structures apart. Consequently, there has been
some effort to analyze i2D structures further, see e.g. [8, 9, 10]. Apart from
determining the type, it would also be useful to extract some parameters of
the structures, like the opening angle of a corner, or of a crossing.

In this report we propose a method to extract the type of an i2D image
structure and to evaluate its parameters, like the opening angle of a corner,
for example. This is done in two main steps. In the first step the edges of an
image are extracted. In the second step the edge points are then analyzed
locally by finding the two best fitting conics, which enables us to extract
the type of structure. Note that we do not use the form of the fitted conics
directly to analyze the image structure, as for example in [11], but consider
their intersections instead. This report is dedicated to the description of the
second step.

1



2 CHAPTER 1. INTRODUCTION



Chapter 2

The Algorithm

As mentioned in the introduction, an image is reduced to a set of edge pixels
in an initial preprocessing step. The assumption we then make is that within
a local area the edge pixels can be segmented into a set of line segments. A
corner, for example, consists of two line segments that meet in the local area.
Even though we are looking for line segments, it is not obvious of how to fit
lines to the data, since it is in general not known how many line segments
are present. A y-junction, for example, has three line segments, while a
corner, or a t-junction only has two.

The basic idea we follow here is to perform an eigenvector analysis of
the edge data in a local area. However, instead of using the data directly
we first transform it to some other space, where the eigenvectors represent
conics. From a geometric point of view, we try to find the conics that best fit
the data. How this can be used to segment the data into line segments will
be described later. First the embedding used and the eigenvector analysis
are discussed.

2.1 The Vector Space of Conics

From the set of all edge points, we choose a subset of points, which lie in
a particular local area. The pixel coordinates of the edge points are then
transformed to coordinates relative to the center of the local area, such that
the top left corner of the local area is at position (−1, 1) and the bottom right
corner at the position (1,−1) . The main reason for this transformation is to
improve the numerical stability of the algorithm. Let the position vector of
the i th edge point in the local area in transformed coordinates be denoted
by the column vector (ui, vi)

T . In a first step these vectors are embedded
in a projective space. The i th edge point vector in this space is then written

3



4 CHAPTER 2. THE ALGORITHM

as wi = (ui, vi, 1)T . Next we embed wi in a 6D-vector space of symmetric
matrices, which allows us to fit conics to a set of data points. The details of
this embedding are as follows.

It is well known that given a symmetric 3×3 matrix A , the set of vectors
x = (x, y, 1)T that satisfy

xT A x = 0, (2.1)

lie on a conic. This can also be written using the scalar product of matrices,
denoted here by · , as

(x xT) · A = 0. (2.2)

It makes therefore sense to define a vector space of symmetric matrices in
the following way. If aij denotes the component of matrix A at row i and
column j , we can define the transformation T that maps elements of R3×3

to R6 as

T : A ∈ R3×3 7→ (a13, a23,
1√
2
a33,

1√
2
a11,

1√
2
a22, a12)

T ∈ R6. (2.3)

A vector x ∈ R3 may now be embedded in the same six dimensional space
via

x := T (x xT) = (x, y, 1√
2
, 1√

2
x2, 1√

2
y2, x y)T ∈ R6. (2.4)

If we define a := T (A) , then equation (2.1) can be written as the scalar
product

xT a = 0 ⇐⇒ x2 a11 + y2 a22 + 2xy a12 + 2x a13 + 2y a23 + a33 = 0. (2.5)

Finding the vector a that best satisfies the above equation for a set of points
{xi} is usually called the algebraic estimation of a conic [12].

In the following we will denote the 6D-vector space in which 2D-conics
may be represented by D2 ≡ R6 . A 2D-vector (x, y) ∈ R2 is transformed to
D2 by the function

D : (x, y) ∈ R2 7→ (x, y, 1√
2
, 1√

2
x2, 1√

2
y2, xy) ∈ D2. (2.6)

2.2 The Eigenvector Analysis

In order to analyze the edge data, we embed the data vectors {wi} in the
vector space of symmetric matrices as described above, i.e. wi := D(wi) .
Denote by W the matrix constructed from the {wi} as W = (w1, . . . , wN)T ,
where N is the number of data vectors. A conic a = T (A) that minimizes
‖Wa‖2 is then a best fit to the data in an algebraic sense. The key to our



2.2. THE EIGENVECTOR ANALYSIS 5

algorithm is not just to look at the best fit but at the two eigenvectors of W
with the two smallest eigenvalues.

In order to obtain real valued eigenvalues and orthogonal eigenvectors,
we evaluate the eigenvectors and eigenvalues of W by performing a sin-
gular value decomposition (SVD) on WT W , which is symmetric. The sin-
gular vectors are then simply the eigenvectors and the square root of the
singular values gives the eigenvalues of W .

If W has two small eigenvalues, this means that the whole subspace
spanned by the corresponding eigenvectors is a good fit to the data. In
mathematical terms this can be written as follows. Throughout this text we
will use c1, c2 to denote the two eigenvectors with smallest eigenvalues of
W . For any α, β ∈ R , c = α c1 + β c2 is a good fit to the data. This may
also be termed a pencil of conics. The base points that define this pencil of
conics are those that lie on all conics in this pencil. These points are simply
the intersection points of the conics c1 and c2 . This can be seen quite easily.
If x is an intersection point of c1 and c2 , then xT c1 = 0 and xT c2 = 0 .
Hence,

xT c = α (xT c1) + β (xT c2) = 0 ∀α, β ∈ R. (2.7)

It therefore seems sensible that the intersection points of c1 and c2 also
contain important information about the structure of the data from which
W was constructed. An example that this is indeed the case can be seen
in figure 2.1. The dots in this figure represent the data points and the two
hyperbolas are the conics represented by the two eigenvectors of the corre-
sponding W matrix with the smallest eigenvalues. It can immediately be
seen that each conic by itself does not represent the data distribution. How-
ever, their intersection points lie exactly in the four clusters formed by the
data.

By intersecting conics c1 and c2 , we basically try to represent the data
in terms of up to four points. In effect, this is not much different from a
principal component analysis (PCA). However, instead of looking for the
eigenvectors that best describe the range of W , we are interested in those
that that best describe the null space of W . A PCA would be useful if W
were constructed from a set of conics, from which we wanted to extract the
conic that best represents all. In the case presented here, the matrix W is
constructed from a set of points (represented as degenerate conics), and we
try to find the conics that best lie on all data points by looking for the null
space of W . The space of intersections of eigenvectors of W may actually
be expressed as the vector space of bivectors in a Clifford algebra over the
vector space of symmetric matrices. In this sense, the space of intersections
may be regarded as a kind of ”second order” null space of W . See appendix
B for more details.



6 CHAPTER 2. THE ALGORITHM

Figure 2.1: Four clusters of data points and the conics represented by the
two eigenvectors with the smallest eigenvalues.

2.3 Analyzing Line Pairs

In figure 2.1 it was shown how the intersection of two conics can be used to
fit a point quadruplet to clustered data. In this section we will show how
the idea of intersections of conics can be used to analyze line pairs.

The first observation we can make is that two lines in R2 can always be
represented by a projective conic. For example, two intersecting lines can be
constructed by the intersection of a cone with a plane that passes through
the cone’s origin. When we are working with projective conics, then it is also
possible to represent two parallel lines as a conic section. Some examples of
the representation of conics centered on the origin may help to further the
understanding of this.

A projective conic centered at the origin with its main axes along the co-
ordinate axes may be represented by a diagonal 3× 3 matrix. If A ∈ R3×3 is
a diagonal matrix, then these types of conics are given by the set of vectors
x ∈ R3 that satisfy xTAx = 0 . Note that A represents a conic in R2 and x is
a projective embedding of points in R2 just as in section 2.1. We will write
A as

A =




λ1 0 0
0 λ2 0
0 0 −ρ


 . (2.8)

Different values of λ1 , λ2 and ρ represent different types of conic. This can
be seen best by expanding the condition xTAx = 0 .

xTAx = 0 ⇐⇒ λ1 x2 + λ2 y2 = ρ, (2.9)



2.4. ANALYZING IMAGE DATA 7

where x = (x, y, 1) . Clearly, if λ1 = λ2 = 1 , then A represents a circle of
radius

√
ρ . Furthermore,

• Ellipse. λ1, λ2 > 0 and ρ > 0 .

• Hyperbola. λ1 > 0 and λ2 < 0 or vice versa, and ρ > 0 .

• Two intersecting lines. λ1 > 0 and λ2 < 0 or vice versa, and ρ = 0 .

• Two parallel lines. λ1 > 0 and λ2 = 0 or vice versa, and ρ > 0 .

• Line. λ1 > 0 and λ2 = 0 or vice versa, and ρ = 0 .

Note that the two intersecting lines actually represent a 2D cone. In general
one can say that ρ always gives some kind scaling or separation of the object
in question. For example, for a circle

√
ρ is the radius, for hyperbolas it

gives the separation of their branches and for parallel line pairs it is the
distance between the two lines.

These conics can now be translated and rotated by simply applying rota-
tion and translation matrices to A . If R is a rotation matrix and T a trans-
lation matrix, such that y := RTx is a rotated and translated point. This
transformation of points can also be applied to A by observing that

yT A y = 0 ⇐⇒ xT (TT RT A R T) x = 0. (2.10)

The matrix (TT RT A R T) now represents a rotated and translated conic.

Let us return now to the fitting of conics to data as described in section
2.2. If the data points {wi} are points on two lines, then the singular vector
with the smallest singular value of W will give a conic that represents just
those two lines. The singular vector with the next higher singular value has
to be perpendicular to the first singular vector. Nevertheless, it will still fit
the data in some respect. In particular the intersection points of the two
conics have to lie on or near the lines, since the first conic is a good fit to the
two lines.

2.4 Analyzing Image Data

The type of data that we want to analyze with the above described method,
are sets of a few line segments, like those shown in figure 2.2. A standard
PCA approach on 2D position vectors will not be of any use in this case,
since this would not allow us to distinguish between differently oriented



8 CHAPTER 2. THE ALGORITHM

Figure 2.2: Examples of typical image structures.

line segments in the same data subspace. Instead we observed that the in-
tersections of conics c1 and c2 , represent the data in a very useful way. This
can also be seen in figure 2.2, where the two conics are drawn on top of the
image structures. The images show that the intersection points of c1 and c2

lie on the line segments, and that the line segments always lie between two
intersection points. The image in the first row, second column of figure 2.2
shows that this also works if the lines are not thin, i.e. one pixel wide. Fur-
thermore, the influence of the pixels can be weighted, since the vectors from
which W is constructed, are embedded in a projective space. Scaling the
rows of W therefore does not change the geometric content, but it changes
the numerical influence of the points on the least squares fit performed by
the SVD on W . Mathematically this can be seen quite easily. Recall that the
coordinates of the i th data point are embedded as wi = (ui, vi, 1)T and then
mapped to the space of symmetric matrices via wi := T (wi w

T
i ) . If for some

conic a in this space we have wT
i a = 0 , then αwT

i a = 0 also has to be true
for all α ∈ R . The W matrix is now constructed as W = (w1, . . . , wN)T .
Suppose that for some conic a we have wT

i a = εi ∈ R , then

aT WT Wa =
N∑

i=1

ε2
i . (2.11)

The singular vector with smallest singular value of a SVD on WT W , mini-
mizes this sum. By scaling the vectors wi separately, their influence on the
final result can be changed. Suppose W′ = (α1w1, . . . , αNwN)T , αi ∈ R ,



2.4. ANALYZING IMAGE DATA 9

then

aT W′T W′ a =
N∑

i=1

(αi εi)
2. (2.12)

In this way the influence of data pixels on the null space of W can be
weighted, and it is therefore not necessary to use binary edge data for the
algorithm to work.

The examples in figure 2.2 show that the intersection points of c1 and
c2 are potentially very useful to describe different image structures, like
y-junctions, t-junctions, crossings, corners, lines and line endings. In the
following we will denote the set of intersection points of c1 and c2 in R2

as SE ⊂ R2 . We use the subscript E for S , since SE contains the intersec-
tion points in Euclidean space R2 . If |SE| = 4 , that is, c1 and c2 intersect
in four points, then there are six unique point pairs between which lines
could occur. Typically, only a few of these lines are actually present in the
image, though. Therefore, we are not finished once we have found SE . We
also have to check which of the possible six lines have support in the im-
age. Once we have identified such a subset, the last step will be to analyze
the extracted line segments and to decide which type of structure, if any, is
currently present.

2.4.1 Intersection of Conics

Finding the intersection points of two 2D conics is not trivial. In general one
has to solve a polynomial equation of degree at most four. The method we
use is described in detail in appendix C. In short, given two conics we find a
linear combination of them that represents a degenerate conic, for example
a line pair. This degenerate conic then also passes through the intersection
points of the two initial conics. This allows us to evaluate the intersection
points of the two conics by evaluating the intersection of the degenerate
conic with one of the initial conics. This is much simpler than solving a
polynomial of degree four, since it results in two polynomial equations of
degree two. The only numerically sensitive operation we have to use is the
evaluation of eigenvectors and eigenvalues, for which many stable numeri-
cal algorithms exist.

Figure 2.3 shows three examples of the intersection points found for two
fitted conics. It can be seen that the line segments that make up the im-
age structures can be described by the lines between the intersection points.
Note that if an intersection point lies outside the local area under investiga-
tion, it will be neglected, since an extrapolation of line segments can lead to
spurious line structures.



10 CHAPTER 2. THE ALGORITHM

Figure 2.3: Examples of intersections of conics fitted to local image struc-
tures.

2.4.2 Finding Support for Lines

Given the set of intersection points SE of two conics, the question now is
which of the

(|SE |
2

)
lines, is actually present in the data, if any. The method

we present here is rather simple but shows good results. The basic idea is as
follows: the number of data points along a line segment should be at least
as high as the separation between the two corresponding intersection points
measured in pixels. Since the data points give the coordinates of edge pixels,
this condition basically says that there is a closed line of pixels between two
intersection points. In order to weaken this condition somewhat, we use the
following mathematical approach to implement the idea.

Denote by W ⊂ R2 the set of data points, i.e. the set of edge pixels in a
local area. Furthermore, let NW = |W| be the number of data points. The
i th line segment will be written in parameterized form as

mi := ai + α ri, α ∈ [0, 1], (2.13)

where ai, ri ∈ R2 and ‖ri‖ gives the length of the line segment. The projec-
tion of a data point wi ∈W onto the line segment mj is defined as

Pj(wi) := (̂rTj (wi − aj)) r̂j, (2.14)

where r̂j := rj/‖rj‖ . The rejection of data point wi from line mj is then
given by

Rj(wi) := (wi − aj)− Pj(wi). (2.15)

A distance measure dij between data point wi and line segment mj is then
defined as

dij :=

{ ‖Rj(wi)‖ : 0 ≤ ‖Pj(wi)‖ ≤ ‖rj‖
∞ : otherwise (2.16)



2.4. ANALYZING IMAGE DATA 11

That is, we take as distance between a data point and a line segment the
orthogonal separation of the point from the line segment, if the data point
projects onto the line segment. If it does not, then the distance is taken as
infinity. The latter condition implements the idea that a data point that does
not project onto a line segment should not count at all towards the support
of a line segment.

The support of the j th line segment is then given by

qsup
j =

NW∑
i=1

exp

(
− 1

2

( dij

λ dpix

)2
)

, (2.17)

where dpix ∈ R gives the width of a pixel, and λ ∈ R is a scale factor.
When dij = 0 , then a data point lies directly on the line segment in question.
This will then add unity to the support measure qsup

j . The factor λ sets the
support data points off the line segment add towards qsup

j . If dij →∞ , then
this will add nothing to the qsup

j , i.e. the corresponding data point adds no
support to the respective line segment.

In order to decide whether an evaluated support measure qsup
j represents

good or bad support for a line segment, we have to evaluate the support
that could ideally be expected for the line segment. Ideal support for a line
segment means, that the maximum number of pixels possible along the line
segment were present. If this is the case, the value of qsup

j will be just this
number of pixels. Since we only count those data points that appear be-
tween the end points of the line segment, the expectation value qexp

j for qsup
j

can be evaluated as

qexp
j :=

1

dpix

max
{
|r1

j |, |r2
j |

}
− 1, (2.18)

where rj := (r1
j , r2

j ) .

If qsup
j ≥ qexp

j we can be sure that the j th line segment has good support
in the image. If, however, qsup

j < qexp
j we should give the respective line seg-

ment a lower confidence value. The final quality measure for a line segment
is therefore evaluated as

qj :=





exp
(
− 1

2

(qsup
j − qexp

j

τ qexp
j

)2)
: qsup

j < qexp
j

1 : qsup
j ≥ qexp

j

, (2.19)

where τ ∈ R gives a measure of how close qsup
j has to be to qexp

j in order
for it to give a high qj value.

Every qj ∈ [0, 1] gives a measure of support for a line segment. The closer
the value of qj to unity, the more likely it is that the respective line segment



12 CHAPTER 2. THE ALGORITHM

is also present in the local image area under inspection. Which particular
structure is present in the local image area depends on the combination of
line segments with good support. It is therefore useful to collect the separate
support measures in a support matrix. Let us denote the support value
of the line segment between intersection points si ∈ SE and sj ∈ SE by
qi,j = qj,i . The support matrix Q is now defined as

Q :=




0 q1,2 q1,3 q1,4

q2,1 0 q2,3 q2,4

q3,1 q3,2 0 q3,4

q4,1 q4,2 q4,3 0


 (2.20)

We can also regard Q as a weight matrix, giving the weights of the edges
of a fully connected graph with four vertices. Note that if less than four
conic intersection points are found, Q is reduced accordingly.

2.4.3 Analyzing the Line Segments

After the support for the set of possible line segments has been evaluated,
we still have to analyze the set of lines and decide on the type of image
structure that is present. This is actually not a trivial task. Figure 2.4 shows
a set of typical structures that are encountered. In this collection of images
the round points represent the conic intersection points found and the lines
drawn show those lines for which sufficient support was found. The thicker
a line, the higher its support value as evaluated in equation (2.19). In the
following we will discuss the different structures separately.

Figure 2.4: Examples of analyzed image structures.



2.4. ANALYZING IMAGE DATA 13

1. Line pair. One may extrapolate these line segments and take their
intersection point as a corner. In this case extrapolation would be war-
ranted but in general it is unstable.

2. Line pair. This time the line segments are parallel. In this case it is
clear that the two line segments do not describe a corner.

3. 4-Chain. Here the line segments with good support in the image con-
nect all four intersection points in a row. 4-chains can appear in many
different forms, see for example images 4 and 5. If the two central
points are close together we could regards this as a single corner. If
they are further apart, as in image 4, the structure can be regarded as
a double corner.

4. 4-Chain. This time the 4-chain describes rather a curve than a corner.
Nevertheless, one could still interpret it as a double corner.

5. 4-Chain. In this case, two connected line segments have basically the
same direction. This structure may therefore be regarded as a single
corner, by combining the two similar line segments into one.

6. 3-Chain. This constellation may immediately be interpreted as a cor-
ner. This structure also appears often on aliased lines, where the alias-
ing appears locally like a corner with a very wide opening angle.

7. Star. This can be regarded as a y-junction. If the angle between two
legs is nearly 180 degrees, a star pattern represents a t-junction.

8. This structure has no clear interpretation.

9. This is actually a corner in the original image. However, the edge
detection algorithm returned a disjunct contour, which makes it hard
to analyze the structure at this scale.

10. Here a structure that cannot and should not return any output.

An example not shown here is that of a line. When a line is the only
element in the local area that is analyzed, the four conic intersection points
also lie almost on that line. In the following we will neglect such structures
and concentrate on the detection of corners and junctions.

The structures we can interpret are thus a line pair, a 4-chain, a 3-chain
and a star. Due to the way the support for lines is evaluated, these structures
do not appear clearly in certain circumstances. It is therefore necessary to
detect such situations and to adjust the support matrix Q accordingly. A



14 CHAPTER 2. THE ALGORITHM

Figure 2.5: Examples of spurious lines with good support (left image) and
the reduction of their support (right image).

typical example is shown in figure 2.5, where the points represent the inter-
section points and the thickness of the line segments reflects their support.
What we would like to have would be the 4-chain that lies on the image
structure. However, two additional lines have good support since they are
near data points. One way to reduce the support value of these lines would
be to reduce the factor λ from equation 2.17. That is, line segments do only
get support when they pass very close to data points. However, this would
also mean that the support evaluation would be very sensitive to incomplete
structures. A better solution is to detect the problem structures explicitly.

The problem case shown in figure 2.5 is handled in the following way. We
test every combination of three intersection points, whether their connecting
line segments have all good support in the image. If this is case, we test
whether the distance of any of the points in the triplet from their opposing
line segment is below a certain threshold. If this is the case, the support
value for the opposing line segment is reduced. The distance measure used
for this purpose, is the one from equation 2.16. The effect of applying this
method to the left image in figure 2.5 can be seen in the right image. Now
only a 4-chain is left.

An example of another problem that may occur is shown in figure 2.6. Of
the intersection points found initially, two points are very close. In fact, their
distance is less than a pixel such that the line segment between them can
have no support. Therefore, also the method for reducing the line segments
of intersection point triplets with good support, as described above, fails.



2.4. ANALYZING IMAGE DATA 15

Figure 2.6: Examples of two close points which are preferably interpreted
as a single point. While the structure found in the left image represents
a spurious junction, the combination of the two close points results in the
correct structure.

Therefore, we need to apply an additional correction method: if the distance
between two intersection points is below a given threshold, the two points
are replaced by a single point that lies half way between them. The result of
this method when applied in the case presented in the left image of figure
2.6 can be seen in the figure’s right image. The spurious structure is now
reduced to a structure than can be readily interpreted.

Given an adjusted set of intersection points and line segments, the next
step is to test the line segment structure for one of the different patterns
described above. We will describe the method used with the help of an
example. Figure 2.7 shows the intersection points and the line segments
with their respective weights found for an image structure. Let Q denote
the support quality matrix for this structure as defined in equation (2.20).
In this case, the values Q1,2 , Q1,3 and Q1,4 are close to unity and the values
Q2,3 , Q3,4 and Q4,2 are close to zero. We can therefore evaluate a measure of
confidence that the present structure is a star as

C = (Q1,2 Q1,3 Q1,4) (1− Q2,3 Q3,4 Q4,2) (2.21)

That is, we have to test for a positive and a negative pattern. Since the
numbering of the intersection points is arbitrary, the above measure will in
general have to be evaluated for all permutations of {1, 2, 3, 4} . In order to
formulate this mathematically, let us denote by i and index vector defined
as i := (i1, i2, i3, i4) . We can then define a positive (p+ ) and a negative



16 CHAPTER 2. THE ALGORITHM

Figure 2.7: Examples of a junction structure.

(p− ) pattern that we expect for a particular structure. In the case of the star
structure, these patterns are

p+(i) =
(
(i1, i2), (i1, i2), (i1, i4)

)
,

p−(i) =
(
(i2, i3), (i3, i4), (i2, i4)

)
.

(2.22)

In the following let p+
k denote the k th index pair of p+ , and analogously for

p− . In order to improve the readability of the following formulas, we will
also write Q[i1, i2] in order to denote the element Qi1,i2 . The confidence
value for the star pattern for a particular i may then be written as

C
(
p+(i), p−(i)

)
=

( ∏

k

Q[p+
k (i)]

) (
1−

∏

l

Q[p−l (i)]

)
(2.23)

The permutation of i that gives the largest value of C(p+(i), p−(i)) then
allows us to evaluate the central point of the star ( i1 ) and the three end
points ( i2 , i3 , i4 ). We will denote this value of i as î , with

î = arg max
i∈perm{(1,2,3,4)}

C
(
p+(i), p−(i)

)
, (2.24)

where perm{(1, 2, 3, 4)} denotes the set of index vectors of permutations of
(1, 2, 3, 4) .

For each structure that we would like to test for, we can define a positive
(p+ ) and a negative (p− ) pattern and then evaluate the confidence value



2.4. ANALYZING IMAGE DATA 17

Figure 2.8: Examples of structures tested for.

C(p+(̂i), p−(̂i)) on a given Q matrix. In our implementation of the algorithm
we test for the star, the 4-chain, the 3-chain, the 3-chain with a disjoint point
and the line pair. Typical examples of these structures are shown in figure
2.8. Note that image 5 shows a 3-chain with a disjoint point and images 2
and 3 both show 4-chains. The latter two structures should be interpreted in
different ways. While image 2 can be interpreted as a double corner, image
3 should be interpreted as a single corner. This shows that by finding the
best matching structure to a local image area, we still cannot make a final
decision on what the structure represents.

2.4.4 Analyzing Line Structures

For each of the structures we test for, we obtain a confidence value C(p+(̂i), p−(̂i)) .
The structure with the highest confidence value is then analyzed further to
decide whether it represents a corner, a double corner or a junction. One
could also test for a curve, a line or a line pair, but in this text we are mainly
interested in finding corners and junctions.



18 CHAPTER 2. THE ALGORITHM

The Star

Figure 2.9: Examples of a y-junction (left) and a t-junction (right).

The star can be interpreted immediately. Since we have î we know which
of the intersection points is the central point and which are the three edge
points. From this the position of the junction in the image and the angles
between the legs can be readily evaluated. If the angle between two legs is
nearly 180 degrees one may also call the junction a t-junction and otherwise
a y-junction. See figure 2.9 for an example.

The 4-Chain

A 4-chain can represent a number of different entities: a corner, a double
corner, a curve and a line. The difference between these entities cannot be
defined strictly in general. Which structure is present depends on the angles
between the legs of the 4-chain. Here thresholds have to be set that are most
appropriate for the current application. In this text we will concentrate on
distinguishing between corners and junctions. Therefore, a curve will also
be interpreted as a corner with large opening angles. See figure 2.10 for
examples of these structures.

Two angles (α1 , α2 ) can be evaluated between the three legs of a 4-chain.
Since we always take the smaller angle between two line segments, we have
to make sure that the present 4-chain does not have a form as in the bottom-
right image of figure 2.10, which we will call a ”snake”. This can be checked
by evaluating the cross products of the directions of the line segment pairs
from which the angles are evaluated. If the resultant vectors point in oppo-
site directions, then the 4-chain describes a snake.

The other structures are distinguished using α1 and α2 as follows.



2.4. ANALYZING IMAGE DATA 19

Figure 2.10: Examples of entities that can be described by a 4-chain. From
top-left to bottom-right: corner, double corner, double corner, curve, line,
”snake”.

• Line, α1 > 170◦ and α2 > 170◦ .

• Double Corner, α1 < 150◦ and α2 < 150◦ .

• Corner, in all other cases. The corner is given by the two line segments
with the larger angle between them.

The 3-Chain

A 3-chain either describes a corner or a line. It usually appears if one of
the intersection points of the conics lies outside the local image area under
investigation and is thus neglected. A 3-chain can also appear if two inter-
section points are so close to each other that they are combined into a single
point. Examples of these cases can be seen in figure 2.11. The left most im-
age in this figure shows a 3-chain with a disjunct intersection point. These
cases occur when within the local image area there is a corner and some
pixels from a neighboring structure.



20 CHAPTER 2. THE ALGORITHM

Figure 2.11: Examples of 3-chains. Both describe a corner.

The Line Pair

Figure 2.12: Examples of line pairs. A crossing is described by a line pair as
shown in the right image.

A line pair either describes two disjunct lines which we will not interpret
further, or a crossing of two lines, as shown in the right image of figure 2.12.
These two cases can be distinguished quite easily by evaluating the inter-
section point of the two lines given by the extension of the line segments. If
the intersection point lies on both line segments, then we found a crossing.

2.4.5 Translation Invariance of Structure Analysis

Using the analysis described in the previous sections, we can obtain for each
local area in an image an interpretation of the area’s structure, where we
distinguish between corners and junctions. For every corner we obtain its
location, its opening angle and its orientation. Junctions may be separated



2.4. ANALYZING IMAGE DATA 21

into y-junctions, t-junctions and crossings. For each of these we also obtain
their location, orientation and angles.

The same structure found in one local area is also likely to be found in
neighboring areas, whereby each time the structure has the same absolute
position. This follows, since the method described here is translation and
rotation invariant for one data set. In a real image, however, translating a
local area will remove some edge points from the local area and others will
appear.

Figure 2.13 and 2.14 show two examples of translation invariance of the
structure analysis. In both cases a selection window is moved over an im-
age region from left to right in steps of two pixels. Therefore, the present
image structure translates from right to left relative to the window. In the
image series in figure 2.13, a structure appears on the right hand side of the
window and the intersection points and the support for the line segments
change as long as new pixels enter the window or pixels leave the window.
From image 4 to 7, no pixels are added or removed and the structure analy-
sis always finds the same structure at the same position in terms of absolute
image coordinates.

In figure 2.14 pixels enter and leave the window at each step. Nonethe-
less, the center of the junction is evaluated approximately at the same posi-
tion in images 2 to 6, in terms of absolute image coordinates. In the other
images a corner is detected instead of a junction. However, the center of the
corner is more or less at the same position as the center of the junction.

These two examples show, that a particular corner or junction may not
only be found at one particular test position. Instead, strong structures are
likely to appear for a set of neighboring test positions. This offers the possi-
bility of applying a clustering procedure to the corners and junctions found,
in order to stabilize the output of the algorithm. However, this has so far
not been implemented.



22 CHAPTER 2. THE ALGORITHM

Figure 2.13: Example of translation invariance of structure analysis, if rela-
tive positioning of pixel data does not change.

Figure 2.14: Example of approximate translation invariance of structure
analysis, if pixels change but still describe the same structure.



Chapter 3

Experiments & Conclusions

In order to test the corner and junction detection quality of the algorithm, we
applied it to the standard ”blox” and laboratory example images from [6].
The extracted line segments were analyzed and only those constellations
that could be regarded as corners or junctions were stored. Note that in this
chapter we only present the results of the ”blox” image. The results for the
laboratory example image can be found in appendix A.

3.1 Experiments

Before the structure analysis algorithm can be applied, the edges of an im-
age have to be extracted. This was done using the Canny edge detector [13].
The initial image and the result of the edge detection can be seen in figure
3.1. The algorithm was applied to this edge image, whereby a test window
of 15 × 15 pixels was moved over the image in steps of two pixels. The
factor λ from equation (2.17) was set to 0.1 and the factor τ from equation
(2.19) to 0.2 .

Recall that equation (2.24) gives a confidence value for a structure. This
confidence can be used to measure the confidence we can have in a corner
or junction found. The junctions found are shown in figure 3.2. Here the left
image shows all junctions and the right image only those junctions with a
confidence value of 0.90 or higher.

Both images in figure 3.3 show the corners found with an opening angle
between 0 and 180 degrees. However, while the left image shows all corners,
the right image shows only those with a confidence value of 0.99 or higher.
The images in figure 3.4 show those corners with a confidence value of 0.99
or higher and an opening angle between 0 and 150 degrees, and 0 and 110
degrees, for the left and right image, respectively.

23



24 CHAPTER 3. EXPERIMENTS & CONCLUSIONS

Figure 3.1: Example image ”blox” (left), and the extracted edges (right).

From the images shown here it can be seen that the algorithm finds all
important corners and also gives a good measure of their opening angle.
Furthermore, almost all junctions were found. Junctions that were not de-
tected have fairly large gaps in their contour with respect to the size of the
test window. Three spurious junction were found. These false positives oc-
curred at places where the gap between two separate structures became so
small that they appear locally as one structure with some missing pixels.
The problem that manifests itself here is, that within a small test window
structures can only be interpreted locally. Global relationships are not taken
into account which leads to false positives and false negatives.

The two main problems the algorithm faces are the following:

• Corners and junctions only become apparent at a particular scale. If
the scale is chosen too small, many spurious corners may be found. If
it chosen too large, too much structure may be present in a test win-
dow such that the algorithm fails.

• Edges may be incomplete. If there are only small gaps in the edges, the
algorithm may still give good results. However, if the gaps become too
large with respect to the test window, structures will not be detected
correctly. Here the balance has to be found between bridging gaps and
detecting corners and junction where there are none.



3.2. CONCLUSIONS 25

Figure 3.2: Detected junctions in example image ”blox”, with confidence
value ≥ 0.50 (left) and ≥ 0.90 (right).

3.2 Conclusions

We have presented an algorithm that uses conics to analyze local image
structure. The main idea is to fit intersections of conics to the data. It was
found that these intersections can represent local image structures in a very
useful way: the line segments that make up the local image structure lie
between intersection point pairs. This basically reduces the search space of
possible line segments to at most six specific ones. It was then shown that
through additional analysis it is possible to extract corners and junctions
from an image and to evaluate their parameters. A potential advantage of
the presented algorithm over standard corner detectors is that it can distin-
guish between different types of i2D structures. Furthermore, it can be used
to extract parameters of the local image structures, like the opening angle of
a corner.

Acknowledgment

This work has been supported by DFG Graduiertenkolleg No. 357 and by
EC Grant IST-2001-3422 (VISATEC).



26 CHAPTER 3. EXPERIMENTS & CONCLUSIONS

Figure 3.3: Detected corners in example image ”blox”, with opening angles
between 0 and 180 degrees and confidence value ≥ 0.50 (left) and ≥ 0.90
(right).

Figure 3.4: Detected corners in example image ”blox”, with confidence
value ≥ 0.90 and opening angles between 0 and 150 degrees (left), and 0
and 110 degrees (right).



Appendix A

Laboratory Example Image

Figure A.1: Example image ”lab”.

In this appendix the results of applying the structure analysis algorithm
to the image shown in figure A.1 are presented. The image in figure A.1 is
512× 512 pixels. The result of applying the Canny edge detector to this im-
age can be seen in figure A.2. The structure analysis algorithm was applied
to this edge image. A test window of 15 × 15 pixels was moved over the

27



28 APPENDIX A. LABORATORY EXAMPLE IMAGE

edge image in steps of 2 pixels. The factor λ from equation (2.17) was set to
0.1 and the factor τ from equation (2.19) to 0.2 .

The other images in this appendix show the location of the corners and
junctions found for different confidence values and angle ranges. From
equation (2.24) we can evaluate a confidence value for a structure. This
is the confidence value that will be referred to in the following. Figure A.3
shows all corners found. That is, corners of all confidences and opening an-
gles are drawn here. Figure A.4 shows all corners with a confidence value of
0.99 or above and an opening angle between 0 and 180 degrees. Figure A.5
shows all corners with the same confidence but an opening angle between
0 and 150 degrees. In figure A.6 all corners with the same confidence but an
opening angle between 0 and 110 degrees are drawn.

Figure A.7 shows all junctions found, while figure A.8 shows those junc-
tions with a confidence above 0.90 .



29

Figure A.2: Extracted edges of example image ”lab”.



30 APPENDIX A. LABORATORY EXAMPLE IMAGE

Figure A.3: All corners found in example image ”lab”, with confidence
value ≥ 0.50 and opening angle between 0 and 180 degrees.



31

Figure A.4: All corners found in example image ”lab”, with confidence
value ≥ 0.99 and opening angle between 0 and 180 degrees.



32 APPENDIX A. LABORATORY EXAMPLE IMAGE

Figure A.5: All corners found in example image ”lab”, with confidence
value ≥ 0.99 and opening angle between 0 and 150 degrees.



33

Figure A.6: All corners found in example image ”lab”, with confidence
value ≥ 0.99 and opening angle between 0 and 110 degrees.



34 APPENDIX A. LABORATORY EXAMPLE IMAGE

Figure A.7: All junctions found in example image ”lab”, with confidence
value ≥ 0.50 .



35

Figure A.8: All junctions found in example image ”lab”, with confidence
value ≥ 0.90 .



36 APPENDIX A. LABORATORY EXAMPLE IMAGE



Appendix B

The Clifford Algebra
Interpretation

In the following we discuss the use of Clifford algebra in the description
of the intersections of conics. Note that to the best of our knowledge the
Clifford algebra over the space of symmetric matrices (i.e. the vector space
of conics) has not yet been discussed in the literature. We believe that it
offers an intuitive way to deal with 2D-conic.

B.1 The Clifford Algebra over D2

Recall that we denote the 6D-vector space in which 2D-conics may be rep-
resented by D2 ≡ R6 . The Clifford algebra over this vector space will be
denoted by C̀ (D2) . A 2D-vector (x, y) ∈ R2 is transformed to D2 by the
function

D : (x, y) ∈ R2 7→ (x, y, 1√
2
, 1√

2
x2, 1√

2
y2, xy) ∈ D2. (B.1)

The Clifford Algebra C̀ (D2) has (algebra) dimension 26 = 64 . We define the
inner product null space (IPNS) of a vector A ∈ D2 to be the set of all those
vectors X ∈ D2 that satisfy X ·A = 0 , whereby X = D(x) , x ∈ R2 . As was
shown before, this null space is a (possibly degenerate) conic. Furthermore,
the IPNS of the outer product of two vectors A,B ∈ D2 , A ∧ B , now has
to represent the intersection of the conics represented by A and B . This
can be seen quite easily, by using the algebraic rules for the inner and outer
product.

X · (A ∧B) = (X ·A)B− (X ·B)A. (B.2)

The inner products (X · A) and (X · B) are zero if and only if X repre-
sents a point that lies on the conic represented by A and B , respectively.

37



38 APPENDIX B. THE CLIFFORD ALGEBRA INTERPRETATION

If A and B represent different conics, then they are linearly independent.
Therefore, the expression X · (A ∧B) can only be zero if and only if X lies
on both conics. Hence, in terms of the IPNS, the bivector A ∧ B represents
the intersection of the conics represented by A and B .

Let Ai ∈ D2 be a set of linearly independent vectors that represent con-
ics in R2 . Then the IPNS of the outer products of these vectors in C̀ (D2)
represent intersection of the respective conics.

A1 : Conic
A1 ∧A2 : At most point quadruplet

A1 ∧A2 ∧A3 : At most point triplet
A1 ∧A2 ∧A3 ∧A4 : At most point pair

A1 ∧A2 ∧A3 ∧A4 ∧A5 : At most a point

(B.3)

We can also define the outer product null space (OPNS) of a vector A ∈ D2

as the set of vectors X = D(x) ∈ D2 , x ∈ R2 , that satisfy X ∧ A = 0 . Let
xi ∈ R2 denote a number of different points and let Xi ∈ D2 be defined by
Xi = D(xi)∀ i . Then the outer product null space of blades in C̀ (D2) may
be shown to represent the following objects.

X1 : Point x1

X1 ∧X2 : Point pair (x1, x2)
X1 ∧X2 ∧X3 : Point triplet (x1, x2, x3)

X1 ∧X2 ∧X3 ∧X4 : Point quadruplet (x1, x2, x3,x4)
X1 ∧X2 ∧X3 ∧X4 ∧X5 : The conic through x1, x2, x3, x4, x5.

(B.4)

In particular, it can be shown that the outer product null space of X1 ∧X2 ∧
X3∧X4∧X5 is the same as the inner product null space of its dual, which is
a vector. Hence, this is also a simple way to construct the symmetric matrix
that represents a conic through five points.

Next we show how a Clifford algebra can be represented in a standard
vector space. This will then allow us to fit also bivectors to data, in just the
same way as vectors. From this the intersection of two conics that best fit
some data points can be evaluated directly, instead of evaluating the best
fitting conics and then intersecting them.

B.2 Representing C̀ (Rn) in R2n

A Clifford algebra C̀ n over a vector space Rn has dimension 2n . An al-
gebraic basis of C̀ n may therefore be denoted by a set {Ei}2n

i=1 of so called
basis blades. It may be shown that these basis blades satisfy a number of



B.2. REPRESENTING C̀ (RN) IN R2N 39

constraints with respect to the geometric or Clifford product. This product
will simply be denoted by juxtaposition, i.e. the geometric product of two
elements A,B ∈ C̀ n is written as AB . The basis blades of C̀ n have the
following properties:

1. There exists a unit element denoted by E1 such that

EiE1 = E1Ei = Ei, ∀i ∈ {1, . . . , 2n}. (B.5)

2. The geometric product of a basis blades with itself results in the unit
element, i.e.

EiEi = λi E1, λi ∈ {−1, 1}, ∀i ∈ {1, . . . , 2n}. (B.6)

3. The geometric product of any two basis blades gives a third basis
blade times a scalar factor. More precisely,

EiEj =
2n∑

k=1

gk
ij Ek, ∀i, j ∈ {1, . . . , 2n}, (B.7)

where gk
ij ∈ {−1, 0, 1} and is only non-zero for exactly one value of k

given a pair i and j .

The last condition basically says that the geometric product is invertible.
For example, given indices (i, j, k) such that EiEj = Ek , we find that

EiEj = Ek ⇐⇒ EiEjEj = EkEj ⇐⇒ EkEj = λj Ei,

and thus gi
kj = λj .

A general element of C̀ n is called multivector. In terms of basis blades a
general multivector A ∈ C̀ n may be given by

A =
2n∑
i=1

αi Ei. (B.8)

In the following we will use the Einstein summation convention, that a su-
perscript index repeated within a product as a subscript index is implicitly
summed over its range. That is, equation (B.8) may be written as

A = αi Ei,

if it is clear that i ∈ {1, . . . , 2n} . The geometric product of two multivectors
A,B ∈ C̀ n , with A = αiEi and B = βiEi , is then given by

AB = (αi Ei) (βj Ej)
= αi βj EiEj

= αi βj gk
ij Ek.

(B.9)



40 APPENDIX B. THE CLIFFORD ALGEBRA INTERPRETATION

Writing the result multivector M ∈ C̀ n of M = AB as M = µiEi then gives

M = AB ⇐⇒ µkEk = αi βj gk
ij Ek ⇐⇒ µk = αi βj gk

ij. (B.10)

This shows that if multivectors are expressed as vectors in R2n , the geomet-
ric product between them becomes a bilinear function. Note that the other
products available in Clifford algebra like the inner and outer product, and
the commutator and anti-commutator product may also be expressed in this
way.

B.3 An Isomorphism

If we use again {Ei}2n

i=1 to denote the algebra basis of C̀ (Rn) and write the
three multivectors A,B, M ∈ C̀ (Rn) as A = αiEi , B = βiEi and M = µiEi ,
we may regard them as vectors in some Rm , with orthonormal basis {ei}m

i=1 ,
where m = 2n . In this vector space the multivectors may be written as
column vectors a = [α1, . . . , αm]T , b = [β1, . . . , βm]T and m = [µ1, . . . , µm]T ,
respectively. We use here sans serif letters to denote vectors in Rm in order
to distinguish them from (multi-)vectors in C̀ (Rn) . The relation between
multivectors in C̀ (Rn) and their representation in Rm may be regarded as
an isomorphism φ between these two spaces, whereby φ(A ∈ C̀ n) = a ∈
Rm and φ−1(a) = A . This isomorphism also transforms Clifford algebra
products to matrix products with special matrices. For example, if M =
A ∧B then

m = φ(M) = φ(A ∧B) = U(φ(A)) φ(B) = U(a) b,

where U(a) is a matrix whose entries depend on a . In the following all
matrices will be written as capital sans-serif letters. The form of matrix U is
derived through the following considerations. A product in C̀ (Rn) between
two multivectors can be expressed as a bilinear function g which is a map
Rm × Rm → Rm and may be written as

g(a, b) := αi βj gk
ij ek, (B.11)

where we have implicit sums over i, j and k . The object gk
ij is again the

3-valence tensor from equation (B.7). It encodes the relation between the
basis blades of C̀ n for a particular product. For example, if gk

ij encodes the
outer product, then the equation M = A ∧B may be written in Rm as

m = g(a, b) ⇐⇒ µk = αiβj gk
ij ∀k. (B.12)

If we now denote the matrix of derivatives of g(a, b) with respect to the
{βj} as U(a) , and with respect to the {αi} as V(b) , we can write M = A∧B
equivalently in Rm as

m = U(a) b = V(b) a. (B.13)



B.4. SOLVING FOR A MULTIVECTOR 41

That is, U and V are the Jacobi matrices of g .

B.4 Solving for a Multivector

In section 2.2 we were given a set of 2D-points xi ∈ R2 embedded in D2 as
Xi := D(xi) , where N is the number of data vectors. What we were then
looking for was the vector A ∈ D2 that minimizes

N∑
i=1

|Xi ·A|2. (B.14)

Let a := φ(A) and xi := φ(Xi) , then

φ(Xi ·A) = U(xi) a, (B.15)

where U(xi) encodes the inner product. Since the inner product of two vec-
tors is identical to their scalar product, this simply becomes

φ(Xi ·A) = U(xi) a = xT
i a. (B.16)

Now we construct a matrix W1 from the {xi} as

W1 =




xT
1
...

xT
N


 . (B.17)

Clearly, the solution vector a now has to lie in the null space of W1 , i.e.
W1 a = 0 . If we evaluate the SVD of W1 , we obtain the basis of the null
space and the range of W1 . Note that the singular vectors found are the
eigenvectors of WT

1 W1 . Hence, the singular vector with the smallest singu-
lar value is the best fit to the {xi} in a least squares sense.

This method can be easily extended to any elements of the Clifford al-
gebra C̀ (D2) . For example, if instead of a vector A ∈ D2 we are looking
for a bivector A ∧ B ∈ C̀ (D2) with B ∈ D2 , that best fits the data, we can
minimize the following expression

N∑
i=1

‖Xi · (A ∧B)‖2
2. (B.18)

Let p = φ(A ∧B) , then

φ(Xi · (A ∧B)) = U(xi) p, (B.19)



42 APPENDIX B. THE CLIFFORD ALGEBRA INTERPRETATION

where U(xi) again encodes the inner product. However, since the compo-
nents of p relate to a bivector and the inner product of a bivector with a
vector results in a vector, U is this time a 6 × 6 matrix, whose components
depend on p . Nevertheless, we may still construct a matrix W2 as

W2 =




U(x1)
...

U(xN)


 . (B.20)

The null space of W2 now gives the best bivector that fits the data in a least
squares sense.

Suppose that the matrix W1 constructed from the given data {Xi} has a
2D-null space, whose orthonormal basis is given by A,B ∈ D2 . This means
that also any linear combination of A and B lies in the null space of W1 .
Let U1 := α1 A + β1 B and U2 := α2 A + β2 B . Then

Xi ·U1 = Xi ·U2 = 0 ∀ i.

If A and B represent two conics, then also U1 and U2 represent conics.
We will now show that all linear combinations of A and B intersect in the
same points. For this purpose consider the outer product of U1 and U2 .

U1 ∧U2 = (α1 β2 − α2 β1) (A ∧B). (B.21)

We have already shown that the outer product of two vectors in D2 repre-
sents the intersection of the two objects represented by the vectors. Since
an overall scalar factor does not change the object represented by a vector,
this equation shows that the intersection of U1 and U2 represents the same
object as the intersection of A and B .

From this analysis it follows that the null space of W2 represents the in-
tersection of the objects represented by the basis of the null space of W1 .



Appendix C

Evaluating the Intersection of
Conics

The problem we discuss here in some detail is how to evaluate the intersec-
tion of two conics. Recall that a projective 2D-conic may be represented by
a symmetric 3× 3 matrix A . All vectors (x, y)T ∈ E2 that satisfy

(x, y, 1) A




x
y
1


 = 0, (C.1)

lie on the conic represented by A . In section 2.1 we defined a 6D-vector
space D2 in which projective conics may be represented in an equivalent
way. In order to achieve this we defined two transformations T : R3×3 →
D2 and D : E2 → D2 as

T : A ∈ R3×3 7→ (a13, a23,
1√
2
a33,

1√
2
a11,

1√
2
a22, a12)

T ∈ D2, (C.2)

and
D : (x, y) ∈ E2 7→ (x, y, 1√

2
, 1√

2
x2, 1√

2
y2, xy) ∈ D2. (C.3)

A vector x ∈ E2 lies on a conic represented by A if D(x) · T (A) = 0 , where
’ · ’ represents the scalar product in D2 .

Suppose now we are given two conics represented by C1,C2 ∈ D2 and
would like to find their intersection. Note that two conics can intersect in
at most four points. We will denote the space of intersection points by S ,
which may be defined as

S := { X ∈ D2 : C1 ·X = 0, C2 ·X = 0 }. (C.4)

Note that S is in fact a vector space, since any linear combination of ele-
ments of S lies again in S . That is, if X,Y ∈ S , then C1 · (αX + βY) = 0 ,

43



44 APPENDIX C. EVALUATING THE INTERSECTION OF CONICS

∀α, β ∈ R . It is also useful to define the set of Euclidean points in E2 that,
when embedded in D2 , lie in S . We will denote this set by SE . It is defined
as

SE := { x ∈ R2 : C1 · D(x) = 0, C2 · D(x) = 0 }. (C.5)

The expressions C1 ·X and C2 ·X are both polynomials of order two in
the components of X . Combining both expressions it is possible to obtain a
polynomial of order four whose roots are the intersection points of the two
conics. The roots of a polynomial of order four can be found by finding the
roots of a polynomial of order three and one of order two (see e.g. [14]).
However, note that we have two coupled polynomials of order four, so the
polynomial components will be rather complex. In any case, see [15] for a
discussion of this type of method.

We were looking for a method of evaluating the intersection of two conics
that uses standard matrix methods which can be applied directly to the ma-
trices representing the conics. In the following we will present this method.
To the best of our knowledge this is a novel method for the evaluation of the
intersection of two conics.

C.1 Finding Degenerate Conics

We start with a short lemma.

Lemma C.1 Let C1,C2 ∈ D2 be two linearly independent vectors representing
two conics that intersect in four points. That is, their Euclidean intersection set SE ,
as defined above, contains four elements and the intersection space S has dimension
four. A conic C ∈ D2 passes through these four intersection points if and only if it
is a linear combination of C1 and C2 . This is not necessarily the case if |SE| < 4 .

Proof. First of all, if C is a linear combination of C1 and C2 , i.e. C =
αC1 + β C2 , α, β ∈ R , then for any X ∈ S we have

C ·X = (αC1 + β C2) ·X = α (C1 ·X) + β (C2 ·X) = 0. (C.6)

Now for the other direction. That is, if C · X = 0 , we have to show that
C is a linear combination of C1 and C2 . We will do this via a dimensional
argument. Recall that D2 is a 6-dimensional vector space. Since C1 and
C2 are linearly independent they span a 2D-subspace of D2 . If C1 and C2

intersect in four points then dim(S) = 4 , S ⊂ D2 and span{C1, C2} ⊥ S .
Since C ⊥ S , C has to lie in span{C1, C2} . Hence, C has to be a linear
combination of C1 and C2 .



C.1. FINDING DEGENERATE CONICS 45

If dim(S) < 4 this argument does not hold anymore. That is, there do
exist conics that pass through the same intersection points as C1 and C2 ,
but cannot be written as a linear combination of C1 and C2 . ¤

This lemma gives the motivation for the following idea. If two conics
C1,C2 ∈ D2 intersect in four points, then all conics that pass through these
four points can be represented as a linear combination of C1 and C2 . This
also has to include degenerate conics, in particular those representing line
pairs (2D-cones). Given four points there are three unique line pairs that
contain these four points. If we are able to find the particular linear combi-
nations of C1 and C2 that generate these degenerate conics, we can reduce
the evaluation of the intersection of two conics to the intersection of line
pairs. As we will see later, if the two conics only intersect in two or three
points, at least one degenerate conic can still be found and we can then find
the intersection points by intersecting a conics with a degenerate one.

Lemma C.2 Let C1,C2 ∈ D2 denote two conics and let A = T −1(C1) and B =
T −1(C2) be their matrix representations. The 3× 3 matrices A and B are of full
rank if the conics are non-degenerate. Let B be of full rank, then M := B−1 A
exists. If λ is a real eigenvalue of M , then A− λ B represents a degenerate conic.

Proof. Let C = α A + β B , α, β ∈ R . C represents a degenerate conic if
and only if det(C) = 0 . We have to find those α and β for which this is the
case.

det(α A + β B) = 0

⇐⇒ α3 det (B B−1 (A + β
α

B)) = 0

⇐⇒ det(B) det(B−1A + β
α

I) = 0

⇐⇒ det(M− λ I) = 0,

(C.7)

where M := B−1A and λ = −β/α . The values of λ that satisfy the last
equation are just the eigenvalues of M . If λ is a real eigenvalue of M , then
C = A− λ B represents a real, degenerate conic. ¤

Clearly, the degenerate conics found in this way pass through the in-
tersection points of C1 and C2 , independently of how many intersection
points these conics have.

Corollary C.1 Let C1,C2 ∈ D2 be two non-degenerate conics. Then there exists
at least one linear combination of C1 and C2 which represents a degenerate conic.

Proof. Let A = T −1(C1) and B = T −1(C2) be the matrix representations
of C1 and C2 . Since the conics are non-degenerate, A and B are of full
rank. Hence, also M = B−1 A has to be of full rank. Therefore, M has



46 APPENDIX C. EVALUATING THE INTERSECTION OF CONICS

three non-zero eigenvalues. Furthermore, since complex eigenvalues of real
matrices always appear in conjugate pairs, M must always have at least one
real, non-zero eigenvalue. It thus follows from lemma C.2 that there always
exists a linear combination of C1 and C2 that represents a degenerate conic.
¤

We can follow from corollary C.1 that if two conics intersect in at least
two points, the degenerate conic will have to represent a line pair, or at least
a line. Intersecting a line with a conic is quite simple, since this comes down
to finding the roots of a quadratic equation. We should therefore extract the
parameters of the lines represented by a degenerate conic.

C.2 Analysis of Matrices representing Conics

A 2D-conic centered at the origin can be represented by a 2× 2 matrix A as
follows.

xT A x = ρ, (C.8)

where x := (x1, x2)
T ∈ R2 and ρ ∈ R is a scale (radius). The set of points

x that satisfy this equation, lie on the conic represented by A . The equation
can be made homogeneous by embedding x and A in a projective space.
For this purpose we make the definitions

xH := (x1, x2, 1)T, AH :=

(
A 0
0 −ρ

)
, (C.9)

such that
xT A x = ρ ⇐⇒ xT

H AH xH = 0. (C.10)

Similarly, for a given 2 × 2 rotation matrix R we define a homogeneous
counterpart as

RH :=

(
R 0
0 1

)
. (C.11)

A conic rotated about the origin by R can be represented by rotating the
vector that are multiplied from left and right with the conic matrix in the
opposite direction. That is, a conic rotated by R is represented by those
vectors xH that satisfy

xT
H RH AH RT

H xH = xT
H

(
R A RT 0

0 −ρ

)
= 0. (C.12)

If we diagonalize A we obtain

A = U Λ UT, (C.13)



C.2. ANALYSIS OF MATRICES REPRESENTING CONICS 47

where U is a unitary matrix containing the eigenvectors of A in its columns
and Λ is a diagonal matrix with the eigenvalues of A on its diagonal. Since
A is a real, symmetric matrix, the eigenvalues are real and the eigenvectors
are orthogonal, hence U is unitary. Therefore, U gives the rotation matrix
by which the conic has been rotated and Λ describes what type of conic A
represents. We will denote the eigenvectors of A by u1 and u2 such that
U = (u1, u2) . If we define

UH :=

(
U 0
0 1

)
, (C.14)

then the following relation holds

UT
H AH UH = ΛH :=




λ1 0 0
0 λ2 0
0 0 −ρ


 , (C.15)

where λ1 and λ2 are the eigenvalues of A .

However, a conic need not be centered on the origin. Its origin may be
translated to a point t ∈ R2 , by applying the inverse translation to the points
that are multiplied with the conic. If we define a homogeneous translation
matrix TH as

TH :=

(
I −t
−tT 1

)
, (C.16)

then those points xH that satisfy

xT
H TT

H AH TH xH = 0, (C.17)

lie on the conic represented by AH , translated by the vector t .

Suppose we are given an arbitrary, symmetric 3 × 3 matrix QH and we
would like to know what type of conics this matrix represents. Using the
above definitions we know that QH may be written as

QH = TT
H AH TH . (C.18)

Since the top left 2× 2 submatrix of TH is the identity matrix, we can eval-
uate the eigenvector matrix U of A from that part of QH . That is, QH has
the form

QH =

(
A q
qT p

)
, (C.19)

where q ∈ R2 is some vector and p ∈ R is a scalar. In some way we need to
extract ΛH and the translation vector t from QH . We can write

LH := UT
H QH UH = UT

H TT
H UH Λ UT

H TH UH . (C.20)



48 APPENDIX C. EVALUATING THE INTERSECTION OF CONICS

We find that

SH := UT
H TH UH =




1 0 −tT u1

0 1 −tT u2

0 0 1


 =




1 0 s1

0 1 s2

0 0 1


 , (C.21)

where s1 := −tT u1 and s2 := −tT u2 . Hence,

LH = ST
H ΛH SH =




λ1 0 λ1 s1

0 λ2 λ2 s2

λ1 s1 λ2 s2 λ1 s2
1 + λ2 s2

2 − ρ


 . (C.22)

U and thus UH can be evaluated from the upper-left 2×2 submatrix of QH .
The translation vector t can be evaluated from LH via

t = −s1 u1 − s2 u2. (C.23)

Furthermore, ρ can be evaluated from LH by first evaluating λ1 , λ2 , s1 and
s2 . Also note that if ρ = 0 , the matrix QH is at most of rank two. This can
be seen from the form of the matrix LH since the two matrices are related
via a similarity transformation. Simply multiply the first row of LH with s1

and the second row with s2 . The sum of these two rows is then equal to the
third row if ρ = 0 .

The type of conic represented by QH can now be deduced from λ1 , λ2

and ρ , that can all be evaluated from LH . We can distinguish between the
following types of conics. Note that any scalar multiple of QH represents
the same conic as QH . In particular, −QH represents the same conic as QH .
Therefore, the following signatures of λ1 , λ2 and ρ may also be inverted.

• Point. λ1, λ2 > 0 and ρ = 0 .

• Ellipse. λ1, λ2 > 0 and ρ > 0 .

• Hyperbola. λ1 > 0 and λ2 < 0 or vice versa, and ρ > 0 .

• Two intersecting lines. λ1 > 0 and λ2 < 0 or vice versa, and ρ = 0 .

• Two parallel lines. λ1 > 0 and λ2 = 0 or vice versa, and ρ > 0 .

• Line. λ1 > 0 and λ2 = 0 or vice versa, and ρ = 0 .

The axes or directions of the various entities are given through the eigenvec-
tors u1 and u2 , and the scales of the axes by the corresponding eigenvalues.



C.3. INTERSECTING LINES WITH CONICS 49

For example, for the case of two intersecting lines with λ1 > 0 , λ2 < 0 and
ρ = 0 , the set of vectors x that satisfy the following equation lie on the conic.

xT (u1, u2)

( |λ1| 0
0 −|λ2|

)
(u1, u2)

T x = 0

⇐⇒ |λ1| (xT u1 uT
1 x)− |λ2| (xT u2 uT

2 x) = 0

(C.24)

Since u1 and u2 are normalized and orthogonal, the solutions for x to the
above equation are simply

x = ± 1√
|λ1|

u1 ± 1√
|λ2|

u2. (C.25)

These solutions give the directions of the two lines. Their intersection point
is given by t which can be evaluated from the corresponding LH .

C.3 Intersecting Lines with Conics

Intersecting a line with an arbitrary conic is quite simple. Suppose a line is
given in parametric form as

x(α) := p + α r, (C.26)

where p gives the line’s offset from the origin and r is the line’s direction
in homogeneous coordinates. We neglect here the subscript ’H’ for brevity.
Note that the third component of p is unity while the third component of r
is zero. Let A represent a conic in homogeneous coordinates as defined in
the previous sections. Now, x(α) lies on the conic if xT(α) A x(α) = 0 . By
expanding this equation we find

xT(α) A x = (pT + α rT) A (p + α r)

= rT A r α2 + (pT A r + rT A p) α + pT A p

= 0.

(C.27)

If we define

a := rT A r, b := pT A r + rT A p, c := pT A p, (C.28)

Then we can write the above equation as

aα2 + b α + c = 0, (C.29)

which has the well known solutions

α1,2 =
−b±√b2 − 4ac

2a
. (C.30)

If the term in the square root is negative, then the line does not intersect the
conic, if it is zero it intersects the conic in a single point and if it is positive
in two points.



50 APPENDIX C. EVALUATING THE INTERSECTION OF CONICS

C.4 Summary

The method we use for evaluating the intersection of two non-degenerate
conics represented by two symmetric 3 × 3 matrices A and B can be sum-
marized as follows.

1. Find a degenerate conic as a linear combination of A and B that rep-
resents two lines by evaluating the eigenvalues of M = B−1A . If λ is a
real eigenvalue of M , then C = A − λ B is a degenerate conic passing
through the intersection points of A and B .

2. Analyze the degenerate conic C . If it represents two lines, extract the
line parameters.

3. Intersect the lines found in the previous step with either conic repre-
sented by A or B .

Good features of this method are that the only numerically sensitive cal-
culation is the evaluation of eigenvectors and eigenvalues. However, for
these many stable numerical routines do already exist. Furthermore, we
can work directly with the matrices representing the conics, which makes
the method fairly simple to apply.



Bibliography

[1] C. Fuchs, Extraktion polymorpher Bildstrukturen und ihre topologische und ge-
ometrische Gruppierung. PhD thesis, Akademie der Wissenshaften, Reihe C,
Heft 502, 1998.

[2] D. G. Lowe, “Local feature view clustering for 3d object recognition,” in IEEE
Conference on Computer Vision and Pattern Recognition, pp. 682–688, 2001.

[3] G. H. Granlund and A. Moe, “Unrestricted recognition of 3-D ob-
jects using multi-level triplet invariants,” in Proceedings of the Cogni-
tive Vision Workshop, (Zürich, Switzerland), September 2002. URL:
http://www.vision.ethz.ch/cogvis02/.

[4] C. G. Harris and M. J. Stevens, “A combines corner and edge detector,” in Proc.
of 4th Alvey Vision Conference, 1988.

[5] W. Förstner, “A framework for low level feature extraction,” in Computer Vision
- ECCV’94 (J. O. Eklundh, ed.), vol. 2 of LNCS 801, pp. 383–394, Springer-
Verlag, 1994.

[6] F. Mokhtarian and R. Suomela, “Curvature scale space for robust image corner
detection,” in Proc. International Conference on Pattern Recognition, pp. 1819–
1821, 1998.

[7] M. Felsberg and G. Sommer, “Image features based on a new approach to
2D rotation invariant quadrature filters,” in Computer Vision, ECCV02, Kopen-
hagen, 2002 (A. Heyden, G. Sparr, M. Nielsen, and P. Johansen, eds.), vol. 2350
of LNCS, pp. 369–383, Springer, 2002.

[8] S. Baker, S. K. Nayar, and H. Murase, “Parametric feature detection,” IJCV,
vol. 27, no. 1, pp. 27–50, 1998.

[9] M. Cazorla, F. Escolano, R. Rizo, and D. Gallardo, “Bayesian models for find-
ing and grouping junctions,” in Second International Workshop on Energy Mini-
mization Methods in Computer Vision and Pattern Recognition, 1999. York.

[10] U. Köthe, “Edge and junction detection with an improved structure tensor,”
in Pattern Recognition (B. Michaelis and G. Krell, eds.), LNCS 2781, pp. 25–32,
Springer-Verlag, 2003.

51



52 BIBLIOGRAPHY

[11] M. Shpitalni and H. Lipson, “Classification of sketch strokes and corner de-
tection using conic sections and adaptive clustering,” Trans. of ASME J. of Me-
chanical Design, vol. 119, no. 2, pp. 131–135, 1997.

[12] F. Bookstein, “Fitting conic sections to scattered data,” Comp. Graph. Image
Proc., vol. 9, pp. 56–71, 1979.

[13] J. Canny, “A computational approach to edge detection,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 8, November 1986.

[14] I. Bronstein, K. Semendjajew, G. Musiol, and H. Mühlig, Taschenbuch der Math-
ematik. Verlag Harri Deutsch, 4 ed., 1999.

[15] E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, K. Mehlhorn, and
E. Schömer, “A computational basis for conic arcs and boolean operations on
conic polygons,” in 10th European Symposium on Algorithms, no. 2461 in LNCS,
pp. 174–186, Springer, 2002.


