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To my parents





Die menschliche Vernunft hat das besondere Schicksal
in einer Gattung ihrer Erkenntnisse: daß sie durch Fra-
gen belästigt wird, die sie nicht abweisen kann, denn sie
sind ihr durch die Natur der Vernunft selbst aufgegeben,
die sie aber auch nicht beantworten kann, denn sie
übersteigen alles Vermögen der menschlichen Vernunft.

“Kritik der reinen Vernunft”,
Immanuel Kant.

. . . well, let’s scratch the surface . . .





Abstract

There are four main areas discussed in this thesis: Geometric
Algebra, Projective Geometry, Multiple View Tensors and 3D-
Reconstruction. Our discussion of Geometric Algebra is similar to
that of Hestenes and Sobczyk [30]. Our construction differs mainly
in how we define the inner and outer product, and how we work
with the geometric product. The geometric algebra we construct
here is finite dimensional, non-degenerate and universal.

Our discussion of projective geometry in terms of GA differs some-
what from Hestenes and Ziegler [31], in that we embed Euclidean
space in projective space in a different way. Instead of using the
projective split we employ reciprocal vectors to the same effect.
Our approach is independent of the signature of an underlying or-
thonormal frame. We also use reciprocal frames to give concise
descriptions of projections and intersections.

We discuss multiple view tensors from a geometric point of view.
We show that in this way multiple view tensors can be expressed
in a unified way, and that constraints on them can be found from
simple geometric considerations. In the last part of this chapter
we discuss projective reconstructions from trifocal tensors. We find
that the consistency of a trifocal tensor has no particular influence
on the quality of reconstruction.

We build upon our analysis of multiple view tensors in the last chap-
ter where we discuss 3D-reconstruction. The algorithm we present
uses point matches and vanishing points in order to create an affine
3D-reconstruction of a world scene from two static images taken
with unknown cameras, from unknown positions. The algorithm
we obtain is fast and robust. Its derivation shows how geometric
constraints can be implemented in a straight forward manner using
GA.
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Chapter 1

Introduction

For once the disease of reading has laid upon the system it weakens
it so that it falls an easy prey to that other scourge which dwells in
the inkpot and festers in the quill. The wretch takes to writinga.

“Orlando”, Virginia Woolf.

aThe scourge seems to have migrated to computers these days, but
the effect is the same.

1.1 Structure of the thesis

Chapters 2, 3, 4 and 5 all have an introduction discussing the relevant literature
and setting the context in which the respective chapter is to be read. At the
end of each of these chapters some conclusions are also given. Therefore,
each of these chapters can be read on its own, although results and concepts
from previous chapters may be needed. Chapter 6 again summarises the most
important results obtained from chapters 2 to 5, and adds some final thoughts.
In the following we will give some more details about each of the chapters 2
to 5, separately.

Chapter 2: A Construction of Geometric Algebra.

Here we present a construction of geometric algebra (GA), which
is similar to that of Hestenes and Sobczyk in [30]. However, we
start with different definitions for the inner and outer product,
and we treat the geometric product in a different way. In [30] the
properties of the geometric, inner and outer product are initially
given with respect to vectors. How these products act on blades
then has to be derived by reducing them to products on vectors,
which can be quite cumbersome.

1



2 Chapter 1: Introduction

We choose a slightly different path. Initially we show that the geo-
metric product is the sum of the commutator and anti-commutator
product, which is purely notational. However, this is true for any
two objects in the GA. We then find general identities for the com-
mutator and anti-commutator products of three arbitrary elements
of the GA. Later we show how the inner and outer product can
be written in terms of commutator and anti-commutator products.
This allows us to find the properties of the inner and outer product
with respect to blades more easily than in [30].

Also note that we define what we mean by “vector” in GA in an
algebraic way, which encodes the geometric meaning of a vector.
This definition excludes degenerate vector spaces. We also assume
that the vector space on which we build GA is finite dimensional.
These properties lead to a universal, non-degenerate GA.

Chapter 3: Projective Geometry.

This chapter deals with the description of projective geometry in
terms of GA. The use of GA in this field was introduced by Hestenes
and Ziegler in 1991 [31]. We differ somewhat from their description,
in that we do not use the projective split to go from projective to
Euclidean space (see e.g. [37, 49, 48]). The embedding we present
here does not assume any particlar signature for an underlying
orthonormal basis of projective space.

The first part of this chapter gives an intuitive introduction to
projective geometry. Then many formulae and concepts which are
essential tools in chapters 4 and 5 are introduced. In particular,
we use reciprocal frames to give concise descriptions of camera ma-
trices, epipoles and projections. We also introduce a dual bracket
which simplifies the notation of many equations, especially when
used in conjunction with the meet operation.

Chapter 4: The Geometry of Multiple View Tensors.

In this chapter we apply the tools we have developed in the previous
chapters. Multiple View tensors simply relate the images taken by
a number of cameras of the same scene. These tensors are usually
defined through the image point coordinates of image points in
the different images which are projections of the same point in
the world. Using matrix and tensor methods the geometry that
is encoded in multiple view tensors, and the constraints on the
tensors that follow from this, are difficult to find. With GA, on the
other hand, we start directly with the underlying geometry of which
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the respective multiple view tensors are only one of many possible
expressions. We are therefore able to express all multiple view
tensors in a unified way and find their constraints comparatively
easily. We end the chapter by showing that multiple view tensors
cannot encode any information about the Euclidean space of the
world scene. Therefore, in order to perform a 3D-reconstruction we
need more information than just a single multiple view tensor for
a particular camera setup. This leads directly to our next chapter
where we use some additional information to create an affine 3D-
reconstruction. This chapter is to be published in the forthcoming
book edited by Prof. G. Sommer “Geometric Computing with
Clifford Algebra” [51]. A more detailed discussion of a special
set of constraints on the trifocal tensor was published previously
[49, 48].

Chapter 5: 3D-Reconstruction.

Here we present a 3D-reconstruction algorithm which gives an affine
reconstruction of a scene from two static images if a set of image
point matches and some parallel world lines are known. The al-
gorithm exploits the fact that we can express the collineation of
the plane at infinity in terms of a camera matrix. The algorithm
we find is fast and robust and is investigated with synthetic and
real data. There is also a program available on the enclosed CD
which shows some reconstructions and discusses parts of the recon-
struction algorithm in more detail (see appendix A). This chapter
is also to be published in the book “Geometric Computing with
Clifford Algebra” [50].

1.2 Geometric Algebra

Since GA is the essential tool for most of our calculations, we will discuss GA
in two parts. The first part is meant to be an intuitive exposé of the most
basic features of GA. In particular, we will concentrate on those concepts and
formulae which are important to the analysis in later chapters. Therefore, we
completely neglect rotors, for example. For a more complete introduction see
[29, 30] and for other brief summaries see [37, 39, 22]. A good introduction
geared towards the use in the computer sciences can be found in [11].

The second part of our introduction to GA is chapter 2, where we put GA
on a mathematically more rigorous footing. If the reader is only interested in
the Computer Vision aspects of this thesis, chapter 2 can be safely ignored.
However, it will give the reader a much deeper understanding of GA.
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The easiest way to understand GA is to show how it extends the functional-
ity of standard vector algebra (SVA), which we assume all readers are familiar
with. In SVA the starting point is to define a frame. Here all calculations are
performed in a cartesian frame, so we can start by defining an orthonormal
basis of E3, {e1, e2, e3} with signature {+ + +}. A vector a in this basis may
then be defined as

a = αiei

Here, as throughout the rest of the text, greek indices will be assumed to count
from 1 to 4 and latin indices to count from 1 to 3. Also, a superscript index
repeated as a subscript (or vice versa) implies a summation over the range of
that index, unless specifically stated otherwise.

Now, SVA defines a scalar product of two vectors which results in a scalar.
For example, the scalar product of two vectors a and b is written as s = a·b,
where s is a scalar. The scalar s gives some information about the relative
orientation of vectors a and b. That is, the scalar product is a metric operation,
since it is only defined in relation to a frame.

GA extends the scalar product to an inner product. The inner product of
two vectors a and b is still written as a·b and it has the same metric meaning.
However, the inner product can also be applied in a non-metric sense. In order
to see this, we will first have to introduce the outer product.

The outer product of two vectors a and b is written as a∧b and is called
a 2-blade. A 2-blade may be regarded as an oriented area. Analogously, the
outer product of three vectors, a 3-blade, a∧b∧c can be interpreted as an
oriented volume. However, in projective geometry, which will be treated later
on, the geometric meaning of 2-blades and 3-blades is quite different. A more
general interpretation of k-blades will be given at the end of this section.

The outer and inner product are also defined in the absence of a basis frame.
This is where the power of GA lies. Let a, b, c ∈ En, then the inner product
has the following properties:

1. If a·b = 0 then a and b are said to be orthogonal.

2. a·b = b·a = s where s is a scalar. The inner product is commutative.

3. a·(b + c) = a·b + a·c. Distributive law.

For the outer product we have

1. If a∧b = 0 then a and b are said to be parallel or linearly dependent.
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2. a∧b = −b∧a. The outer product is anti-commutative.

3. a∧(b + c) = a∧b + a∧c. Distributive law.

4. a∧(b∧c) = (a∧b)∧c. Associative law.

From the first rule for the outer product it follows directly that the highest
grade object in En is of grade n, simply because in En at most n mutually
linearly independent vectors can be formed. The object of highest grade is
called the pseudoscalar of that space. Obviously the pseudoscalars of some
vector space can only differ by a scalar factor.

A 1-vector, or simply vector, in GA is the same as a vector in SVA. In that
sense it is also equivalent to a 1-blade. However, in GA we can have vectors
of higher grade, as well. A k-vector is defined to be a linear combination of
k-blades. Note that a k-vector cannot necessarily be expressed as a k-blade,
but every k-blade is also a k-vector. Some examples may help to clarify this
idea. A 2-vector, or bivector, w ∈ E3 may be given by

w = 2(e1∧e2) + 3(e1∧e3)

This particular bivector can also be written as a 2-blade;

w = e1∧(2e2 + 3e3)

In fact, in E3 any 2-vector can be expressed as a 2-blade. However, in higher
dimensional spaces this is not necessarily the case. Consider the following
bivector in E4 with basis {e1, e2, e3, e4}.

w = α (e1∧e2) + β (e3∧e4)

where α and β are some scalar factors. This bivector cannot be written as a
2-blade.

Just as a k-vector is a linear combination of k-blades, GA also defines a
multivector which is the linear combination of blades that are not necessarily of
the same grade1. Working with multivectors is considerably more complicated
than working with k-vectors. Since they are also not needed in the following
chapters, multivectors will not be discussed here. We refer the interested reader
to [30].

1A k-vector as defined here is also called a homogeneous multivector of grade k. This
should not be confused with a “homogeneous vector” in projective geometry which is some-
thing quite different.



6 Chapter 1: Introduction

There is also a distributive law for the inner product with respect to the
outer product. This can be described by two general formulas. Let A〈k〉 =
a1∧. . .∧ak be a k-blade and B〈l〉 = b1∧. . .∧bl be an l-blade. We also define
[A〈k〉\ai] to be the blade A〈k〉 with the element ai taken out. Then it can be
shown that for k ≤ l we have

A〈k〉 ·B〈l〉 = ([A〈k〉\ak]∧ak)·B〈l〉

= [A〈k〉\ak]·(ak ·B〈l〉)
(1.1)

With this equation we can reduce the inner product between two general blades
to a number of inner product operations between a blade and a vector. The
inner product between a blade and a vector can then be expanded using the
following formula.

a·B〈l〉 =
l∑

i=1

(−1)i (a·bi) [B〈l〉\bi] (1.2)

It may not be immediately clear how to use equations (1.1) and (1.2). A few
examples, however, should clarify the situation. The following two equations
employ equation (1.2).

a·(b1∧b2) = (a·b1)b2 − (a·b2)b1 (1.3a)

a·(b1∧b2∧b3) = (a·b1)(b2∧b3)− (a·b2)(b1∧b3)

+(a·b3)(b1∧b2)

(1.3b)

For the next expansion we first use equation (1.1) and then equation (1.2).

(a1∧a2)·(b1∧b2) = a1 ·
(
a2 ·(b1∧b2)

)

= a2 ·b1 a1 ·b2 − a2 ·b2 a1 ·b1

(1.4)

As a slight extension of equation (1.1) it can be shown that for k ≤ l,

A〈k〉 ·B〈l〉 =
∑

{ji}
εj1j2···jl

[
A〈k〉 ·(bj1∧bj2∧. . .∧bjk

)
]

bjk+1
∧. . .∧bjl

,

(1.5)

where εj1j2···jl
is +1 if the {ji} form an even permutation of {1, 2, . . . , l}, −1 if

they form an odd permutation and 0 if any two indices are equal. For example,

(a1∧a2)·(b1∧b2∧b3) =
[
(a1∧a2)·(b1∧b2)

]
b3

−
[
(a1∧a2)·(b1∧b3)

]
b2

+
[
(a1∧a2)·(b2∧b3)

]
b1

(1.6)
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Equations (1.3), (1.4) and (1.6) clearly show the non-metric side of the
inner product. For example, in equation (1.3a) the inner product of a vector
with a bivector results in a vector. In equation (1.3b) the inner product of a
vector with a trivector 2 gives a 2-vector. Similarly for equations (1.4).

That is, the inner product reduces the grade of a k-vector whereas the outer
product increases it.

Following this interpretation of inner and outer product consequently leads
to the notion that a scalar is a 0-vector, because the inner product of two
vectors results in a scalar. We also define that the inner product of a scalar
with a k-vector is identically zero.

In chapter 3 it will be shown that intersections as well as the dual operation
can be expressed in terms of the inner product. The Grassmann-Cayley (GC)
algebra lacks such a universal operator and instead defines a number of different
inner-product-like structures.

Now we are in a position to see what the algebraic meaning of a bivector
is. Let vector x ∈ E3 be defined as

x = a·(b1∧b2)

We can get some information about the orientation of x by calculating

a·x = a·
[
a·(b1∧b2)

]

= (a∧a)·(b1∧b2) from equation (1.4)

= 0

(1.7)

This shows that x and a are orthogonal. Furthermore, we have

x = a·(b1∧b2)

= (a·b1)b2 − (a·b2)b1

(1.8)

and hence x lies in the plane given by b1 and b2. Therefore, we can interpret
the bivector b1∧b2 as the combination of the linear spaces given by b1 and
b2. Taking the inner product of a with this bivector then “takes out” the
linear dependence represented by a. What we are left with therefore has to be
orthogonal to a.

2A “trivector” is a 3-vector. Note that for vectors higher than grade 3 there are no special
names.
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By definition the inner product of two vectors is commutative and the outer
product anti-commutative. GA defines another product which combines these
two properties and is accordingly called the geometric product. In fact, it is
the most fundamental operation in GA, as will be shown in chapter 2. The
geometric product of two vectors is written as ab and given by

ab ≡ a·b + a∧b



Chapter 2

A Construction of Geometric
Algebra

Horatio: O day and night, but this is wonderous strange!
Hamlet: And therefore as a stranger give it welcome.

There are more things in heaven and earth, Horatio,
Than are dreamt of in your philosophy.

“Hamlet”, William Shakespeare.

William K. Clifford (1845–1879) did a lot of work on applications of Her-
mann G. Grassmann’s (1809-1877) extensive algebra and William R. Hamil-
ton’s (1805–1865) quaternions [6]. Clifford realized that these two “geometric
algebras” share some fundamental geometric concepts. Consequently he devel-
oped a more general geometric algebra in which extensive (or exterior) algebra
and quaternions are contained [7].

In [5] Clifford develops a nice geometric link between Grassmann’s extensive
algebra and Hamilton’s quaternions, which we will present here. His critique
of quaternions is that they play two roles at the same time: they are operator
but also subject of operation. This differs from the view “Ausdehnungslehre”
(extensive algebra) is founded on, where both objects of a product play similar
parts. In Grassmann’s extensive algebra the product of two vectors a, b, written
ab, represents the line through them. This product has the properties a2 = 0
and ab = −ba.

Consider a system of 4 elements {e0, e1, e2, e3} on which a polar product is
defined, i.e. eiej = −ejei, for i 6= j. Let the {ei} represent points in 3D-space,
whereby e0 is the origin and e1, e2, e3 are three points an infinite distance from
e0 in three mutually orthogonal directions. The three objects e0e1, e0e2, e0e3

therefore represent three mutually orthogonal lines.

9
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Now define three operators i, j, k where i turns the line e0e2 into e0e3, j
turns e0e3 into e0e1 and k turns e0e1 into e0e2. Since the product operation
considered here is associative, we can write

(e2e3)(e0e2) = e2e3e0e2

= −e2
2 e0e3.

(2.1)

Hence, if we take e2
2 = −1 (and not 0 as in extensive algebra) we can write

i = e2e3. The geometric interpretation of this is that the turning of e0e2 into
e0e3 is equivalent to a translation along the line at infinity e2e3. Similarly, if
we take e2

1 = e2
3 = −1 we have j = e3e1 and k = e1e2.

i, j,k are just the quaternions, whose properties can now be derived from
the more fundamental product between the elements {ei}. We will call this
product the geometric product. Furthermore, the operators i, j,k are now
distinct from the objects they operate on.

It seems that we have lost Grassmann’s extensive algebra now, though.
Quite the opposite: extensive algebra is now embedded in this more general
geometric algebra. If we define a scalar product as

ei ·ej =

{
0 , if i 6= j
±1 , if i = j

(2.2)

and an exterior product as

ei∧ej =

{
eiej , if i 6= j
0 , if i = j

(2.3)

the geometric product can be written as

eiej = ei ·ej + ei∧ej. (2.4)

If we only use the exterior product we return to Grassmann’s extensive algebra.
If we only use the scalar product we obtain J. Willard Gibbs’s (1839–1903)
vector algebra (appart from the cross product). In fact, the cross product is
a first hint at the need of an exterior product, since the cross product of two
vectors (in 3D) is nothing else but the dual of their exterior product (see e.g.
[41, 30]).

We will call the algebra introduced by Clifford “geometric algebra” (GA),
if it is not degenerate and vectors in the algebra are n-tuples in Rn, i.e. Gibbs
vectors. Today the ideas behind GA have been generalized and put into a
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more rigorous mathematical form. A general “Clifford algebra” is defined1 as
follows.

Let (V, Q) denote an arbitrary quadratic space, where V is a finite-dimensional
vector space over some field F . Let A be an associative algebra over F with
identity 1 and ν : V → A an F–linear embedding of V into A. Then the pair
(A, ν) is said to be a Clifford algebra for (V,Q) when

1. A is generated as an algebra by {ν(v) : v ∈ V } and {λ1 : λ ∈ F},
2. (ν(v))2 = −Q(v)1, for all v ∈ V .

What we called geometric algebra above is therefore a Clifford algebra on a non-
degenerate quadratic space (V, Q), where V is a “Gibbs vector space” and Q is
the geometric product. Grassmann’s extensive algebra can be reproduced by
setting Q ≡ 0. That is, the square of any vector is zero. General discussions of
Clifford algebras can be found in [21, 23, 52]. Applications of Clifford algebras
to Physics and Engineering are usually given in the framework of geometric
algebra [41, 54, 30, 38, 11].

A different approach to geometric or Clifford algebra is discussed by Som-
men in [64, 65]. He does not start off with a general geometric algebra in
which vectors are defined. Instead he defines what he calls a “radial algebra”
in which vector–variables are defined as general objects. There is no particular
meaning given to these vector–variables (hence “variables”) appart from their
algebraic behaviour. In the same way bivector–variables, etc. are defined.

For example, vector–variables are defined through the property that their
anti-commutator is a scalar (in some field). Bivector–variables are defined by
saying that the commutator of a bivector–variable with a vector–variable gives
a “new” vector variable. In this way an infinite dimensional vector space can
be created from a single vector– and bivector–variable. It can then be shown
that there is an algebra isomorphism between this radial algebra and a Clifford
algebra.

2.1 Introduction

The construction of GA we give here is probably most similar to that of
Hestenes and Sobczyk [30]. Our construction differs mainly in how we define
the inner and outer product, and how we work with the geometric product.
Our strategy is as follows. We start with the geometric product, which we

1We follow here the notation of [21].
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assume is associative. We then define the commutator and anti-commutator
product, and show that the geometric product can be written as their sum.
This is, of course, purely notational. However, this may be a better description
of the true nature of the geometric product than to define it only through its
properties on vectors.

Next we define what we mean by vectors in an algebraic sense. This also
defines the bilinear (and quadratic) form on vectors to be the anti-commutator
product. We can then choose an orthonormal basis of such a vector space and
show that the generated GA is universal. Universality means that the GA
stays unchanged under a change of basis. Hence, we can define inner and
outer product in general on some orthonormal basis. This allows us to show
the relation between inner and outer product, and the commutator and anti-
commutator product, which will be very helpful when we discuss the properties
of blades.

2.2 The Foundations

2.2.1 The Fundamental Axioms

We will denote a geometric algebra by G. G is a finite-dimensional vector space
over the scalar field R, where R denotes the reals. Elements of G are called
multivectors and elements of R scalars. Furthermore, a product is defined on
G, the “geometric product”, which is associative and distributive, also with
respect to scalars. In particular note that the geometric product of a scalar
with a multivector commutes. The identity of G with respect to the geometric
product is 1 ∈ R. We also assume that G is closed under the geometric
product. G is therefore a vector space and an associative algebra with identity.

The geometric product is written by juxtaposition of two multivectors. For
example, the geometric product of two multivectors A and B is written AB.
The afore mentioned axioms of G are summarized in the following.
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Axiom 2.2.1 Vector Space Axioms. Let A,B ∈ G and α, β ∈ R, then

A + B ∈ G GA is closed under addition

A + B = B + A Commutativity

A + (B + C) = (A + B) + C Associativity

A + 0 = A Unique additive identity 0

A + (−A) = 0 Unique additive inverse element

1A = A1 = A Unique scalar identity 1

αA = Aα Commutativity with scalars

α(βA) = (αβ)A Associativity with scalars

α(A + B) = (αA) + (βB)

(α + β)A = (αA) + (βA)
Distributivity with scalars

(2.5)

Axiom 2.2.2 Geometric Product Axioms. Let A,B, C ∈ G and α, β ∈ R,
then

(AB) ∈ G G is closed under geometric product

(AB)C = A(BC) Associativity

A(B + C) = (AB) + (AC)

(B + C)A = (BA) + (CA)
Distributivity

(αA)B = A(αB) = α(AB) Associativity with scalars

(2.6)

Conventionally the geometric product takes precedence over addition. That
is

AB + C = (AB) + C (2.7)

Note that the geometric product is not commutative. That is, in general
AB 6= BA.

2.2.2 The Commutator and Anti-Commutator Products

Definition 2.2.1 Let A,B ∈ G, then the commutator product of A and
B is defined as

A×−B = 1
2
(AB −BA) (2.8)

From this definition it follows directly that

A×−B = −B×−A (2.9)
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Definition 2.2.2 Let A,B ∈ G, then the anti-commutator product of A
and B is defined as

A×−B = 1
2
(AB + BA) (2.10)

Therefore, we have

A×−B = B×−A (2.11)

The geometric product can thus be expressed in terms of the commutator
product and the anti-commutator product. Let A,B ∈ G, then

AB = A×−B + A×−B

= 1
2
(AB −BA) + 1

2
(AB + BA)

= 1
2
AB + 1

2
AB + 1

2
BA− 1

2
BA

= AB

(2.12)

The geometric product combines the commuting and anti-commuting parts
of two multivectors. We will see that the commutator and anti-commutator
products are very useful when working with vectors.

We will now derive some identities for objects of the type (A×−B)×−C. These
will be very useful later on. For example,

(A×−B)×−C = 1
2
(AB −BA)×−C

= 1
4

[
(AB −BA)C − C(AB −BA)

]

= 1
4

[
ABC −BAC − CAB + CBA

]

= 1
4

[
(ABC − ACB) + (CBA−BCA)

+(ACB − CAB) + (BCA−BAC)
]

(add and subtract ACB and BCA)

= 1
4

[
A(BC − CB)− (BC − CB)A

]

+ 1
4

[
(AC − CA)B −B(AC − CA)

]

= A×−(B×−C) + (A×−C)×−B

(2.13)

In step 4 of the above calculation the terms could have also been arranged as
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follows,

(A×−B)×−C = 1
4

[
(ABC + ACB) + (CBA + BCA)

+(−ACB − CAB) + (−BCA−BAC)
]

= 1
4

[
A(BC + CB) + (BC + CB)A

]

− 1
4

[
(AC + CA)B + B(AC + CA)

]

= A×−(B×−C)− (A×−C)×−B

(2.14)

That is, there are two possible expansions for (A×−B)×−C. Being able to choose
one or the other will turn out to be quite useful. In the following we will list
the expansions for all possible combinations of three multivectors.

(A×−B)×−C = A×−(B×−C) + (A×−C)×−B (2.15a)

(A×−B)×−C = A×−(B×−C)− (A×−C)×−B (2.15b)

(A×−B)×−C = A×−(B×−C) + (A×−C)×−B (2.16a)

(A×−B)×−C = A×−(B×−C)− (A×−C)×−B (2.16b)

(A×−B)×−C = A×−(B×−C)− (A×−C)×−B (2.17a)

(A×−B)×−C = A×−(B×−C) + (A×−C)×−B (2.17b)

(A×−B)×−C = A×−(B×−C)− (A×−C)×−B (2.18a)

(A×−B)×−C = A×−(B×−C) + (A×−C)×−B (2.18b)

Note that equation (2.15a) is just the Jacobi identity,

A×−(B×−C) + B×−(C×−A) + C×−(A×−B) = 0

2.2.3 Vectors

Now that we have given the fundamental axioms and some definitions, we can
structure G. We will do this by defining what we mean by a vector in an
algebraic sense.
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Definition 2.2.3 Define a subspace Vn ⊂ G of finite dimension n. Elements of
Vn will be called vectors and they obey the following conditions. Let x, y ∈ Vn

be linearly independent, then

x×−y ∈ R (2.19a)

x×−y 6∈ R (2.19b)

x×−y 6∈ Vn (2.19c)

Furthermore, let x, x′ ∈ Vn be linearly dependent, then

x×−x′ ∈ R and x×−x′ 6= 0 (2.20)

Properties (2.19a) and (2.20) together define a bilinear form on Vn. The
properties x×−x′ 6= 0 (from (2.20)) and (2.19b) ensure that Vn is not degenerate.
Finally, (2.19c) gives elements of Vn the right properties for our purposes.
Note that we also have x×−x′ = 0. This follows from the definition of linear
dependence and the axioms of G.

There are at most n linearly independent vectors in Vn. A set of n linearly
independent vectors {x1, x2, . . . , xn} ∈ Vn generates Vn and is called a basis
of Vn. That a basis for Vn exists is a standard proof, see e.g. [35, 9].

Two vectors x, y ∈ Vn are called orthogonal if x×−y = 0. They are called
parallel if x×−y = 0. We will call a basis of Vn orthogonal if all vectors in the
basis are mutually orthogonal. If furthermore the elements of an orthogonal
basis square to ±1, the basis will be called orthonormal. We can construct an
orthonormal basis out of an arbitrary basis of Vn by using the Gram-Schmidt
method. Since this is always possible we can always find an orthonormal basis
for some finite dimensional Vn.

Let BE := {e1, e2, . . . , en} be an orthonormal basis of Vn, then

ei×−ej = λi δij (2.21)

where δij is the Kronecker delta function and λi = ±1. Note that λi = 0 is
not possible by definition 2.2.3.

Definition 2.2.4 With regard to equation (2.21), the set Λ = {λ1, λ2, . . . , λn}
is called the signature of Vn.

If we want to emphasize the signature of a vector space we write Vr,s to
denote a vector space of dimension r + s whose signature has r entries +1 and
s entries −1.
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From equation (2.21) and equation (2.12) it follows directly that if i 6= j

eiej = ei×−ej + ei×−ej = ei×−ej ,

ejei = ej×−ei + ej×−ei = ej×−ei .
(2.22)

Since ei×−ej = − ej×−ei , it follows that

eiej = −ejei (2.23)

2.2.4 Basis Blades

Definition 2.2.5 Let BE = {e1, . . . , en} be an orthonormal basis of Vn, and
let NVn = {1, 2, . . . , n}. For each non-empty subset µ of NVn a basis blade
is defined as

eµ ≡ eµ1eµ2 . . . eµk
, µ = {µ1, µ2, . . . , µk} (2.24)

If the set µ is also ordered as µ1 < µ2 < . . . < µk < n we call eµ a reduced
basis blade. By convention, e∅ is the identity 1 in G, where ∅ is the empty
subset of NVn . e∅ is also called the empty blade. We write |µ| to denote the
number of elements in µ. The grade of eµ is defined as |µ|.

Let PVn be the set of all reduced subsets of NVn . Note that |PVn| = 2n.
Then the set of reduced basis blades corresponding to PVn forms a basis of a
2n dimensional GA. Such a GA will be denoted by Gn. That the dimension of
Gn is indeed 2n follows from the definition of Vn, 2.2.3 (in particular equation
(2.19c)).

The importance of equation (2.19c) becomes clear in the following example.
Let {e0, e1, e2, e3} be the associated Pauli matrices defined as

e0 =

[
1 0
0 1

]
, e1 =

[
i 0
0 −i

]
, e2 =

[
0 1
−1 0

]
, e3 =

[
0 i
i 0

]
.

Clearly e0 is isomorph to the scalar identity 1, and {e1, e2, e3} span a three
dimensional vector space. It is easy to verify that

e2
0 = e0 ≈ 1 , e2

1 = e2
2 = e2

3 ≈ −1 , eiej = −ejei , i 6= j (2.25)
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where i, j ∈ {1, 2, 3}. However, we also have

ei1ei2 = ei3 , e1e2e3 ≈ −1, (2.26)

where {i1, i2, i3} form an even permutation of {1, 2, 3}. Therefore, the {ei}
only satisfy properties (2.19a), (2.19b) and (2.20), but not property (2.19c).
From equation (2.26) it also follows that the reduced basis blades that can be
formed with {e1, e2, e3} only span a 2(3−1) dimensional GA. Thus, this GA is
not universal [21].

The advantage of using a universal GA is that it stays unchanged under a
change of basis. This is clearly very important for the applications we want to
discuss in later chapters. It can be shown (e.g. [21]) that a Clifford algebra is
universal if and only if it is of maximum dimension. Thus, since Gn, as defined
above, is of maximum dimension (2n), it is universal.

Definition 2.2.6 The reduced basis blade of highest grade in some Gn is called
a pseudoscalar and is denoted by IVn = e1e2 . . . en. If it is clear with which
vector space we work, we will also simply write I.

A general multivector A ∈ Gn can be expressed as a linear combination of
a set of reduced basis blades. That is,

A =
∑

i

αieµi , µi ∈ PVn , (2.27)

where αi ∈ R, and µi is the ith element in PVn . Recall that PVn is the set of all
reduced subsets of NVn . That is, eµi = eµi

1
eµi

2
. . . eµi

k
. Hence, equation (2.27)

is a sum over a basis of Gn.

It will be necessary later on to move the position of a reduced basis blade
within a geometric product. For example, we need to know how eµeν is related
to eνeµ. We know that if i 6= j, eiej = −ejei. Using the associativity of
the geometric product we can quite easily find the following equations. Let
µ ∈ PVn and r ∈ NVn , then

eµer =





(−1)|µ| ereµ if r 6∈ µ

(−1)(|µ|−1) ereµ if r ∈ µ
(2.28)

In general, if µ, ν ∈ PVn have r elements in common we have

eµeν = (−1)|µ|(|ν|−r) (−1)(|µ|−1)r eνeµ

= (−1)(|µ||ν|−r) eνeµ

(2.29)
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The following definitions will introduce some more nomenclature regarding
basis blades.

Definition 2.2.7 Define P+
Vn := {µ ∈ PVn : |µ| is even}, the set of all reduced

subsets of NVn with an even number of elements. Similarly, P−
Vn := {µ ∈ PVn :

|µ| is odd}. For a reduced basis blade of even or odd grade we also write eµ+

or eµ− , respectively.

Definition 2.2.8 An even multivector is a linear combination of even re-
duced basis blades. An odd multivector is a linear combination of odd
reduced basis blades.

Definition 2.2.9 A homogeneous multivector is a linear combination of
reduced basis blades of equal grade. If we define P r

Vn := {µ ∈ PVn : |µ| = r},
the set of all reduced subsets of NVn with r elements, then a homogeneous
multivector A of grade r can be written as

A =

|P r
Vn |∑

i

αieµi , µi ∈ P r
Vn .

Note that a scalar behaves like a reduced basis blade of grade zero because
1 ≈ e∅ and the grade of e∅ is |∅| = 0. This allows us to formulate the following
lemma.

Lemma 2.2.1 Let µ, ν, σ ∈ PVn and eµ, eν ∈ Gn. Also let µ = µ′ ∪ σ and
ν = ν ′ ∪ σ, where µ′ ∩ ν ′ = ∅. That is, eµ and eν have eσ in common.
Then eµeν = αeτ , where τ = µ′ ∪ ν ′ and α is a scalar factor. Note that
|τ | = |µ|+ |ν| − 2|σ|.

Proof.

eµeν = (−1)x (eµ′eσ) (−1)y (eν′eσ)

= (−1)(xy |µ′||ν′|)eµ′eν′(eσeσ)
(2.30)

where (−1)(|µ′||ν′|) is the sign introduced by interchanging eσ and eν′ and (−1)x

and (−1)y are the signs introduced by untangling eµ and eν , respectively. From
the associativity of the geometric product and with the help of equation (2.28)
it can be seen quite easily that (eσ)2 is a scalar. Therefore, we get the proposed
result.
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Theorem 2.2.1 The set of all even multivectors of some Gn forms a subal-
gebra of Gn. That is, it is a vector space and is closed under the geometric
product. This is not the case for the set of all odd multivectors.

Proof. We have to show that the geometric product and the sum of any two
even multivectors is also an even multivector. This is obviously the case for
the sum, since it does not change the grade of a reduced basis blade. From
lemma 2.2.1 it follows that the geometric product of any two even reduced
basis blades will give an even reduced basis blade, or the empty blade. Hence,
the set of even multivectors of some Gn forms a subalgebra of Gn.

Lemma 2.2.1 also shows that the geometric product of two odd reduced
basis blades gives an even reduced basis blade. Therefore, the set of odd
multivectors of some Gn is not a subalgebra of Gn.

2.3 Inner and Outer Products

2.3.1 The Outer Product

Definition 2.3.1 Let µ, ν ∈ PVn , then the outer product of reduced basis
blades eµ, eν ∈ Gn is written eµ∧eν and defined as

eµ∧eν ≡
{

eµeν if µ ∩ ν = ∅
0 otherwise

That is, the outer product reduces to the geometric product if the two reduced
basis blades have no e-components in common, otherwise it results in zero.
The outer product is extended to general multivectors through the following
two definitions.

Definition 2.3.2 Let µ, ν ∈ PVn and accordingly eµ, eν ∈ Gn. Also let α ∈ R.
Then

(αeµ)∧eν ≡ eµ∧(αeν) ≡ α(eµ∧eν)

The outer product of a scalar α with a reduced basis blade eµ is therefore
given by

α∧eµ = (αe∅)∧eµ = α(e∅∧eµ) = αeµ (2.31)
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Definition 2.3.3 Let A,B,C ∈ Gn, then

A∧(B + C) ≡ (A∧B) + (A∧C)

(B + C)∧A ≡ (B∧A) + (C∧A)

Corollary 2.3.1 The outer product is associative. That is, if A,B, C ∈ Gn

are general multivectors, then (A∧B)∧C = A∧(B∧C).

Proof. We first show the associativity of the outer product for reduced basis
blades. Let µ, ν, τ ∈ PVn and eµ, eν , eτ ∈ Gn. Also µ ∩ ν = ∅, eµ ∩ τ = ∅ and
ν ∩ τ = ∅. Then,

(eµ∧eν)∧eτ = (eµeν)∧eτ

= (eµeν) eτ = eµ (eνeτ )

= eµ∧(eν∧eτ )

Because of the distributivity of the outer product, associativity also holds for
general multivectors.

Therefore, we may write a reduced basis blade as the outer product of its
constituent elements. That is,

eµ = eµ1eµ2 . . . eµk
= eµ1∧eµ2∧. . .∧eµk

Thus the outer product may also be regarded as a step-up operator which
either increases the grade of a reduced basis blade or gives zero. That is,

eµ∧er = eµ′ iff r 6∈ µ (2.32)

where |µ′| = |µ|+ 1.

The outer product between a reduced basis blade and some element er ∈
Gn can also be expressed in terms of the commutator and anti-commutator
products. This will become very useful later on when we discuss vectors.

Theorem 2.3.1 Let µ ∈ PVn , r ∈ NVn and hence eµ, er ∈ Gn. Then the outer
product between eµ and er can be written as

eµ∧er =





eµ×−er if |µ| is even or zero

eµ×−er if |µ| is odd
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Proof. We will split the proof into two parts: for even and odd reduced basis
blades. Let µ+ ∈ P+

Vn , µ− ∈ P−
Vn and r ∈ NVn with corresponding reduced

basis blades eµ+ , eµ− , er ∈ Gn.

eµ+×−er = 1
2
(eµ+er + ereµ+)

=





1
2
(eµ+er − eµ+er) if r ∈ µ+

1
2
(eµ+er + eµ+er) if r 6∈ µ+

=





0 if r ∈ µ+

eµ+er if r 6∈ µ+

(2.33)

Furthermore,

eµ−×−er = 1
2
(eµ−er − ereµ−)

=





1
2
(eµ−er − eµ−er) if r ∈ µ+

1
2
(eµ−er + eµ−er) if r 6∈ µ+

=





0 if r ∈ µ−

eµ−er if r 6∈ µ−

(2.34)

This shows that the proposed result satisfies the conditions of the definition of
the outer product.

Corollary 2.3.2 Let µ ∈ PVn and r ∈ NVn with r 6∈ µ. Then

eµ∧er = (−1)|µ|er∧eµ

Proof. The proof follows directly from the definition of the outer product.
Since r 6∈ µ we have eµ∧er = eµer. Now, moving er to the other side of eµ

involves |µ| number of switches of e’s. Hence, we get a factor of (−1)|µ|.

Corollary 2.3.3 Let µ, ν ∈ PVn and µ ∩ ν = ∅ then

eµ∧eν = (−1)(|µ||ν|)eν∧eµ

Proof. The proof follows directly from the associativity of the outer product
and corollary 2.3.2.
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2.3.2 The Inner Product

Definition 2.3.4 Let µ, ν ∈ PVn , then the inner product of reduced basis
blade eµ, eν ∈ Gn is written eµ ·eν and defined as

eµ ·eν ≡





eµeν if µ ∩ ν 6= ∅ and

µ ∩ ν =

{
µ 0 < |µ| ≤ |ν|
ν 0 < |ν| < |µ|

0 otherwise

The condition µ∩ ν 6= ∅ simply says that the inner product is not the outer
product. This ensures that µ 6= ∅ and ν 6= ∅. The other condition ensures
that the inner product is only non-zero if all the es of one reduced basis blade
are also contained in the other simple blade.

The inner product is extended to general multivectors through the following
two definitions.

Definition 2.3.5 Let µ, ν ∈ PVn and accordingly eµ, eν ∈ Gn. Also let α ∈ R.
Then

(αeµ)·eν ≡ eµ ·(αeν) ≡ α(eµ ·eν)

The inner product of a scalar α with a reduced basis blade eµ is therefore
given by

α·eµ = (αe∅)·eµ = α(e∅ ·eµ) = 0 (2.35)

Definition 2.3.6 Let A,B,C ∈ Gn, then

A·(B + C) ≡ (A·B) + (A·C)

(B + C)·A ≡ (B ·A) + (C ·A)

As for the outer product, the inner product between a reduced basis blade
and some element er ∈ Gn can also be expressed in terms of the commutator
and anti-commutator products.

Theorem 2.3.2 Let µ ∈ PVn , r ∈ NVn and hence eµ, er ∈ Gn. Then the inner
product between eµ and er can be written as

eµ ·er =





eµ×−er if |µ| is even or zero

eµ×−er if |µ| is odd
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Proof. Again we will split the proof into two parts: for even and odd reduced
basis blades. Let µ+ ∈ P+

Vn , µ− ∈ P−
Vn and r ∈ NVn . Also eµ+ , eµ− , er ∈ Gn.

eµ+×−er = 1
2
(eµ+er − ereµ+)

=





1
2
(eµ+er + eµ+er) if r ∈ µ+

1
2
(eµ+er − eµ+er) if r 6∈ µ+

=





eµ+er if r ∈ µ+

0 if r 6∈ µ+

(2.36)

Furthermore,

eµ−×−er = 1
2
(eµ−er + ereµ−)

=





1
2
(eµ−er + eµ−er) if r ∈ µ−

1
2
(eµ−er − eµ−er) if r 6∈ µ−

=





eµ−er if r ∈ µ−

0 if r 6∈ µ−

(2.37)

This shows that the proposed result satisfies the conditions of the definition of
the inner product.

Corollary 2.3.4 Let µ ∈ PVn and r ∈ NVn with r ∈ µ. Then

eµ ·er = (−1)(|µ|−1) er ·eµ

Proof. The proof follows directly from the definition of the inner product.
Since er ∈ eµ we have eµ · er = eµ er. Now, moving er to the other side of eµ

involves |µ| − 1 switches of e’s (because er is already contained in eµ). Hence,
we get a factor of (−1)(|µ|−1).

Lemma 2.3.1 Let µ ∈ PVn and r ∈ NVn with r ∈ µ. Also, let r be at position
i in µ. Denote the corresponding element in eµ by eµi

. Then

eµ ·er = (−1)(|µ|−i) (er)
2 eµ′

where µ′ contains all elements of µ apart from r.
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Proof. The proof is straightforward. Since we assume that r is contained
in µ the inner product eµ ·er reduces to the geometric product by definition.
Furthermore, we assume that the element in eµ identical to er is at position i.
Hence, if we move this element (eµi

) to the right end of the reduced basis blade
we have to make |µ| − i switches, which introduces the same number of (−1)
factors. Since eµi

is identical to er by definition, they form a scalar object and
we are left with the proposed equation.

This lemma shows that the inner product can be regarded as a step-down
operator, which either decreases the grade of a reduced basis blade or gives
zero.

2.4 Further Development

2.4.1 The Grade-Projection Operator

In this section we will introduce the grade-projection operator which will allow
us to derive some useful identities.

Definition 2.4.1 Let µ, ν ∈ PVn and accordingly eµ, eν ∈ Gn. Then the
grade-projection bracket is defined as

〈eµeν〉r ≡




eµeν if (eµeν) is of grade r

0 otherwise

If r is zero, there may be no index given, i.e. 〈eµeν〉0 ≡ 〈eµeν〉.

The definition of the grade-projection bracket is extended to general multi-
vectors through the following two definitions.

Definition 2.4.2 Let A ∈ Gn and α ∈ R. Then

〈αA〉r ≡ α〈A〉r

Definition 2.4.3 Let A,B ∈ Gn. Then

〈A + B〉r ≡ 〈A〉r + 〈B〉r
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A general multivector is a linear combination of reduced basis blades. There-
fore, a grade-projection bracket applied to a general multivector will only retain
the linear combination of those reduced basis blades contained in the multi-
vector, which are of the specified grade.

Using the grade-projection bracket we can expand the geometric product
between two multivectors A,B ∈ Gn as

AB =
n∑

k=0

〈AB〉k (2.38)

Let µi ∈ P r
Vn and νj ∈ P s

Vn , then

A =

|P r
Vn |∑

i

αieµi , B =

|P s
Vn |∑

i

βieνi , (2.39)

are two homogeneous multivectors of grade r and s, respectively. From lemma
2.2.1 it follows that their geometric product can be expanded as

AB = 〈AB〉|r−s| + 〈AB〉|r−s|+2 + · · ·+ 〈AB〉r+s. (2.40)

This becomes clear if we substitute equation (2.39) into equation (2.40).

AB =
∑

i,j

αiβj eµieνj (2.41)

If µi ⊆ νj or νj ⊆ µi, then we get an element of grade |r−s| in the above sum.
On the other hand, if µi ∩ νj = ∅ then the corresponding element in the sum
is of grade r + s. For |µi ∩ νj| = i, i.e. µ and ν have i elements in common,
we obtain elements of grade r + s− 2i.

Theorem 2.4.1 The inner and outer product between two reduced basis
blades eµ, eν ∈ Gn can also be expressed in bracket notation.

eµ ·eν = 〈eµeν〉| |µ|−|ν| | if µ 6= ∅ and ν 6= ∅ (2.42a)

eµ∧eν = 〈eµeν〉|µ|+|ν| (2.42b)

Proof. To see that the expressions for the inner and outer product are true,
recall the definition of the grade projection bracket. Let eµ, eν ∈ Gn with
µ 6= ∅ and ν 6= ∅. Then 〈eµeν〉| |µ|−|ν| | is only non-zero if the grade of (eµeν) is
| |µ|−|ν| |. This can only be the case if either reduced basis blade is completely



4. Further Development 27

contained within the other. However, this is just the definition of the inner
product. Similarly for the outer product. Here 〈eµeν〉k+l is only non-zero if
the grade of (eµeν) is k + l. This is only possible if eµ and eν have no elements
in common.

The bracket notation can also be used to find some general identities. We
will derive two important identities here. Let µ ∈ P r

Vn , ν ∈ P s
Vn and τ ∈ P t

Vn ,
such that eµ, eν , eτ ∈ Gn are of grade r, s and t, respectively.

(eµ ·eν)·eτ = 〈eµeν〉|r−s| ·eτ

= 〈eµeνeτ 〉||r−s|−t|
(2.43)

Assume that s ≥ r+ t. Then ||r−s|− t| = (s−r− t) = |r−|s− t||. Therefore,

(eµ ·eν)·eτ = 〈eµeνeτ 〉|r−|s−t||

= eµ ·〈eνeτ 〉|s−t|

= eµ ·(eν ·eτ )

(2.44)

This is a kind of restricted associative law of the inner product.

(eµ∧eν)·eτ = 〈eµeν〉(r+s) ·eτ

= 〈eµeνeτ 〉|(r+s)−t|
(2.45)

Assume that t ≥ r + s. Then |(r + s)− t| = (t− r − s) = |r − |s− t||. Hence,

(eµ∧eν)·eτ = 〈eµeνeτ 〉|r−|s−t||

= eµ ·〈eνeτ 〉|s−t|

= eµ ·(eν ·eτ )

(2.46)

To summarise, we have found the following two identities using the bracket
notation:

(eµ ·eν)·eτ = eµ ·(eν ·eτ ) if |ν| ≥ |µ|+ |τ | (2.47a)

(eµ∧eν)·eτ = eµ ·(eν ·eτ ) if |τ | ≥ |µ|+ |ν| (2.47b)

Lemma 2.4.1 Let µ ∈ PVn and let {νi} and {τ i} be two partitions of µ. That
is,

µ = ν1 ∪ ν2 ∪ · · · ∪ νk = τ 1 ∪ τ 2 ∪ · · · ∪ τ l (2.48)
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Note that the subsets {νi} do not necessarily contain the same number of
elements. The same is true for the {τ i}. eµ ∈ Gn can therefore be written as

eµ = eν1∧eν2∧. . .∧eνk = eτ1∧eτ2∧. . .∧eτ l (2.49)

Let these two parameterisations of eµ be mixed arbitrarily within a scalar
projection bracket. For example, we might have the following mixing.

〈eνi1eτj1 . . . eτ jl eνik 〉

This bracket has to be non-zero because it contains twice eµ, and (eµ)2 is a
scalar. Now we can move the reduced basis blade at the very right all the way
to the beginning of the bracket without changing the result of the bracket.
That is,

〈eνi1eτj1 . . . eτ jl eνik 〉 = 〈eνik eνi1eτ j1 . . . eτ jl 〉

Proof. We know that eµ is included twice within the bracket. Therefore,
when moving eνik all the way through the bracket, it will move twice through
all those e’s it does not contain and once through those e’s it contains. Hence,
an even number of (−1) factors is introduced and thus the overall sign of the
bracket is not changed.

We can extend this lemma to general multivectors.

Theorem 2.4.2 The cyclic reordering property. Let A,B, C ∈ Gn be three
general multivectors. Then

〈ABC〉 = 〈CAB〉

Proof. The proof can be found quite easily by using the distributivity of
the grade-projection bracket, and then applying lemma 2.4.1. In general the
geometric product ABC can be written as a linear combination of reduced
basis blades. Let µi, νi, τ i ∈ PVn , αi, βi, ρi ∈ R and

A ≡ ∑

i

αi eµi ; B ≡ ∑

i

βi eνi ; C ≡ ∑

i

ρi eτ i ,

then

ABC =
∑

i,j,k

αiβjρk eµieνjeτk .
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Also let S be the set of those sets of indices {i, j, k} for which (eµieνjeτk) is of
grade zero, i.e. a scalar. Then

〈ABC〉 =
∑

{i,j,k}∈S
αiβjρk eµieνjeτk .

Each term in the above sum can be expressed as some (eσ)2 of which the
respective eµieνjeτk are just a parameterisation. Hence, it follows from lemma
2.4.1 that in this case we have

eµieνjeτk = eτkeµieνj ; {i, j, k} ∈ S.

Therefore,

〈ABC〉 =
∑

{i,j,k}∈S
αiβjρk eµieνjeτk

=
∑

{i,j,k}∈S
ρkαiβj eτkeµieνj

= 〈CAB〉

2.4.2 The Reversion Operator

Definition 2.4.4 Let µ ∈ PVn and write the corresponding reduced basis
blade eµ ∈ Gn as eµ = eµ1eµ2 . . . eµk

. Then the reverse of eµ, written ẽµ, is
defined as

ẽµ = eµk
eµk−1

. . . eµ2eµ1

The reversion operation is extended to general multivectors by the following
two definitions.

Definition 2.4.5 Let eµ ∈ Gn and α ∈ R. Then

(αeµ)̃ ≡ αẽµ

Definition 2.4.6 Let A,B ∈ Gn, then

(A + B)̃ ≡ Ã + B̃
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It follows that the reverse of a general multivector is the sum of the reverses
of its constituent reduced basis blades.

Lemma 2.4.2 Let µ ∈ P k
Vn and eµ ∈ Gn. Then,

ẽµ = (−1)k(k−1)/2 eµ

Proof.

ẽµ = eµk
∧eµk−1

∧. . .∧e2∧e1

= (−1)k−1(−1)k−2 · · · (−1)2(−1)1 eµ

= (−1)k(k−1)/2 eµ

(2.50)

Lemma 2.4.3 Let µ ∈ P k
Vn and ν ∈ P l

Vn , such that eµ, eν ∈ Gn can be written
as eµ = eµ1eµ2 . . . eµk

and eν = eν1eν2 . . . eνk
. Then,

(eµeν )̃ = ẽν ẽµ

Proof.

(eµeν )̃ =
(
(eµ1eµ2 . . . eµk

)(eν1eν2 . . . eνl
)
)
˜

= (eµ1eµ2 . . . eµk
eν1eν2 . . . eνl

)̃

= eνl
. . . eν2eν1eµk

. . . eµ2eµ1

= ẽν ẽµ

(2.51)

Definition 2.4.7 The inverse of a reduced basis blade eµ ∈ Gn, written e−1
µ ,

is defined such that

eµe
−1
µ = 1

Therefore, we can write the inverse of a reduced basis blade eµ explicitly as

e−1
µ =

ẽµ

eµẽµ

(2.52)

Since Gn is not degenerate and thus eµẽµ ∈ R and eµẽµ 6= 0, the inverse is
well defined. The definition of the inverse allows us to define division of two
reduced basis blades.
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Definition 2.4.8 Let µ, ν ∈ PVn and eµ, eν ∈ Gn. Then the division of eµ

by eν is defined as

eµ

eν

:= eµe
−1
ν =

eµẽν

eν ẽν

2.5 More on Vectors in Gn

In 2.2.3 we defined vectors in an algebraic way to obtain a GA which is ap-
propriate for our purposes. In this section we want to generalize the concept
of vectors in Gn by introducing r-vectors: homogeneous multivectors of grade
r. Each complete set of r-vectors in some Gn forms a vector space, however,
not one of the type as defined in 2.2.3 for r > 1.

In the second part of this section we will introduce blades. A blade is the
outer product of a number of vectors of Vn. We will then discuss some essential
properties of blades. In particular, the expansion of the inner product of two
blades is very important.

Definition 2.5.1 An r-vector is a homogeneous multivector of grade r. A
1-vector will also simply be called a vector.

Definition 2.5.2 Two r-vectors A and B are called orthogonal if A·B = 0.
Furthermore, a set of r-vectors is called orthogonal if every r-vector in the set
is orthogonal to all other r-vectors in the set.

Definition 2.5.3 An r-vector A is called linearly dependent on a set of
r-vectors {Bi} if there is a set of scalars {αi} such that A =

∑
i α

iBi. If no
such set of scalars exists then A is said to be linearly independent of the
set {Bi}.

Definition 2.5.4 A set of r-vectors {Ai} is called mutually linearly in-
dependent if no r-vector from the set is linearly dependent on the other
r-vectors of the set.

Definition 2.5.5 A set of n mutually linearly independent r-vectors is called
the basis of an r-vector space Vn

r of dimension n. If the set of r-vectors
is also orthogonal, the basis is called an orthogonal basis. Vn

r is a subset of
Gm, containing all linear combinations of the basis r-vectors, but not their
geometric or outer products. Note that an n-dimensional 1-vector space will
still be written Vn.
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In Gn there are Cn
r r-vectors, where Cn

r stands for the number of possible
combinations of n objects into groups of r. Each complete set of r-vectors in
some Gn forms a basis of a d = Cn

r dimensional r-vector space Vd
r .

Note that, for example, the geometric product of a 1-vector and a 2-vector
will give a multivector with grade 1 and grade 3 components. This gives the
motivation for the name “multivector” of general objects in Gn: a multivector
is a sum of vectors of different grade.

We will now consider 1-vectors in more detail. Let the {αi} be a set of
scalars and let BE = {e1, e2, . . . , en} be an orthonormal basis of Vn, as before.
Then a (1-)vector a may be written as

a =
n∑

i=1

αiei (2.53)

Note that we will write vectors as lower case bold letters from now on. Fur-
thermore, we will use the convention that if a superscript index is repeated
as a subscript a summation over the range of the index is implied. That is,∑n

i=1 αiei ≡ αiei. Because of the distributivity of the geometric, commutator
and anti-commutator products they can be extended immediately to vectors.

ab = a×−b + a×−b (2.54)

Theorems 2.3.1 and 2.3.2 also extend immediately to vectors. Therefore, we
can write equation (2.54) as

ab = a∧b + a·b (2.55)

This is sometimes taken as the definition of the geometric product. How-
ever, using this definition as the starting point, makes the derivation of many
properties of the inner and outer product more difficult.

Note that the inner product of two vectors is equivalent to the standard
scalar product of vectors.

a·b = a×−b

= (αiei)×−(βjej)

= αiβi(ei)
2 ∈ R

(2.56)

since ei×−ej = 0 if i 6= j.
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Definition 2.5.6 Let the {ai} ∈ Vn be some set of vectors. Then a blade of
grade k will be denoted A〈k〉 and is defined by

A〈k〉 = ai1∧ai2∧. . .∧aik (2.57)

From the definition of vectors and the distributivity of the outer product
it follows that every k-blade is also a k-vector. However, a general k-vector
cannot necessarily be expressed as a k-blade. Also note that every reduced
basis blade is a blade, but the reverse does not hold in general.

Lemma 2.5.1 Let a, b ∈ Vn, then a∧b = 0 if and only if a and b are linearly
dependent.

Proof. First we show the “if” part.

a∧b = a∧(αa) = α(a∧a) = 0 (2.58)

For the “only if” part we assume a∧b = 0, and a and b are linearly independent.
Therefore, a has to have at least one element er ∈ En that is not contained
in b, or vice versa. But the outer product of that er with b (or a) will be
non-zero. This contradicts the assumptions.

Corollary 2.5.1 Let the {ai} ∈ Vn be a set of k vectors. Then, if ai1∧ai2∧
. . .∧aik 6= 0, the set {ai} forms a basis of a vector space Vk.

Proof. The proof follows immediately from lemma 2.5.1.

Definition 2.5.7 Let the {ai} form a basis of Vn. Then the blade

Ian = a1∧a2∧. . .∧an

is called the characteristic pseudoscalar of Gn for basis {ai}. If it is clear
that we are working within a specific geometric algebra, the characteristic
pseudoscalar for basis {ai} will simply be written as Ia.

Corollary 2.5.2 Let Ia be a characteristic pseudoscalar of Gn, and let b ∈ Vn.
Then Ia∧b = 0.
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Proof. From definition 2.5.7 we know that Ia = a1∧a2∧. . .∧an where the
{ai} form a basis of Vn. Since b ∈ Vn it has to be linearly dependent on the
{ai}. Hence, from lemma 2.5.1 it follows that Ia∧b = 0.

This tells us that a characteristic pseudoscalar of Gn spans the whole space.
Note that the pseudoscalars of some Gn can only differ by a scalar factor.
In fact, it is not too difficult to show the following relation. Let Ba =
{a1,a2, . . . , an} be an arbitrary basis of Vn, and let BE = {e1, e2, . . . , en}
be an orthonormal basis of the same Vn. The vectors of basis Ba may there-
fore be expressed in terms of BE as ai = αj

iej, where we sum implicitly over
j. αj

i is a matrix giving the linear mapping between BE and Ba. Then it can
be shown that

a1∧a2∧. . .∧an = det(αj
i ) IVn . (2.59)

In the following we will always relate a characteristic pseudoscalar to the stan-
dard pseudoscalar I = e1e2 . . . en, once we have chosen an orthonormal basis
BE. In particular, we will write

Ia = ρaI, (2.60)

where ρa is the determinant of the linear mapping matrix, as given above.

The grade-projection operator extends directly to general blades, due to
its distributivity. Therefore, identities (2.47) can also be extended to blades.
That is,

(A〈r〉 ·B〈s〉)·C〈t〉 = A〈r〉 ·(B〈s〉 ·C〈t〉) if s ≥ r + t (2.61a)

(A〈r〉∧B〈s〉)·C〈t〉 = A〈r〉 ·(B〈s〉 ·C〈t〉) if t ≥ r + s (2.61b)

In the following we will derive some vector identites. Equations (2.15) to
(2.18) are very useful for this purpose, as we know from theorems 2.3.1 and
2.3.2 how to translate the inner and outer products into commutator and anti-
commutator products.

Lemma 2.5.2 Let a, b ∈ Vn and A〈k〉 ∈ Gn. Furthermore, assume that A〈k〉∧
a 6= 0 and A〈k〉 ·b 6= 0. Then

(A〈k〉∧a)·b = A〈k〉(a·b)− (A〈k〉 ·b)∧a

Proof. We will perform the proof by translating the inner and outer prod-
ucts into commutator and anti-commutator products according to theorems
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2.3.1 and 2.3.2, and then using equations (2.15b) and (2.18a) to expand the
expressions. We have to consider two cases: for k even and odd. First assume
k is odd.

(A〈k〉∧a)·b = (A〈k〉×−a)×−b

= A〈k〉×−(a×−b)− (A〈k〉×−b)×−a from (2.15b)

= A〈k〉(a·b)− (A〈k〉 ·b)∧a

(2.62)

Next we consider the case of even k.

(A〈k〉∧a)·b = (A〈k〉×−a)×−b

= A〈k〉×−(a×−b)− (A〈k〉×−b)×−a from (2.18a)

= A〈k〉(a·b)− (A〈k〉 ·b)∧a

(2.63)

That is, independent of whether k is even or odd we always obtain the proposed
result.

In a similar way we can prove the following identities.

A〈k〉×−(a∧b) = (A〈k〉∧a)·b− (A〈k〉∧b)·a (2.64a)

A〈k〉×−(a∧b) = (A〈k〉 ·a)·b + (A〈k〉∧a)∧b (2.64b)

(A〈k〉 ·a)·b = −(A〈k〉 ·b)·a (2.65a)

(A〈k〉∧a)∧b = −(A〈k〉∧b)∧a (2.65b)

Note that equation (2.65b) simply reflects the associativity of the outer product
and equation (2.65a) can also be derived using equation (2.61b). Equations
(2.64), on the other hand, are most easily derived in the way presented here.
They give the two parts of the geometric product of some blade A〈k〉 with a
bivector (a∧b). That is,

A〈k〉 (a∧b) = A〈k〉×−(a∧b) + A〈k〉×−(a∧b)

= (A〈k〉∧a)·b− (A〈k〉∧b)·a
+(A〈k〉 ·a)·b + (A〈k〉∧a)∧b

(2.66)

We will now turn our attention to a very important formula in GA: the
distributivity of the inner product with respect to the outer product. That is,
we want to know how to expand an expression like (a1∧a2)·b. To simplify the
notation we will need the following definition.
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Definition 2.5.8 Let the {ai} be a basis of Vn, and let a blade A〈k〉 be defined
as A〈k〉 = ai1∧ai2∧. . .∧aik . Then the expression [A〈k〉\ail ] refers to the blade
A〈k〉 with the element ail taken out. All other elements stay in the same order.
Furthermore, the expression [A〈k〉\{ail , . . . , aim}] refers to the blade A〈k〉 with
the set of elements {ail , . . . , aim} taken out.

We can now state the relevant theorem.

Theorem 2.5.1 Let the {ai} be a basis of Vn, and let a blade A〈k〉 ∈ Gn be
defined as A〈k〉 = a1∧a2∧. . .∧ak. Also let b ∈ Vn. Then,

A〈k〉 ·b =
k−1∑

i=0

(−1)i(ak−i ·b) [A〈k〉\ak−i]

Proof. The proof is straightforward, using lemma 2.5.2.

A〈k〉 ·b = ([A〈k〉\ak]∧ak)·b
= [A〈k〉\ak] (ak ·b)−

(
[A〈k〉\ak]·b

)
∧ak

= [A〈k〉\ak] (ak ·b)

−
(
[A〈k〉\{ak, ak−1}] (ak−1 ·b)

)
∧ak

+
(
[A〈k〉\{ak,ak−1}]·b

)
∧ak−1∧ak

= [A〈k〉\ak] (ak ·b)− [A〈k〉\ak−1] (ak−1 ·b)

+
(
[A〈k〉\{ak,ak−1}]·b

)
∧ak−1∧ak

=
k−1∑

i=0

(−1)i(ak−i ·b) [A〈k〉\ak−i]

(2.67)

Now we can expand the inner product of two blades using equation (2.61b).
For example, let A〈k〉, B〈l〉 ∈ Gn with A〈k〉 = a1∧a2∧. . .∧ak, and k ≤ l.

A〈k〉 ·B〈l〉 = ([A〈k〉\ak]∧ak)·B〈l〉

= [A〈k〉\ak]·(ak ·B〈l〉)
(2.68)

We can also apply equation (2.61b) in a different way. If k ≤ l, then

A〈k〉 ·B〈l〉 =
∑

{ji}
εj1j2···jl

[
A〈k〉 ·(bj1∧bj2∧. . .∧bjk

)
]

bjk+1
∧. . .∧bjl

,

(2.69)
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where εj1j2···jl
is +1 if the {ji} form an even permutation of {1, 2, . . . , l}, −1 if

they form an odd permutation and 0 if any two indices are equal.

It is helpful to see some examples of such expansions, since they are among
the most frequently used manipulations in GA.

a·(b1∧b2) = (a·b1)b2 − (a·b2)b1 (2.70a)

a·(b1∧b2∧b3) = (a·b1)(b2∧b3)− (a·b2)(b1∧b3)

+(a·b3)(b1∧b2)

(2.70b)

Furthermore,

(a1∧a2)·(b1∧b2) = a1 ·
(
a2 ·(b1∧b2)

)

= a2 ·b1 a1 ·b2 − a2 ·b2 a1 ·b1

(2.71a)

(a1∧a2)·(b1∧b2∧b3) =
[
(a1∧a2)·(b1∧b2)

]
b3

−
[
(a1∧a2)·(b1∧b3)

]
b2

+
[
(a1∧a2)·(b2∧b3)

]
b1

(2.71b)

Because reversion is distributive, it can be extended immediately to blades.
That is, if A〈k〉 = a1∧. . .∧ak then

Ã〈k〉 = ak∧. . .∧a1 (2.72)

It is not so clear that the inverse operation can also be extended to blades. In
order to show that it can be extended to blades we need to show that for any
A〈k〉 ∈ Gn with A〈k〉 = a1∧. . .∧ak, A2

〈k〉 = A〈k〉A〈k〉 is a scalar.

Lemma 2.5.3 Let A〈k〉 ∈ Gn with A〈k〉 = a1∧ . . .∧ak, where the {ai} are
mutually linearly independent. Then A2

〈k〉 = A〈k〉A〈k〉 is a scalar.

Proof. If A〈k〉 was of grade 1, the proof would be trivial, because then we
would have

A〈1〉A〈1〉 = A〈1〉∧A〈1〉 + A〈1〉 ·A〈1〉 = A〈1〉 ·A〈1〉

which is a scalar. However, since k can be chosen arbitrarily we only know
that

A〈k〉A〈k〉 = A〈k〉×−A〈k〉 + A〈k〉×−A〈k〉 = A〈k〉×−A〈k〉
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For brevity we define

A〈k−i〉 ≡ [A〈k〉\{ak,ak−1, . . . , ak−i+1}].

Assuming k is even, we can now expand A〈k〉×−A〈k〉 as follows with the help of
equation (2.16b).

A〈k〉×−A〈k〉 = (A〈k−1〉×−ak)×−A〈k〉

= A〈k−1〉×− (ak×−A〈k〉)︸ ︷︷ ︸
ak∧A〈k〉=0

−(A〈k−1〉×−A〈k〉)×−ak

= −(A〈k−1〉×−A〈k〉)×−ak

(2.73)

The term in brackets may be expanded further using equation (2.17a).

A〈k−1〉×−A〈k〉 = (A〈k−2〉×−ak−1)×−A〈k〉

= A〈k−2〉×− (ak−1×−A〈k〉)︸ ︷︷ ︸
ak−1∧A〈k〉=0

−(A〈k−2〉×−A〈k〉)×−ak−1

= −(A〈k−2〉×−A〈k〉)×−ak−1

(2.74)

Hence,

A〈k〉A〈k〉 = (−1)2
(
(A〈k−2〉×−A〈k〉)×−ak−1

)
×−ak

= (−1)k−1
(
(· · · ((a1×−A〈k〉)×−a2) · · ·)×−ak−1

)
×−ak

=
(
· · · ((A〈k〉 ·a1)·a2) · · ·

)
·ak

(2.75)

The last expression is obviously a scalar. This may be shown in a similar way
when k is odd.

Therefore, the inverse of a blade A〈k〉 ∈ Gn is given by

A−1
〈k〉 =

Ã〈k〉
A〈k〉Ã〈k〉

(2.76)

The geometric division thus also extends to blades.

A〈k〉
B〈l〉

≡ A〈k〉B
−1
〈l〉 =

A〈k〉B̃〈l〉
B〈l〉B̃〈l〉

(2.77)
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2.6 Conclusions

There are many more features to be found in GA than we have presented here.
However, we have derived the most fundamental parts of GA. Developing GA
further from where we have stopped would be identical to other works (e.g.
[30, 41]).

We have shown here how GA can be developed from a vector space on which
we define a geometric product. In particular, we have defined what we mean
by vector in an algebraic sense, rather than starting of with n-tuples in Rn

on which we define a scalar product. The geometric product is also given in
its most general form and we only show later that it becomes the sum of the
inner and outer product in the case of vectors.

The commutator and anti-commutator identites (2.15) to (2.18) are also
shown to be of great use in finding vector identites. In particular, they are
helpful in deriving the formula for the distributivity of the inner product with
respect to the outer product (theorem 2.5.1). Finding this expansion is much
harder work in [30]. Some further vector identities were also presented (equa-
tions (2.64)) that are very useful when working with bivectors.

We believe we have shown here an interesting and novel way to construct
GA which does not obscure its simple fundamental structure.
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Chapter 3

Projective Geometry

‘The sky is blue,’ he said, ‘the grass is green.’ Looking up, he saw
that, on the contrary, the sky is like the veils which a thousand
Madonnas have let fall from their hair; and the grass fleets and
darkens like a flight of girls fleeing the embraces of hairy satyrs
from enchanted woods.

“Orlando”, Virginia Woolf.

The structure of this chapter is as follows. First we give an intuitive moti-
vation for projective geometry. Then we look at projective geometry in more
detail and derive concepts and formulae which will be needed in later chapters.

Our approach to projective, affine and Euclidean geometry is from an ap-
plied point of view, because we will use projective geometry chiefly to describe
lines and planes, and find their intersections. Very good general introductions
to projective geometry can be found in [2, 58]. A more purely mathematical
approach is taken in [1].

Our tool to describe geometry is GA. Nevertheless, our approach differs
somewhat from that of Hestenes and Ziegler [31], in that we embed Euclidean
space (E3) into projective space (P3) in a different way. Hestenes introduced
the projective split which transforms a vector that lies in projective space into
a bivector. This bivector is then taken to lie in Euclidean space. In order to
make this work the orthonormal basis for P3 needs to have a special metric
[49, 51].

Historically, Grassmann introduced his exterior algebra to describe geomet-
ric objects like points, lines and planes, in projective space. Exterior algebra
is still widely used in Physics (see e.g. [20, 8]). An extension of Grassmann al-
gebra, called Grassmann–Cayley or double algebra is used in Computer Vision
[16, 18] and Robotics [69, 70]. To see the differences between Grassmann al-
gebra, Grassmann–Cayley algebra and geometric algebra, we will give a short

41
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introduction to the former two.

Let Vn be an n-dimensional vector space over R. The pth exterior power
of Vn, denoted ΛpVn, is a real vector space, whose elements are referred to as
“p–vectors”, where p = 0, 1, . . . , n. We have Λ0Vn = R and Λ1Vn = Vn. In
general ΛpVn is the set of formal sums

∑
µ

αµ (xµ1∧. . .∧xµp), (3.1)

where µ = {µ1, . . . , µp} and the {xi} ∈ Vn. The “generators” {xµ1∧. . .∧xµp}
are called extensors of step p. The exterior product has the same properties
as the outer product in GA: associativity, distributivity and for x, y ∈ Vn,
x∧x = 0, x∧y = −y∧x.

There is also an inner product defined on ΛpVn as a bilinear mapping from
ΛpVn×ΛpVn to R. This is the same inner product as defined in GA. However,
in Grassmann algebra there is no general bilinear mapping from ΛpVn×ΛqVn

to Λ|p−q|Vn as in GA.

GC algebra is basically Grassmann algebra together with a “meet” oper-
ation. The meet operation is dual to the exterior product. Note that the
exterior product is also called “join” in GC algebra1. Duality here means that
if we interchange Vn and its dual space Vn ∗, then we also interchange join and
meet.

The meet operation in GC algebra is only defined for two extensors A,B
if step(A) + step(B) ≥ n. In this case it has the same meaning as the meet
in GA. However, GA offers a more general definition of the meet through its
particular definition of a join. Nevertheless, in GC algebra the meet has much
of the functionality of the inner product in GA. This is not too surprising since
in GA the meet is defined through the inner product.

In conclusion we can say that GC algebra offers much of the same function-
ality as GA. However, operations like the meet, dual and the particular inner
product of Grassmann algebra can all be expressed as (GA–)inner product
operations in geometric algebra.

3.1 Why Projective Geometry?

Three dimensional Euclidean space (E3) is the space in which the largest part
of classical Physics is set, and standard vector algebra is the tool used to work

1The “join” in GC algebra is not to be confused with the join in GA.
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in this space. In the following chapters we want to analyse static camera
configurations, which means that we also have to work in E3. One operation
we need to perform quite often is to find the intersection between lines and
planes or two planes, and such an operation is not defined directly in Euclidean
space.

This is due to the fact that a vector in E3 has a double meaning: it can
be interpreted to define a point in space but also a direction. If we interpret
a vector as a direction, it defines a line that passes through the origin. The
points on this line can simply be found by scaling the vector.

This might not seem to be a big problem until we realise that points and
lines are really different things. A point defines a zero dimensional space,
whereas a line defines a one dimensional space. However, in Euclidean space a
vector is supposed to define both at the same time. As we know from Physics
this problem can be circumvented quite successfully.

Still, in certain areas it shows its teeth. The intersection point of a line and
a plane, for example, is simply the intersection of the linear spaces each define.
Therefore, we should be able to find an intersection point directly if we could
express a line as a one dimensional space and a plane as a two dimensional
space, and then intersect the two spaces. This can be done in projective space,
whereas in Euclidean space intersection calculations are not so simple.

We cannot use a vector in E3 to define a point, because a vector can always
be scaled and thus represents a line through the origin. However, we can
add a “dummy” dimension to E3 which keeps track of the scale of a vector.
This extended space is called projective space P3, and the added “dummy”
dimension will be called projective dimension. We can return from P3 to E3

simply by dividing through by the respective scale. A vector in P3 still defines
a line in P3 through the origin. However, it represents a point in E3, since it
always projects to the same vector in E3 independent of its scale.

Implementing Projective Space. Let {e1, e2, e3} be an orthonormal frame
of E3 with signature {+++}, and let {e1, e2, e3} be the corresponding reciprocal
frame. In general, the reciprocal frame {Ai} of an arbitrary frame {Ai} is
defined through

Ai ·Aj = δj
i (3.2)

where δj
i is the Kronecker delta. A reciprocal frame can also be expressed in

terms of the frame vectors, as will be shown later. In the following we will use
latin indices to count from 1 to 3, and greek indices to count from 1 to 4. Also
lower case letters in bold face are vectors in E3 and upper case letters vectors
in P3.
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Let x = αiei be a vector in E3. Then

x
P3−→ X = αi ei + e4 = αµ eµ, (3.3)

where α4 = 1 and
P3−→ means embedding into P3. We use here the Einstein

summation convention, i.e. αµeµ ≡ ∑
µ αµeµ. The {e1, e2, e3, e4} form an

orthonormal basis of P3 with signature {+ + ++}. X can be projected back
into E3 via

X
E3−→ x =

X ·ei

X ·e4
ei (3.4)

In this way an overall scale of X is cancelled out. Therefore, scaling a vector
in P3 does not change its projection into E3. Thus we have achieved what we
set out to do: a vector in P3 represents a zero dimensional space, i.e. a point,
in E3.

Equation (3.4) is only valid though, as long as X ·e4 6= 0. However, we can
turn this to our advantage. Vectors in P3 for which X·e4 = 0 are called points
at infinity, because they would project to infinity in E3. They are also called
directions, because they do not correspond to a real point in E3. That is, in
P3 we can distinguish between direction and position vectors.

This will turn out to have many advantages. One of them is that the
intersection of two parallel lines, which is a point at infinity, is just a normal
point in P3, albeit one which projects to infinity in E3.

Another bonus we get from working in P3 is that the origin of E3 is not a
special point anymore. It is simply e4. Therefore, vectors in P3 are also called
homogeneous vectors.

Visualising Projective Space. Figure 3.1 visualises the projection from
projective to Euclidean space for a two dimensional Euclidean space. In this
case equation (3.4) becomes

X
E2−→ x =

X ·ei

X ·e3
ei ; i ∈ {1, 2}. (3.5)

That is, E2 is a plane embedded in P2. When we work in P2 we use the whole
3D-space. Projecting back into E2 means projecting points or lines onto the
embedded Euclidean plane, as indicated in figure 3.1. If we then only want to
work in E2 we can neglect the projective dimension, i.e. e3 in this example.

This is formalised in equation (3.5). First we divide X through by X ·e3,
which projects X onto the Euclidean plane, and then we neglect the projective
dimension.
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Figure 3.1: Projection of a point X and a line L from P2 into
E2.

Why GA?. So far everything we have discussed can be expressed with
standard vector algebra. So why GA? Well, points are easy enough to express,
but lines or planes are a different matter.

As was shown above, a vector in P3 defines a 1D-space, but represents a 0D-
space in E3. As will be shown later, a 2D-space in P3 represents a 1D-space,
i.e. a line, in E3. Also a 3D-space in P3 represents a 2D-space, i.e. a plane, in
E3. In other words, in P3 the dimensionality of all geometric entities (points,
lines, planes) is increased by one. This is necessary because zero-dimensional
spaces cannot be expressed directly algebraically.

In matrix algebra, points are represented by vectors, and lines and planes
through the appropriate Plücker coordinates. Intersections can then be cal-
culated directly. GA offers a coordinate free way to express points, lines and
planes through the use of the outer product. The outer product combines two
linear spaces in just the right way for our purposes, as will be shown later.
That is, the outer product of two vectors in P3 defines a 2D-space which rep-
resents a line in E3. Similarly, the outer product of three vectors in P3 defines
a 3D-space which represents a plane in E3. Writing these outer products in co-
ordinate form, gives again the appropriate Plücker coordinates. Intersections
between lines and planes can then be found with the “meet” operation, which
will be defined later.

Note that GA is not the only algebra which can be used to express points,
lines and planes in this way. For example, Grassmann–Cayley algebra is used
for this purpose in [14, 17, 47].
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3.2 Fundamentals

When we work with P3 we have to decide once and for all on a standard
orthonormal basis. This standard frame of P3 is here defined to be the or-
thonormal set {e1, e2, e3, e4}. That is2, eµ ·eν = δµν . Which orthonormal basis
we choose is arbitrary, but we have to choose one to define the projective
dimension, e4 in this case, uniquely.

The standard pseudoscalar of P3 is defined as,

I ≡ e1∧e2∧e3∧e4. (3.6)

The inverse pseudoscalar I−1 is defined such that II−1 = 1. Hence,

I−1 ≡ e4∧e3∧e2∧e1 (3.7)

From the definition of the standard pseudoscalar it follows that

II = I−1I−1 = 1 , I = I−1. (3.8)

A vector in P3 will be called a homogeneous vector3. As before, homoge-
neous vectors in P3 will be written as capital letters, and their corresponding
3D-vectors in E3 as lower case letters in bold face.

Recall that an overall scalar factor of a homogeneous vector A cancels when
A is projected down to E3. Since we are ultimately only interested in E3

vectors, equality up to a scalar factor is often sufficient. For that purpose we
use the symbol '. For example, A ' ρA, where ρ is a scalar constant.

A set {Aµ} of four homogeneous vectors forms a basis or frame of P3 if and
only if (A1∧A2∧A3∧A4) 6= 0. The characteristic pseudoscalar of this frame
for 4 such vectors is defined as

Ia = A1∧A2∧A3∧A4 (3.9)

Since Ia and I are both pseudoscalars of the same space, they can only differ
by a scalar factor. That is,

Ia = ρaI (3.10)

2Recall that we use greek indices when counting from 1 to 4, and latin indices when
counting from 1 to 3.

3This definition of homogeneous differs from its previous use in GA but is here chosen to
tie in with the Computer Vision convention.
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where ρa is the scale of the A-frame. If Ai = αj
i ej, then ρa is given by

ρa = (A1∧A2∧A3∧A4)I
−1 = det(αj

i ).

The inverses of these two pseudoscalars are related by

I−1
a = ρ−1

a I−1 (3.11)

From equations (3.8), (3.10) and (3.11) it follows that

I−1
a = ρ−2

a Ia (3.12)

The outer product of a vector with a pseudoscalar is always zero. Hence, the
geometric product of a vector with a pseudoscalar reduces to the inner product
of the two. From this fact and with help of equation (2.68) the following
important result follows;

AµIa = Aµ ·(A1∧A2∧A3∧A4)

=
4∑

ν1=1

(Aµ ·Aν1)(Aν2∧Aν3∧Aν4).
(3.13)

Here, and throughout the rest of the text the {ν1, ν2, ν3, ν4} are assumed to
be an even permutation of {1, 2, 3, 4}, unless otherwise stated. Since the inner
product of two vectors is a scalar, the result of this calculation is a multivector
of grade 3. Similarly, the geometric product of a bivector with a pseudoscalar
gives a bivector and the geometric product of a trivector with a pseudoscalar
gives a vector. This introduces the concept of the dual.

The dual of a multivector X, written X∗, is defined as

X∗ = XI−1

Therefore, if X is of grade r ≤ 4 then X∗ is of grade 4−r. It will be extremely
useful to introduce the dual bracket. To a certain extent it is related to the
bracket notation as used in Grassmann–Cayley algebra and GA [37]. There
the bracket of a pseudoscalar P , say, is a scalar, defined as the dual of P in
GA. That is, [P ] = PI−1; here however the dual bracket concept can produce
something other than a scalar.

The dual bracket is defined as

[[Aµ1Aµ2 · · ·Aµn ]] ≡ (Aµ1∧Aµ2∧. . .∧Aµn)I−1 (3.14a)
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with n ∈ {0, 1, 2, 3, 4}. The range given here for n means that in P3 none, one,
two, three or four homogeneous vectors can be bracketed with a dual bracket.
For example, if P = A1∧A2∧A3∧A4, then [[A1A2A3A4]] = [[P ]] = [P ] = ρa.
Note that [[[[X]]]] = X.

A very useful identity is the following.

[[Aµ1Aµ2Aµ3Aµ4 ]] = (Aµ1∧Aµ2∧Aµ3∧Aµ4)·I−1

= Aµ1 ·
(
(Aµ2∧Aµ3∧Aµ4)·I−1

)

= Aµ1 ·[[Aµ2Aµ3Aµ4 ]]

(3.15)

Similarly it may be shown that

[[Aµ1Aµ2Aµ3Aµ4 ]] = (Aµ1∧Aµ2)·[[Aµ3Aµ4 ]]

= (Aµ1∧Aµ2∧Aµ3)·[[Aµ4 ]]

= (Aµ1∧Aµ2∧Aµ3∧Aµ4)·[[1]]

(3.16)

Note that [[1]] = I−1. Put simply, vectors may be “pulled” out of a dual bracket
by taking the inner product of them with the remainder of the bracket.

3.3 Points, Lines and Planes

In this section we will show that points, lines and planes in E3 are represented
by lines, planes and 3D-hyperplanes in P3, respectively. Recall that this in-
crease in dimensionality is necessary to distinguish points and lines, because
zero dimensional spaces, i.e. points, cannot be expressed directly algebraically.
In the following it is therefore important to distinguish between the meaning
of an algebraic object in P3, and what it represents in E3.

First we have to give a definition which relates projective and Euclidean
space. The rest of this section will then investigate the effects this relation
has.

Definition 3.3.1 Euclidean space En is a subspace of projective space Pn.
Projective space extends the orthonormal basis of En {e1, e2, . . . , en} by one
basis vector en+1 such that {e1, e2, . . . , en, en+1} is also an orthonormal set.
However, Pn does not contain the origin of this (n + 1)–dimensional space. A
vector a ∈ En is said to be embedded in Pn through the operation

a
Pn−→ A = a + en+1.
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A vector A ∈ Pn is said to be projected into En through the operation

A
En−→ a =

A·ei

A·en+1
ei ; i ∈ {1, 2, . . . , n}.

If A·en+1 = 0, then A is said to lie on the plane at infinity in Pn, and it projects
to inifinity in En.

3.3.1 Points

Definition 3.3.2 Projective line. Let A ∈ P3, then the projective line rep-
resented by A is given by the set of points {X = τaA : τa ∈ R\{0}}, where
R\{0} denotes the set of real numbers without zero.

Therefore, any homogeneous vector in P3 represents a projective line, and
if two homogeneous vectors are linearly dependent, they represent the same
projective line.

Lemma 3.3.1 Let A ∈ P3, then a vector X ∈ P3 lies on the projective line
represented by A if and only if it satisfies

X∧A = 0

Proof. We have to show that X∧A = 0 iff X = τaA, where τa ∈ R\{0}.
This follows directly from lemma 2.5.1 on page 33.

Theorem 3.3.1 Every projective line in P3 given by some A ∈ P3 which does
not lie on the plane at infinity, represents a unique point in E3 and vice versa.

Proof. Let A ∈ P3 represent a projective line and A does not lie on the
plane at infinity. The set of points that lie on this projective line is {X =
τaA : τa ∈ R\{0}}. First we have to show that the {X} project to the same

point in E3 as A. Let A
E3−→ a, then

X
E3−→ x =

X ·ei

X ·e4
ei =

τa (A·ei)

τa (A·e4)
ei =

A·ei

A·e4
ei = a (3.17)

This shows that all points on a projective line project to the same point in E3.
It is also clear that this relation is unique. That the reverse is also true follows
directly from the definition 3.3.1.
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This theorem shows that there is a one to one correspondence between
points in E3 and projective lines in P3. Therefore, we will call vectors in P3

“points”.

There is also a dual representation of points in P3. From theorem 3.3.1 we
know that all homogeneous vectors X ∈ P3 which represent the same point in
E3 as some A ∈ P3 are given by

X∧A = 0

⇐⇒ [[XA]] = 0

⇐⇒ X ·[[A]] = 0

⇐⇒ X ·Na = 0

(3.18)

where Na ≡ [[A]] is called the normal of A. Therefore, a point can be given in
two different ways: either directly (e.g. A) or as its normal (e.g. Na). Thus,
there are also two ways to define the set of vectors X ∈ P3 that represent the
point a ∈ E3.

X∧A = X ·Na = 0. (3.19)

3.3.2 Lines

In the following we show that the outer product of two homogeneous vectors,
also called a bivector, defines a projective plane in P3, which represents a line
in E3.

Definition 3.3.3 Projective plane. Let A,B ∈ P3 be linearly independent.
Then the projective plane represented by A and B is given by the set of points
{X = τaA + τbB : (τa, τb) ∈ R2\{0}}. That is, τa and τb cannot be zero
simultaneously.

Lemma 3.3.2 Let A,B ∈ P3 represent a projective plane, then a vector
X ∈ P3 lies on this projective plane if and only if it satisfies

X∧(A∧B) = 0

Proof. We have to show that X∧(A∧B) = 0 iff X = τaA + τbB. The “only
if” part is clearly true, since (τaA + τbB)∧ (A∧B) = 0. To prove the “if”
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part we assume that X = τaA + τbB + τcC where A,B,C ∈ P3 are mutually
linearly independent and (τa, τb, τc) ∈ R3\{0}. Then

X∧(A∧B) = (τcC)∧(A∧B) 6= 0 (3.20)

Therefore, the most general expression for X to satisfy X ∧ (A∧B) = 0 is
X = τaA + τbB.

Theorem 3.3.2 Let A,B ∈ P3 be linearly independent and let at least one
of {A,B} not lie on the plane at infinity. Then the projective plane A∧B
represents a unique line in E3 and vice versa.

Proof. Let A,B ∈ P3 represent a projective plane, whereby at least one of
{A,B} does not lie on the plane at infinity. The set of points that lie on this
plane is {X = τaA + τbB : (τa, τb) ∈ R2\{0}}. First we have to show that

the {X} project to points on the same line in E3. Let a
P3−→ A = a + e4 and

b
P3−→ B = b + e4. Projecting X = τaA + τbB down to E3 gives

X
E3−→ x =

X ·ei

X ·e4
ei

=
τa a + τb b

τa + τb

=
τa (a− b) + (τa + τb) b

τa + τb

= τa

τa+τb
(a− b) + b

(3.21)

That is, every point on the projective plane represented by A and B projects to
the line passing through a and b in E3. It is also quite clear that this mapping
is unique and that the reverse is also true. However, this part of the proof will
be omitted here for brevity.

Therefore, we have a one to one correspondence between lines in E3 and
projective planes in P3. We will therefore call bivectors in P3 “lines”.

There is also a dual representation of a line. Let Lab = A∧B, then the
points X that lie on Lab are given by

X∧Lab = 0

⇐⇒ [[XLab]] = 0

⇐⇒ X ·[[Lab]] = 0

⇐⇒ X ·Nab = 0

(3.22)
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where Nab ≡ [[Lab]] is called the normal of Lab. To summarise, we can say that
a line may be represented in two ways: either directly (e.g. Lab = A∧B) or via
its normal (e.g. Nab ≡ [[Lab]]). The points X that lie on a line are then defined
by

X∧Lab = X ·Nab = 0 (3.23)

3.3.3 Planes

The last fundamental geometric entities we discuss are planes. We will show
that 3D-hyperplanes in P3 are defined by the outer product of three homo-
geneous vectors, also called trivectors, and that these hyperplanes represent
2D-planes in E3.

Definition 3.3.4 Projective hyperplane. Let A, B, C ∈ P3 be linearly inde-
pendent. Then the projective hyperplane represented by A, B and C is given
by the set of points {X = τaA + τbB + τcC : (τa, τb, τc) ∈ R3\{0}}. That is,
τa, τb and τc cannot be zero simultaneously.

Lemma 3.3.3 Let A,B, C ∈ P3 represent a projective hyperplane, then a
vector X ∈ P3 lies on the projective hyperplane passing through A, B and C
if and only if it satisfies

X∧(A∧B∧C) = 0

Proof. We have to show that X∧(A∧B∧C) = 0 iff X = τaA + τbB + τcC.
The proof is analogous to the one given for lines (theorem 3.20) and will be
omitted here for brevity.

Theorem 3.3.3 Let A,B, C ∈ P3 be linearly independent and let at least one
of {A,B,C} not lie on the plane at infinity. Then the projective hyperplane
A∧B∧C represents a unique plane in E3 and vice versa.

Proof. The proof is analogous to the one given for lines (theorem 3.3.2) and
will be omitted here for brevity.

Again we see that there is a one to one correspondence between planes in
E3 and projective hyperplanes in P3. We will therefore call trivectors in P3

“planes”.
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As for points and lines, there is a dual representation of planes. For example,
the dual representation of plane Pabc = A∧B∧C is given by Nabc = [[A∧B∧C]].
Then those vectors X that lie on plane Pabc satisfy

X∧Pabc = X ·Nabc = 0 (3.24)

3.4 Intersections

We will now disuss how intersections between lines and planes can be calculated
in projective space using GA. To see how this may be done, we will start in
P2. We know that in the corresponding 2D-Space E2, two lines intersect in a
point if they are not parallel. The basis of P2 is defined as {e1, e2, e3} with
signature {+ + +}.

3.4.1 Intersection of Lines in P2

Theorem 3.4.1 Let A,B,C,D ∈ P2 and let Lab = A∧B and Lcd = C∧D,
with dual representations Nab = [[Lab]] and Ncd = [[Lcd]]. Then the intersection
point X of lines Lab and Lcd is given by

X = Nab ·Lcd = Lab ·Ncd

Proof. If we can show that X lies on line Lab and on line Lcd, then X has
to be the intersection point of the two lines. Note that since we work in P2,
Nab = [[Lab]] and Ncd = [[Lcd]] are vectors.

Nab ·X = Nab ·(Nab ·Lcd)

= (Nab∧Nab)·Lcd

= 0

(3.25)

Therefore, X lies on line Lab. Furthermore,

X∧Lcd = (Nab ·Lcd)∧Lcd

= (Nab ·C) D∧Lcd − (Nab ·D) C∧Lcd

= 0

(3.26)

Thus, X also lies on line Lcd.
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3.4.2 Intersection of Parallel Lines in P2

For interest consider two parallel lines Lab = A∧B and Lcd = C∧D. First
we will show that the direction of a line L ∈ P2 is given by V ' L ·e3. Let
a, b ∈ E2 and A = τa(a + e3), B = τb(b + e3). Then Lab = A∧B represents
the line through a and b in E2. The direction of this line is therefore given by
Vab = a− b.

Lab ·e3 = A (B ·e3)−B (A·e3)

' A

A·e3
− B

B ·e3

=
τa (a + e3)

τa

− τb (b + e3)

τb

= Vab.

(3.27)

Vab is indeed a direction because A/(A·e3) and B/(B ·e3) have both a unit e3

component, and thus Vab ·e3 = 0. Lab can now also be written as

Lab ' A∧Vab ' B∧Vab. (3.28)

That is, Vab can also be regarded as a point lying on line Lab. In fact, it is
the intersection point of line Lab with the plane at infinity (P∞). The plane
at infinity contains all direction vectors.

If lines Lab and Lcd are parallel, they point in the same direction. Therefore,
we can also write Lcd ' C∧Vab. The intersection point Xp of lines Lab and Lcd

is therefore given by

Xp = Nab ·Lcd

= [[AB]]·(C∧Vab)

= [[ABC]]
A

A·e3
− [[ABA]]︸ ︷︷ ︸

=0

C

A·e3

− [[ABC]]
B

B ·e3
− [[ABB]]︸ ︷︷ ︸

=0

C

B ·e3

= [[ABC]]
(

A

A·e3
− B

B ·e3

)

' Vab.

(3.29)

Note that because we work in P2, [[ABC]] is a scalar. This equation shows that
two parallel lines intersect in P∞, their intersection point giving their direction.
Now we return to P3, which gives us the added complexity of planes.
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3.4.3 Intersections with Planes in P3

Theorem 3.4.2 Let Pa, Pb, L ∈ P3 with Pa = A1∧A2∧A3, Pb = B1∧B2∧B3

and L = C1∧C2. Then the intersection line Lab of planes Pa and Pb is given
by

Lab = Pa ·[[Pb]] = [[Pa]]·Pb

Furthermore, the intersection point X between plane Pa and line L is

X = L·[[Pa]] = [[L]]·Pa

Proof. The proof may be found in a similar way as for theorem 3.4.1.

3.4.4 Intersection of Lines in P3

The intersection of two lines in P3 cannot be found in an analogous way. This
is due to the fact that in P3 two lines might not intersect at all. From an
algebraic point of view the dual of a line also gives a bivector. Therefore, the
inner product of a line with the dual of another gives a scalar and not a point
as needed. In order to use the formula for the intersection of two lines as given
in P2, we would have to know the plane in which the two lines lie, if they are
co-planar4 that is. An easier way to find the intersection point between two
lines in P3 is through the following construction.

Let Lab, Lcd ∈ P3 be two co-planar lines. As in the previous section it can
be shown that the direction of line Lab is given by Vab ' Lab ·e4. Recall that
Vab is actually a point that lies on the line Lab. Therefore, Lcd∧Vab gives the
plane in which Lab and Lcd lie. Of course, if Lcd and Lab are parallel then this
expression gives zero. Now we can find the intersection point between lines
Lab and Lcd simply by intersecting line Lab with plane Lcd∧Vab.

3.5 Reciprocal Vector Frames

In equation (3.2) we defined the reciprocal frame {Aµ} of a frame {Aµ} through

Aµ ·Aν = δν
µ (3.30)

4If two lines are not co-planar they also do not intersect.
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It is now straightforward to give reciprocal frame vectors in terms of their
respective frame vectors. From equation (3.15) it follows that

[[A1A2A3A4]] = ρa

⇐⇒ Aµ1 ·[[Aµ2Aµ3Aµ4 ]] = ρa

⇐⇒ Aµ1 ·Aµ1 = 1

(3.31)

with no implicit summation over the range of µ1. This defines the reciprocal
A-frame, written {Aµ}, as

Aµ1 = ρ−1
a [[Aµ2Aµ3Aµ4 ]] (3.32)

From these definitions of reciprocal frame vectors it follows directly that they
satisfy the condition from equation (3.30). Equation (3.32) shows that a recip-
rocal frame vector is nothing other than the dual of a plane. It may therefore
also be regarded as the normal of the plane that is its dual.

In Grassman-Cayley (GC) algebra these reciprocal vectors would be defined
as elements of a dual space, which is indeed what is done in [14]. However, to
the knowledge of the authors reciprocal frames have not been used to describe
projections in GC algebra, as will be done here.

A reciprocal frame can be used to transform a vector from one frame into
another. For example, let X = αµAµ. Then X can be written in another frame
{Bµ} with reciprocal frame {Bµ} as

X = ( X ·Bν )Bν = αµ ( Aµ ·Bν ) Bν = βν Bν (3.33)

where Aµ ·Bν is the matrix giving the linear mapping between frames A and
B, and βν = αµ Aµ ·Bν .

Note that the {Aµ} also form a basis of P3 since A1∧A2∧A3∧A4 6= 0.
Therefore, X can also be given as X = αµA

µ, where the {αµ} differ from the
{αµ}.

3.6 Line Frames

It will be important later not only to consider vector frames but also line
frames. A line frame consists of the set of unique bivectors that can be created
from a corresponding vector frame. In P3 at most 6 unique bivectors can be
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formed. Hence, a full line frame has 6 components. We define a full line frame
{Lµ

a} based on the vector frame {Aµ} as

Lµ
a ≡ {A2∧A3, A3∧A1, A1∧A2, A2∧A4, A4∧A1, A3∧A4}. (3.34)

Note that greek indices used with line frames are assumed to count from 1 to
6. Latin indices, however, still count from 1 to 3. Later on we will need to
use planar line frames, i.e. line frames that define a plane. We will see that
the planar line frames we need are just of the form {Li

a}, i.e. the first three
components of a full line frame. Therefore, we can write the A-line frame {Li

a}
as Li1

a = Ai2∧Ai3 , where the {i1, i2, i3} are assumed to be an even permutation
of {1, 2, 3}.

A reciprocal line frame can then be defined as follows, again by using the
identities from equation (3.16)

[[A1A2A3A4]] = ρa

⇐⇒ (Aµ1∧Aµ2)·[[Aµ3Aµ4 ]] = ρa

⇐⇒ Lν
a ·La

ν = 1

(3.35)

with no implicit summation over ν. This5 defines the reciprocal A-line frame
{La

ν} as

La
ν = ρ−1

a

{
[[A1A4]], [[A2A4]], [[A3A4]],

[[A3A1]], [[A2A3]], [[A1A2]]
}

(3.36)

Hence,

Lµ
a ·La

ν = δµ
ν (3.37)

Again, this shows the universality of the inner product: bivectors can be
treated in the same fashion as vectors.

3.7 Plane Frames

Although we do not need them later on, it is interesting to look at plane
frames, if only for completeness. The plane frame based on the A-vector frame
is defined as

P a
µ ≡ {A4∧A2∧A3, A4∧A3∧A1, A4∧A1∧A2, A2∧A3∧A1}. (3.38)

5Note how similar this derivation is to that of reciprocal vector frames (equation (3.31)).
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Note that with respect to plane frames, greek indices are again assumed to
count in the range of 1 to 4. Following an analogous procedure as in equation
(3.35) it is easy to show that the corresponding reciprocal plane frame {P µ

a }
is given by

P µ
a ≡ ρ−1

a

{
[[A1]], [[A2]], [[A3]], [[A4]]

}
. (3.39)

Therefore,

P a
µ ·P ν

a = δν
µ (3.40)

3.8 Determinants

We will restrict our description of determinants to determinants of 3×3 matri-
ces, because that is what we will need later on. However, the formalism given
in the following may easily be extended to incorporate any type of determinant.

The determinant of a 3 × 3 matrix can be written in terms of the εijk

operator, which is defined as

εijk =





+1 if the {ijk} form an even permutation of {123}
0 if any two indices of {ijk} are equal

−1 if the {ijk} form an odd permutation of {123}
(3.41)

Let αia
1 , αib

2 and αic
3 give the three rows of a 3 × 3 matrix M . Then the

determinant of M is

det(M) = εiaibicα
ia
1 αib

2 αic
3 (3.42)

Note that there is an implicit summation over all indices. To simplify the
notation we define

det(αia
1 , αib

2 , αic
3 )iaibic

det(αi
j)ij

}
≡ εiaibicα

ia
1 αib

2 αic
3 = det(M) (3.43)

Furthermore, if the rows of the matrix M are written as vectors aj = αi
jei,

then we may also write

det(a1, a2,a3)

|a1a2a3|

}
≡ det(M) (3.44)
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Let the {Aµ} form a frame of P3, with reciprocal frame {Aµ}. Then from
the definition of the dual bracket it follows that

εiaibic = ρ−1
a [[AiaAibAicA4]] (3.45)

Therefore, we may express a determinant for example as

det(αi
j)ij = αia

1 αib
2 αic

3 ρ−1
a [[AiaAibAicA4]] (3.46)

3.9 Meet and Join

The meet defines a generalised intersection operation. It is usually defined in
terms of the join. In general terms the join is the union and the meet is the
intersection of two spaces. In GA any blade can be treated as a pseudoscalar
of a particular subspace.

The join of two blades A and B, written as A∧̇B can be defined in general
as the pseudoscalar of the space given by the sum of the spaces spanned by A
and B. For example, if A = e1∧e2 and B = e2∧e3 then A∧̇B = e1∧e2∧e3.
Also the join of two co-planar lines is the plane in which they are contained.

The meet of A and B, written as A∨B, is defined to give the space that A
and B have in common. Using the definitions of A and B from the previous
example A ∨B ' e2.

Definition 3.9.1 Let A and B be two arbitrary blades, and let J = A∧̇B,
then

A ∨B =
[
(AJ−1)∧(BJ−1)

]
J

If we take the meet of two planes or a plane and a line in P3, the join will
always be the pseudoscalar I, unless the line lies on the plane or the two planes
are the same. In the following we will assume that this is not the case. Then,
for the meet between two planes or a plane and a line we can write

A ∨B = [[[[A]][[B]]]]

= [[A]]·[[[[B]]]] from equation (3.16)

= [[A]]·B
= A∗ ·B

(3.47)
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Comparing this result with theorems 3.4.1 and 3.4.2, we see that the meet op-
eration can indeed be used to calculate the intersection between two geometric
objects.

From equation (3.47) follows another identity which will become very useful
later on.

[[A]] ∨ [[B]] =
[[
[[[[A]]]][[[[B]]]]

]]

= [[AB]]
(3.48)

where A and B are some arbitrary object. More details about meet and join
may be found in [31] and [37].

3.10 Cameras and Projections

A pinhole camera can be defined by 4 homogeneous vectors in P3: one vector
gives the optical centre and the other three define the image plane [37, 39].
Thus, the vectors needed to define a pinhole camera also define a frame for
P3. Conventionally the fourth vector of a frame, eg. A4, defines the optical
centre, and the outer product of the other three ({A1, A2, A3}) defines the
image plane.

Projection of some point X onto the image plane is done by intersecting the
line connecting the optical centre with X, with the image plane. Intersections
are calculated with the meet operation. As an example, consider a camera
defined by the A-frame as shown in figure 3.2. The line connecting some point
X with the optical centre is then given by X∧A4, and the image plane of the
camera is given by (A1∧A2∧A3). Therefore, the projection of X onto the image
plane is given using equations (3.16) and (3.47) by

(X∧A4) ∨ (A1∧A2∧A3) = (A1∧A2∧A3)·
[
(X∧A4)I

−1
]

= [[XA2A3A4]]A1

+ [[XA3A1A4]]A2

+ [[XA1A2A4]]A3.

(3.49)

Recall that we defined {i1, i2, i3} as an even permutation of {1, 2, 3}, and that
[[XABC]] = X ·[[ABC]]. Then equation (3.49) becomes

(X∧A4) ∨ (A1∧A2∧A3) =
∑

i3

[
X ·[[Ai1Ai2A4]]

]
Ai3

= ρa ( X ·Ai ) Ai.

(3.50)
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Xa A 2

1A

A 4 ^ X

A 4

A 3

X

O

Figure 3.2: Example of the representation of a pinhole camera
in P3. A4 is the optical centre and A1∧A2∧A3 defines the image
plane.

Suppose that X is given in some frame {Zµ} as X = ζµZµ. Then the
projection Xa of X onto the A-image plane can be written as

Xa ' ( X ·Ai )Ai

= (ζµ Zµ ·Ai )Ai

= ζµKi
µAi ; Ki

µ ≡ Zµ ·Ai

(3.51)

The matrix K i
µ is the camera matrix of camera A, for projecting points given

in the Z-frame onto the A-image plane.

In [14] the derivations begin with the camera matrices by noting that the
row vectors refer to planes. As was shown here, the row vectors of a camera
matrix are the reciprocal frame vectors {Ai}, whose duals are planes.

With the same method, lines can be projected onto an image plane. For
example, let L be some line in P3. Then its projection onto the A-image plane
is

(L∧A4) ∨ (A1∧A2∧A3) ' ( L·La
i )Li

a (3.52)
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3.11 Dual Representations of Lines and Points

Dual representations of lines and point will turn out to be quite useful ana-
lytically and also improve our understanding of the geometry. We will first
derive the dual representation of the planar line basis {Li

a}. Note that I−1
a =

A4∧A3∧A2∧A1, since then IaI
−1
a = 1. Also recall that Aµ ·Aν = δν

µ.

Li1
a = Ai2∧Ai3

= (Ai2∧Ai3)I
−1
a Ia since I−1

a Ia = 1

=
[
(Ai2∧Ai3)·(A4∧A3∧A2∧A1)

]
Ia

= −(Ai1∧A4)Ia see equation (1.6), page 6

= −ρa [[Ai1A4]]

' [[Ai1A4]]

(3.53)

From equation (3.48) it follows that

[[Ai1A4]] = [[Ai1 ]] ∨ [[A4]]

That is, the line element Li1
a can either be descibed by the outer product of

two points along the line, i.e. Ai2∧Ai3 , or by two planes6 intersecting in Li1
a ,

i.e. [[Ai1 ]] ∨ [[A4]]. The latter will be called the dual representation of a line.
Obviously, there are not only two planes that intersect in line Li1

a . In fact, all
pairs of planes that intersect in Li1

a are a dual representation of that line. This
set of planes will also be called a pencil of planes.

Another set of lines whose dual representation will be needed later on are
the {Ai∧A4}. Just as in equation (3.53)

Ai1∧A4 =
[
(Ai1∧A4)·I−1

a

]
Ia

=
[
(Ai1∧A4)·(A4∧A3∧A2∧A1)

]
Ia

= −ρa [[Ai2Ai3 ]]

' [[Ai2Ai3 ]]

(3.54)

6Note that [[A4]] ' A1∧A2∧A3, the image plane of camera A. Also [[Ai1 ]] ' Ai2∧Ai3∧A4.
Since the meet operation picks out those elements that two objects have in common, it is
clear that [[Ai1 ]] ∨ [[A4]] ' Ai2∧Ai3 = Li1

a .
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Similarly, the dual representation of points can be found as follows

Aµ1 =
[
Aµ1 ·I−1

a

]
Ia

=
[
Aµ1 ·(A4∧A3∧A2∧A1)

]
Ia

= −ρa [[Aµ2
a Aµ3

a A4
a]]

' [[Aµ2Aµ3A4]]

(3.55)

That is, the dual representation of a point is the intersection of three planes
which intersect at just that point.

3.12 Epipoles

An epipole is the projection of the optical centre of one camera onto the image
plane of another. Therefore epipoles contain important information about the
relative placements of cameras.

As an example consider two cameras A and B represented by frames {Ai}
and {Bi}, respectively. The projection of the optical centre of camera B onto
image plane A will be denoted Eab. From equation (3.50) it follows that

Eab = B4 ·AiAi = εi
abAi (3.56)

with εi
ab ≡ B4 ·Ai. The only other epipole in this two camera set-up is Eba

given by

Eba = A4 ·BiBi = εi
baBi (3.57)

with εi
ba ≡ A4 ·Bi. If there are three cameras then each image plane contains

two epipoles. With four cameras each image plane contains three epipoles. In
general the total number of epipoles is N(N − 1) where N is the number of
cameras present.

3.13 Camera Matrices

As was shown in equation (3.51) a camera matrix is defined by

Kj b
µ ≡ Aµ ·Bj (3.58)
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where the {Aµ} are a frame of P3 and the {Bj} are a subset of the reciprocal
frame of {Bµ}. Note that the raised, first index of K i b

j indexes the row and
the lowered, second index refers to the column of Ki b

j . A point X = αµAµ in
P3 given in the A-frame is projected onto the B-image plane (B1∧B2∧B3) via,

Xb = X ·BjBj

= αµKj b
µ Bj

(3.59)

In general the projection of some vector X onto image plane P will be written
as

X
P−→ Xp (3.60)

In this notation equation (3.59) becomes

X
B−→ Xb = αµKj b

µ Bj (3.61)

There is also a dual representation of the A-frame.

Aµ1 ' [[Aµ2Aµ3Aµ4 ]] (3.62)

where the {µ1, µ2, µ3, µ4} are an even permutation of {1, 2, 3, 4}. Therefore,
the camera matrix Kb can also be written as

Kj b
µ1

= [[Aµ2Aµ3Aµ4Bj]] (3.63)

The optical centre of camera A is given by A4. The projection of A4 onto the
B-image plane therefore gives the epipole Eba = εj

baBj by definition. Hence,

Eba = A4 ·Bj Bj = Kj b
4 Bj (3.64)

That is, the fourth column of Kb gives the coordinates of the epipole Eba. The
remaining 3 × 3 minor Kj b

i defines a plane collineation or plane homography
between image planes A and B.

Let {Bµ} define a camera in P3 and {Aµ} be some other frame of the same
projective space. Also, define A4 to be the origin of P3. Then Eba contains
some information about the placement of camera B relative to the origin.
Therefore, A4 ·Bj may be regarded as a unifocal tensor Ub.

U i
b ≡ A4 ·Bi = Ki b

4 ' [[A1A2A3Bi]] (3.65)

Obviously the unifocal tensor is of rank 1. The definition of a unifocal tensor
is only done for completeness and is not strictly necessary since every unifocal
tensor is also an epipole vector.
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3.14 Conclusions

In this chapter we hope to have shown that GA is a very effective tool to
describe geometry. In particular, GA seems to be a natural mathematical
formalism for projective geometry. This is because in projective geometry
points, lines and planes are represented by 1D, 2D and 3D-spaces, respectively,
and GA allows us to express these spaces directly as algebraic objects through
the outer product operation. Therefore, we are indeed not calculating with
numbers but with points, lines and planes. Clearly, Grassmann algebra and
Grassmann–Cayley algebra can also be used for this purpose. However, the
existence of a general inner product in GA allows us to define a meet operation,
which does not exist in Grassmann algebra. In GC algebra the meet is defined
directly and not through a more fundamental operation like the inner product
in GA.

As we have seen in this chapter, reciprocal frames are a powerful tool to
express projections and intersections. In particular, we are able not only to
work with vector frames but also with, line and plane frames. This allows us,
for example, to project a line onto an image plane using directly a reciprocal
line frame.

We also presented a novel way of relating projective, affine and Euclidean ge-
ometry in GA, which we believe is more intuitive and powerful than the method
presented by Hestenes and Ziegler [31]. The advantage of our approach is that
we do not need to assume any particular signature of an underlying orthonor-
mal frame. Indeed, we do not need to assume an underlying orthonormal frame
at all for our projection between projective and affine spaces to work.
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Chapter 4

The geometry of multiple view
tensors

Virtue itself turns vice, being misapplied,
And vice sometime’s by action dignified.

“Romeo and Juliet”, William Shakespeare.

4.1 Introduction

Multiple view tensors play a central role in many areas of Computer Vision.
The Fundamental Matrix, Trifocal Tensor and Quadfocal Tensor have been
investigated by many researchers using a number of different formalisms. For
example, standard matrix analysis has been used in [26, 27, 59, 60, 33]. An
analysis of multiple view tensors in terms of Grassmann-Cayley (GC) algebra
can be found in [18, 47, 14, 15]. GA has also been applied to the problem
[48, 49, 39, 37].

The importance of multiple view tensors is due to the geometric informa-
tion they encode of a camera system. As the names suggest, for a two camera
system we can find a bifocal tensor or fundamental matrix, for three cameras
a trifocal tensor and for four cameras a quadfocal tensor. Finding the multiple
view tensor of a camera system is also called “weak calibration”. Weak cali-
bration because a multiple view tensor allows us to find projective (not metric)
reconstructions of point or line matches.

In order to calculate a mutliple view tensor, we need to know a minimum
number of point or line matches. The minimum number of matches necessary
depends on the tensor and whether lines or points are used. In general, point
matches encode more information than line matches, and thus less point than
line matches are needed.

67
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The basic idea behind the definition of a multiple view tensor is very simple.
In each case we consider the projections {X i

1, X
i
2, . . . , X

i
n} of some objects {X i}

onto image planes {1, 2, . . . , n}. Then we define some multilinear multiple view
function M such that the set of image sets {X i

1, X
i
2, . . . , X

i
n} forms the kernel

of M , i.e.

M(X i
1, X

i
2, . . . , X

i
n) = 0 , ∀ i.

In the case of two, three and four cameras, the function M can be represented
by the contraction of image point coordinate vectors with a tensor.

The problem to which a lot of research has been dedicated, is then to find
the appropriate tensor given a set of point or line matches [26, 24, 28, 42, 39,
48, 14, 17, 32]. Since in real applications such matches may contain numerical
errors, an optimized tensor has to be found for the given data. As it turns
out, multiple view tensors are an overparameterization of the actual multiple
view functions. Therefore, constraints have to be found on the tensors to
make them true representation of the corresponding multiple view functions.
These constraints are usually of geometric nature. It makes therefore sense to
investigate multiple view tensors with a geometric algebra, to understand the
geometry they encode.

The advantage we have in using a geometric algebra as GA (or GC alge-
bra), is that we can work with the underlying basis frames of the cameras
and not just with the coordinates of projections of points and lines. This
enables us to work directly with the geometry underlying the multiple view
functions, of which the multiple view tensors are only an (overparameterized)
“manifestation”.

In this chapter we will show how GA can be used to give a unified geometric
picture of multiple view tensors. It will be seen that with the GA approach
multiple view tensors can be derived from simple geometric considerations. In
particular, constraints on the internal structure of multiple view tensors will
all be derived from the trivial fact that the intersection points of a line with
three planes, all lie along a line. Our analysis will also show how closely linked
the numerous different expressions for multiple view tensors are.

The structure of this chapter will be as follows. First we describe the fun-
damental matrix (bifocal tensor), the trifocal tensor and the quadfocal ten-
sor in detail, investigating their derivations, inter-relations and other prop-
erties. Following on from these analytical investigations, we show how the
self-consistency of a trifocal tensor influences its reconstruction quality. We
end this chapter with some conclusions and a table summarising the main
properties of the three multiple view tensors described here.
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4.2 The Fundamental Matrix

4.2.1 Derivation

Xa Xb

A 4
B4

Eab
Eba

X

Figure 4.1: Point X projected onto two cameras producing im-
ages Xa and Xb. Eba and Eab are the respective epipoles of the
cameras.

Let {Aµ} and {Bµ} define two cameras in P3 (see figure 4.1). A point X
in P3 may be transformed into the A and B frames via

X = X ·Aµ
aAµ = X ·Bν

b Bν (4.1)

Recall that there is an implicit summation over µ and ν. From that follows
that the line A4∧X can also be written as

A4∧X = X ·Ai
a A4∧Ai

= ρ−1
a A4∧Xa

(4.2)

where Xa = X ·Ai Ai. Let Xa and Xb be the images of some point X ∈ P3

taken by cameras A and B, respectively. Then, since the lines from A and B
to X intersect at X

0 = ( A4∧X ∧B4∧X )I−1

' ( A4∧Xa ∧B4∧Xb )I−1

= αiβj[[A4AiB4Bj]]

(4.3)

where αi ≡ X ·Ai and βj ≡ X ·Bj are the image point coordinates of Xa and
Xb, respectively. Therefore, for a Fundamental Matrix defined as

Fij ≡ [[A4AiB4Bj]] (4.4)
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we have

αiβjFij = 0 (4.5)

if the image points given by {αi} and {βj} are images of the same point in
space. Note, however, that equation (4.5) holds as long as Xa is the image of
any point along A4∧Xa and Xb is the image of any point along B4∧Xb. In
other words, the condition in equation (4.5) only ensures that lines A4∧Xa

and B4∧Xb are co-planar.

In the following let any set of indices of the type {i1, i2, i3} be an even
permutation of {1, 2, 3}. From equation (3.54), p.62, it follows that

[[B4Bj1 ]] ' Bj2∧Bj3 . (4.6)

Thus, with the help of equation (3.16), p.48, equation (4.4) can also be written
as

Fij1 ' (Ai∧A4)·(Bj2∧Bj3) (4.7)

This may be expanded to

Fij1 = (A4 ·Bj2)(Ai ·Bj3)− (A4 ·Bj3)(Ai ·Bj2)

= U j2
b Kj3 b

i − U j3
b Kj2 b

i

(4.8)

That is, the Fundamental Matrix is just the standard cross product between
the epipole1 U•

b and the column vectors K• b
i .

Fi• ' U•
b ×K• b

i (4.9)

In order to have a unified naming convention the Fundamental Matrix will also
be refered to as the bifocal tensor.

4.2.2 Rank of F

Note that we use the term “rank” in relation to tensors in order to generalize
the notion of rank as used for matrices. That is, we describe a rank 2 matrix
as a rank 2, 2-valence tensor.

1Recall that Ub ≡ Eba.
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The different meanings of “rank” both in use today maybe somewhat con-
fusing. The root of this confusion is described in [55]. The tensor calcu-
lus already used by Einstein and Grossmann in 1913, had been invented by
the Italian geometer Gregorio Ricci-Curbastro (1853–1925) in 1884. However,
Ricci did not use the name “tensor”. This term was introduced by Einstein
and Grossmann. They also called the “order” of a tensor rank. The dutch ge-
ometer Jan Arnoldus Schouten (1883–1971) on the other hand, called Ricci’s
objects affinors and called their “orders” valences, borrowing this term from
chemistry. We will use the term tensor in the sense of Einstein, valence in the
sense of Schouten and rank as it is used for matrices. This terminology is also
used in [61, 62] to discuss rank constraints on multiple view tensors.

In general a tensor may be decomposed into a linear combination of rank
1 tensors. The minimum number of terms necessary for such a decomposition
gives the rank of the tensor. For example, a rank 1, 2-valence tensor M is
created by combining the components {αi}, {βi} of two vectors as M ij = αiβj.

B2 B3

A4^ B4 ^ B1
A4 ^ B4 ^ B 2

A 4 ^ B4 ^ B3

B1

B4

A 4

Figure 4.2: Geometric derivation of the rank of the fundamental
matrix.

The rank of F can be found quite easily from geometric considerations.
Equation (4.4) can also be written as

Fij ' Ai ·[[A4B4Bj]] (4.10)

The expression [[A4B4Bj]] gives the normal to the plane (A4∧B4∧Bj). This
defines three planes, one for each value of j, all of which contain the line A4∧B4

(see figure 4.2). Hence, all three normals lie in a plane. Furthermore, no two
normals are identical since the {Bj} are linearly independent by definition. It
follows directly that at most two columns of Fij can be linearly independent.
Therefore, F is of rank 2.
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2A´

3
A´

A
1
´

A
4

A
2

A
1

A
3

Figure 4.3: Change of image plane frame which leaves the fun-
damental matrix unchanged up to an overall scale.

The rank of the bifocal tensor F can also be arrived at through a minimal
decomposition of F into rank 1 tensors. To achieve this we first define a new
A-image plane frame {A′

i} as

A′
i ≡ s(Ai + tiA4) (4.11)

where s and the {ti} are some scalar components. Thus we have

A4∧A′
i = sA4∧(Ai + tiA4)

= sA4∧Ai

(4.12)

Hence, F is left unchanged up to an overall scale factor under the transforma-
tion Ai −→ A′

i. In other words, the image plane bases {Ai} and {Bj} can be
changed along the projective rays {A4∧Ai} and {B4∧Bj}, respectively, without
changing the bifocal tensor relating the two cameras (see figure 4.3). This fact
limits the use of the bifocal tensor, since it cannot give any information about
the actual placement of the image planes.

Define two bifocal tensors F and F ′ as

Fij = [[A4AiB4Bj]] (4.13a)

F ′
ij = [[A4A

′
iB4Bj]] (4.13b)

From equation (4.12) it follows directly that Fij ' F ′
ij. Since the {A′

i} can
be chosen arbitrarily along the line A4∧Ai we may write

A′
i = (A4∧Ai) ∨ P (4.14)
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where P is some plane in P3. P = (B4∧B1∧B2) seems a good choice, since
then the {A′

i} all lie in a plane together with B4. The effect of this is that
the projections of the {A′

i} on image plane B will all lie along a line. The
matrix A′

i ·Bj therefore only has two linearly independent columns because
the column vectors are the projections of the {A′

i} onto image plane B. That
is, A′

i ·Bj, which is the 3× 3 minor of Kb, is of rank 2.

This matrix could only be of rank 1, if the {A′
i} were to project to a single

point on image plane B, which is only possible if they lie along a line in P3.
However, then they could not form a basis for image plane A which they were
defined to be.

Thus A′
i ·Bj can minimally be of rank 2. Such a minimal form is what we

need to find a minimal decomposition of F into rank 1 tensors using equation
(4.8). Substituting P = (B4∧B1∧B2) into equation (4.14) gives

A′
i = (A4∧Ai) ∨ (B4∧B1∧B2)

= [[A4Ai]]·(B4∧B1∧B2)

= [[A4AiB4B1]]B2 − [[A4AiB4B2]]B1 + [[A4AiB1B2]]B4

= Fi1B2 − Fi2B1 + [[A4AiB1B2]]B4

(4.15)

Expanding F ′ in the same way as F in equation (4.8) and substituting the
above expressions for the {A′

i} gives

F ′
ij1 = (A4 ·Bj2)(A′

i ·Bj3)− (A4 ·Bj3)(A′
i ·Bj2)

= (A4 ·Bj2)
[
− Fi2(B1 ·Bj3) + Fi1(B2 ·Bj3)

]

− (A4 ·Bj3)
[
− Fi2(B1 ·Bj2) + Fi1(B2 ·Bj2)

]

= εj2
ba

[
− Fi2 ρbδ

j3
1 + Fi1 ρbδ

j3
2

]

− εj3
ba

[
− Fi2 ρbδ

j2
1 + Fi1 ρbδ

j2
2

]

= Fi1

[
εj2

ba ρbδ
j3
2 − εj3

ba ρbδ
j2
2

]

− Fi2

[
εj2

ba ρbδ
j3
1 − εj3

ba ρbδ
j2
1

]

(4.16)

where we used B4 · Bj = 0 and Bi · Bj = ρbδ
j
i . Clearly, Fi1, Fi2 and the

expressions in the square brackets all represent vectors. Therefore, equation
(4.16) expresses F ′ as a linear combination of two rank 1 tensors (matrices).
This shows again that the bifocal tensor is of rank 2.

But why should we do all this work of finding a minimal decomposition of
F if its rank can be found so much more easily from geometric considerations?
There are two good reasons:
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1. for the trifocal and quadfocal tensor, a minimal decomposition will be
the easiest way to find the rank, and

2. such a decomposition is useful for evaluating F with a non-linear al-
gorithm, since the self-consistency constraints on F are automatically
satisfied.

4.2.3 Degrees of Freedom of F

Equation (4.16) is in fact a minimal parameterisation of the bifocal tensor.
This can be seen by writing out the columns of F ′.

F ′
i1 = −ε3

ba ρb Fi1 ; F ′
i2 = −ε3

ba ρb Fi2 ; F ′
i3 = ρb (ε1

baFi1 + ε2
baFi2) (4.17)

As expected, the third column (Fi3) is a linear combination of the first two.
Since an overall scale is not important we can also write

F ′
i1 = Fi1 ; F ′

i2 = Fi2 ; F ′
i3 = −ε̄1

baFi1 − ε̄2
baFi2 (4.18)

where ε̄i
ba ≡ εi

ba/ε
3
ba. This is the most general form of a rank 2, 3 × 3 matrix.

Furthermore, since there are no more constraints on Fi1 and Fi2 this is also a
minimal parameterisation of the bifocal tensor. That is, eight parameters are
minimally necessary to form the bifocal tensor. It follows that since an overall
scale is not important the bifocal tensor has seven degrees of freedom (DOF).

This DOF count can also be arrived at from more general considerations:
each camera matrix has 12 components. However, since an overall scale is not
important, each camera matrix adds only 11 DOF. Furthermore, the bifocal
tensor is independent of the choice of basis. Therefore, it is invariant under
a projective transformation, which has 16 components. But again, an overall
scale is not important. Thus only 15 DOF can be subtracted from the DOF
count due to the camera matrices. For two cameras we therefore have 2×11−
15 = 7 DOF.

4.2.4 Transferring Points with F

The bifocal tensor can also be used to transfer a point in one image to a line in
the other. Starting again from equation (4.4) the bifocal tensor can be written
as

Fij = [[AiA4BjB4]]

= (Ai∧A4)·[[BjB4]]

= (Ai∧A4)·Lb
j

(4.19)
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This shows that Fij gives the components of the projection of line (Ai∧A4)
onto image plane B. Therefore,

(Ai∧A4)
B−→ FijL

j
b. (4.20)

Since A4
B−→ Eba (the epipole on image plane B), FijL

j
b defines an epipolar

line.

Thus, contracting F with the coordinates of a point on image plane A,
results in the homogeneous line coordinates of a line passing through the cor-
responding point on image plane B and the epipole Eba.

αiFij = λb
j (4.21)

where the {αi} are some point coordinates and the {λb
j} are the homogeneous

line coordinates of an epipolar line.

4.2.5 Epipoles of F

Recall that if there are two cameras then two epipoles are defined;

Eab ≡ B4 ·AiAi = εi
abAi (4.22a)

Eba ≡ A4 ·BiBi = εi
baBi (4.22b)

Contracting Fij with εi
ab gives

εi
abFij = εi

ab[[A4AiB4Bj]]

= ρa[[A4( B4 ·Ai
a Ai)B4Bj]]

= ρa[[A4B4B4Bj]] ; from equation (4.2)

= 0

(4.23)

Similarly,

εj
baFij = 0 (4.24)

Therefore, vectors {εi
ab} and {εj

ba} can be regarded respectively as the left
and right null spaces of matrix F . Given a bifocal tensor F , its epipoles can
therefore easily be found using, for example, a singular value decomposition
(SVD).
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L ^b B4

L = X^ Y

L ^ Cc 4

Ecb

Eca

Lc

Eab

bc

E

X

Y

E

B

A4

4

C

b

ac

ba L E

4

Figure 4.4: Line projected onto three image planes.

4.3 The Trifocal Tensor

4.3.1 Derivation

Let the frames {Aµ}, {Bµ} and {Cµ} define three distinct cameras. Also, let
L = X∧Y be some line in P 3. The plane L∧B4 is then the same as the plane
λb

iL
i
b∧B4, up to a scalar factor, where λb

i = L·Lb
i . But,

Li1
b ∧B4 = Bi2∧Bi3∧B4 = [[Bi1 ]]

Intersecting planes L∧B4 and L∧C4 has to give L. Therefore, (λb
i [[B

i]])∨(λc
j[[C

j]])
has to give L up to a scalar factor. Now, if two lines intersect, their outer
product is zero. Thus, the outer product of lines X∧A4 (or Y ∧A4) and L has
to be zero. Note that X∧A4 defines the same line as (αiAi)∧A4, up to a scalar
factor, where αi = X ·Ai . Figure 4.4 shows this construction. Combining all
these expressions gives

0 = (X∧A4∧L)I−1

= αiλb
jλ

c
k

[[
(Ai∧A4)([[B

j]] ∨ [[Ck]])
]]

= αiλb
jλ

c
k

[[
(Ai∧A4)[[B

jCk]]
]]

(4.25)
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where the identity from equation (3.48) was used. If the trifocal tensor T jk
i is

defined as

T jk
i =

[[
(Ai∧A4)[[B

jCk]]
]]

(4.26)

then, from equation (4.25) it follows that it has to satisfy αiλb
jλ

c
kT

jk
i = 0. This

expression for the trifocal tensor can be expanded in a number of different ways.
One of them is,

T jk
i = (Ai∧A4)·[[[[BjCk]]]]

= (Ai∧A4)·(Bj∧Ck)

= (A4 ·Bj)(Ai ·Ck)− (A4 ·Ck)(Ai ·Bj)

= U j
b K

c
k
i
− Uk

c Kb
ji

(4.27)

where Kb
j
i
≡ Ai ·Bj and Kc

ki
≡ Ai ·Ck are the camera matrix minors for

cameras B and C, respectively, relative to camera A. This is the expression
for the trifocal tensor given by Hartley in [26]. Note that the camera matrix
for camera A would be written as Ka

jµ
≡ Aµ ·Aj ' δj

i . That is, Ka = [I|0]

in standard matrix notation. In many other derivations of the trifocal tensor
(eg. [26]) this form of the camera matrices is assumed at the beginning. Here,
however, the trifocal tensor is defined first geometrically and we then find that
it implies this particular form for the camera matrices.

4.3.2 Transferring Lines

The trifocal tensor can be used to transfer lines from two images to the third.
That is, if the image of a line in P3 is known on two image planes, then its
image on the third image plane can be found. This can be seen by expanding
equation (4.26) in the following way,

T jk
i = [[AiA4]]·[[BjCk]]

= La
i ·[[BjCk]]

(4.28)

This shows that the trifocal tensor gives the homogeneous line components of
the projection of line [[BjCk]] onto image plane A. That is,

[[BjCk]]
A−→ T jk

i Li
a (4.29)
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It will be helpful later on to define the following two lines.

T jk ≡ [[BjCk]] (4.30a)

T jk
a ≡ T jk

i Li
a (4.30b)

such that T jk A−→ T jk
a . Let the {λb

j} and {λc
k} be the homogeneous line

coordinates of the projection of some line L ∈ P3 onto image planes B and
C, respectively. Then recall that λb

jλ
c
k[[B

jCk]] gives L up to an overall scalar
factor, i.e.

L ' λb
jλ

c
k[[B

jCk]] ; λb
j ≡ L·Lb

j and λc
k ≡ L·Lc

k (4.31)

The image of L on image plane A, La, can therefore be found via

La = L·La
i L

i
a

' λb
jλ

c
k[[B

jCk]]·La
i L

i
a

= λb
jλ

c
kT

jk
i Li

a

(4.32)

Thus, we have

λa
i ' λb

jλ
c
kT

jk
i (4.33)

4.3.3 Transferring Points

It is also possible to find the image of a point on one image plane if its image
is known on the other two. To see this, the expression for the trifocal tensor
needs to be expanded in yet another way. Substituting the dual representation
of line Ai1∧A4, i.e. [[Ai2Ai3 ]] into equation (4.26) gives

T jk
i1 =

[[
(Ai1∧A4)[[B

jCk]]
]]

'
[[
[[Ai2Ai3 ]][[BjCk]]

]]

= [[Ai2Ai3 ]]·(Bj∧Ck)

= [[Ai2Ai3BjCk]]

(4.34)

It can be shown that this form of the trifocal tensor is equivalent to the de-
terminant form given by Heyden in [32]. Now only one more step is needed to
see how the trifocal tensor may be used to transfer points.

T jk
i1 ' [[Ai2Ai3BjCk]]

= [[Ai2Ai3Bj]]·Ck

= X j T
i1 ·Ck ; X j T

i1 ≡ [[Ai2Ai3Bj]]

(4.35)
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Note that the points {X j T
i1 } are defined through their dual representation as

the set of intersection points of lines {Ai1 ∧A4} (' {[[Ai2Ai3 ]]}) and planes
{[[Bj]]} (' {Lj

b∧B4}). Let L = X∧Y be a line in P3. Then

X
A−→ Xa = αiAi (4.36a)

L
B−→ LB = λb

jL
j
b (4.36b)

Hence

X ' (αi1 Ai1∧A4︸ ︷︷ ︸
[[Ai2Ai3 ]]

) ∨ (λb
j Lj

b∧B4︸ ︷︷ ︸
[[Bj ]]

)

' ∑
i1 αi1λb

j

(
[[Ai2Ai3 ]] ∨ [[Bj]]

)

=
∑

i1 αi1λb
j[[A

i2Ai3Bj]]

= αi1λb
j X j T

i1

(4.37)

Now, the projection of X onto image plane C is simply

Xc = X ·Ck Ck

' αiλb
j X j T

i1 ·Ck Ck

' αiλb
j T jk

i Ck

(4.38)

That is,

ηk ' αiλb
j T jk

i (4.39)

with ηk ≡ X ·Ck. Similarly we also have,

βk ' αiλc
k T jk

i (4.40)

Therefore, if the image of a point and a line through that point are known on
two image planes, respectively, then the image of the point on the third image
plane can be calculated. Note that the line defined by the {λb

j} can be any
line that passes through the image of X on image plane B. That is, we may
choose the point (0, 0, 1) as the other point the line passes through. Then we
have

λb
1 = β2 ; λb

2 = −β1 ; λb
3 = 0 (4.41)

Hence, equation (4.39) becomes

ηk ' αi(β2T 1k
i − β1T 2k

i ) (4.42)
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and equation (4.40) becomes

βk ' αi(η2T j1
i − η1T j2

i ) (4.43)

4.3.4 Rank of T

B4

C4

4A

1A´

A 2́

A 3́

Figure 4.5: Change of image plane frame which leaves the trifo-
cal tensor unchanged but gives minimum rank for camera matrices
Kb and Kc.

Finding the rank of T is somewhat harder than for the bifocal tensor, mainly
because there is no simple geometric construction which yields its rank. As
was mentioned before the rank of a tensor is given by the minimum number of
terms necessary for a linear decomposition of it in terms of rank 1 tensors2. As
for the bifocal tensor, the transformation Ai → A′

i = s(Ai + tiA4) leaves the
trifocal tensor unchanged up to an overall scale. A good choice for the {A′

i}
seems to be

A′
i = (Ai∧A4) ∨ (B3∧B4∧C4) (4.44)

since then all the {A′
i} lie in a plane together with B4 and C4 (see figure 4.5).

Therefore, the camera matrix minors Kj b
i = A′

i ·Bj and Kk c
i = A′

i ·Ck are of
rank 2. As was shown before, this is the minimal rank camera matrix minors
can have. To see how this may help to find a minimal decomposition of T
recall equation (4.27);

T jk
i = U j

b K
c
ki
− Uk

c Kb
ji

2For example, a rank 1 3-valence tensor is created by combining the components {αi},
{βi}, {ηi} of three vectors as T ijk = αiβjηk.
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This decomposition of T shows that its rank is at most 6, since Ub and Uc are
vectors, and Kc and Kb cannot be of rank higher than 3. Using the above
choice for Kb and Kc however shows that the rank of T is 4, since then the
rank of the camera matrices is minimal, and we thus have a minimal linear
decomposition of T .

The rank of T was also derived by Shashua and Avidan [61] where it is used
to relate sets of trifocal tensors. The rank result is also used in [62] to show
that there are no configurations of world points whose matching projections
produce an ambiguous solution for the trifocal tensor.

4.3.5 Degrees of Freedom of T

As for the bifocal tensor we can also write down an explicit parameterisation
for the trifocal tensor. Starting with equation (4.44) we get

A′
i = (Ai∧A4) ∨ (B3∧B4∧C4)

= [[AiA4]]·(B3∧B4∧C4)

= [[AiA4B4C4]]B3 − [[AiA4B3C4]]B4 + [[AiA4B3B4]]C4

= α1
i B3 + α2

i B4 + α3
i C4

(4.45)

where α1
i , α2

i and α3
i are defined appropriately. The trifocal tensor may be

expressed in terms of the {A′
i} as follows (see equation (4.27)).

T jk
i = (A4 ·Bj)(A′

i ·Ck)− (A4 ·Ck)(A′
i ·Bj)

= (A4 ·Bj)
[
α1

i B3 ·Ck + α2
i B4 ·Ck

]

− (A4 ·Ck)
[
α1

i B3 ·Bj + α3
i C4 ·Bj

]

= εj
ba

[
α1

i B3 ·Ck + α2
i ε

k
cb

]

− εk
ca

[
α1

i ρbδ
j
3 + α3

i ε
j
bc

]

(4.46)

This decomposition of T has 5× 3 +3× 3− 1 = 23 DOF. The general formula
for finding the DOF of T gives 3 × 11 − 15 = 18 DOF. Therefore, equation
(4.46) is an overdetermined parameterisation of T . However, it will still satisfy
the self-consistency constraints of T .

Note that the decomposition of T into rank 1 tensors in equation (4.46)
only implements the rank 2 constraints of the camera matrix minors. Since
equation (4.46) does not yield a minimal parameterisation of T , there have to
be additional constraints on T .
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Recall that a decomposition of F into rank 1 tensors does give a minimal
parameterisation of F . Hence, the rank 2 constraint on the camera matrix
minor in equation (4.8) is the only constraint that exists for F .

4.3.6 Constraints on T

To understand the structure of T further, we will derive self-consistency con-
straints for T . Heyden derives the constraints on T using the “quadratic p-
relations” [32]. In GA these relations can easily be established from geometric
considerations.

The simplest constraint on T may be found as follows. Recall equation
(4.35), where the trifocal tensor was expressed in terms of the projection of
points X j T

i1 = [[Ai2
a Ai3

a Bj]] onto image plane C, i.e.

T jk
i1 = X j T

i1 ·Ck

Now consider the following trivector.

X ja T
i1 ∧X jb T

i1 ∧X jc T
i1

=
(
[[Ai2

a Ai3
a ]] ∨ [[Bja ]]

)

∧
(
[[Ai2

a Ai3
a ]] ∨ [[Bjb ]]

)
∧

(
[[Ai2

a Ai3
a ]] ∨ [[Bjc ]]

)

= 0

(4.47)

The first step follows from equation (3.48). It is clear that this expression
is zero because we take the outer product of the intersection points of line
[[Ai2

a Ai3
a ]] with the planes [[Bj1 ]], [[Bj2 ]] and [[Bj3 ]]. In other words, this equation

says that the intersection points of a line with three planes all lie along a line
(see figure 4.6).

When projecting the three intersection points onto image plane C they still
have to lie along a line. That is,

0 = (X ja T
i ·Cka)(X jb T

i ·Ckb)(X jc T
i ·Ckc)Cka∧Ckb

∧Ckc

⇐⇒ 0 = T jaka
i T jbkb

i T jckc
i [[CkaCkb

CkcC4]]c

= εkakbkcT
jaka

i T jbkb
i T jckc

i

= det(T jk
i )jk

(4.48)
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XT
3 1

XT
3 3

XT
3 2

A 4

A 1

B2

B1

A 3

B3

B4

A 2 [[ ]]

[[ ]]

[[ ]]

[[ ]] [[ ]]

]][[

]][[
2A

1A

B2

B1 B3

1A2A

B4

Figure 4.6: This demonstrates the constraint from equation (4.47) for i2 = 1, i3 = 2 and
ja = 1, jb = 2, jc = 3. The figure also visualises the use of the dual bracket to describe
planes and lines.

4.3.7 Relation between T and F

We mentioned before that the quadratic p-relations can be used to find con-
straints on T [32]. The equivalent expressions in GA are of the form

[[B1B2]]∧[[A1A2A3]]∧[[B1B2C1]] = 0 (4.49)

This expression is zero because [[B1B2]]∧[[B1B2C1]] = 0. This becomes obvious
immediately from a geometric point of view: the intersection point of line
[[B1B2]] with plane [[C1]], i.e. [[B1B2C1]], clearly lies on line [[B1B2]], and thus
their outer product is zero.

In the following we will write T jk XYZ
i1 to denote the trifocal tensor

T jk XYZ
i1 = [[X i2X i3Y jZk]]

We will similarly write FXY
i1j1

to denote the bifocal tensor

FXY
i1j1

= [[X i2X i3Y j2Y j3 ]]
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If no superscripts are given then T jk
i and Fij take on the same meaning as

before. That is,

T jk
i ≡ T jk ABC

i (4.50a)

Fij ≡ FAB
ij (4.50b)

We can obtain a constraint on T by expanding equation (4.49).

0 = [[B1B2]]∧[[A1A2A3]]∧[[B1B2C1]]

= [[A1A2B1B2]][[B1B2A3C1]]

+ [[A3A1B1B2]][[B1B2A2C1]]

+ [[A2A3B1B2]][[B1B2A1C1]]

= F33T
31BAC

3 + F23T
21 BAC

3 + F13T
11 BAC

3

= Fi3T
i1BAC

3

(4.51)

Note that there is an implicit summation over i, because it is repeated as a
(relative) superscript. Of course, we could have chosen different indices for the
reciprocal B vectors and the reciprocal C vector. Therefore, we can obtain the
following relation between the trifocal tensor and the bifocal tensor.

FijT
ik BAC

j = 0 (4.52)

Again there is an implicit summation over the i index but not over the j
index. From this equation it follows that the three column vectors of the
bifocal tensor give the three “left” null vectors of the three matrices T ••

i ,
respectively. Equation (4.52) has two main uses: it can be used to find some
epipoles of the trifocal tensor via equations (4.23) and (4.24), but it also serves
to give more constraints on T since det F = 0.

The columns of F may be found from equation (4.52) using, for example, an
SVD. However, since the columns are found separately they will not in general
be scaled consistently. Therefore, F found from equation (4.52) has only a
limited use. Nonetheless, we can still find the correct left null vector of F , i.e.
εi

ab, because each column is consistent in itself. Note also that, the determinant
of F is still zero, since the rank of F cannot be changed by scaling its columns
separately. We cannot use this F , though, to find the right null vector, i.e.
εi

ba, or to check whether image points on planes A and B are images of the
same world point. Finding a consistent F is not necessary to find the right
null vector of F , as will be shown later on. Therefore, unless we need to find a
bifocal tensor from T which we can use to check image point pair matches, a
consistent F is not necessary. A consistent F can, however, be found as shown
in the following.
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We can find the bifocal tensor row-wise in the following way.

0 = [[Ai2Ai3 ]]∧[[B1B2B3]]∧[[Ai2Ai3Ck]]

= Fi1jT
jk

i1

(4.53)

Knowing F row-wise and column-wise we can find a consistently scaled bifocal
tensor. What remains is to find TBAC from T . To do so we define the following
intersection points in terms of the lines T iaja ≡ [[BiaCja ]](see equation (4.30a)).

p(iaja, ibjb) ≡ (A4∧T iaja) ∨ T ibjb

=
[[[[

A4[[B
iaCja ]]

]][[
[[BibCjb ]]

]]]]

=
[[(

A4 ·
[[
[[BiaCja ]]

]])
BibCjb

]]

=
[[(

A4 ·(Bia∧Cja)
)
BibCjb

]]

=
[[

(A4 ·Bia)CjaBibCjb

−(A4 ·Cja)BiaBibCjb

]]

= εia
ba[[C

jaBibCjb ]] + εja
ca[[B

iaCjbBib ]]

(4.54)

Two useful special cases are

p(i1j, i2j) = εj
ca[[B

i1CjBi2 ]] (4.55a)

p(ij1, ij2) = εi
ba[[C

j1BiCj2 ]] (4.55b)

The projection of p(i1j, i2j) onto image plane A, denoted by pa(i1j, i2j) gives

pa(i2k, i3k) = εk
ca

(
Aj ·[[Bi2CkBi3 ]]

)
Aj

= εk
ca[[A

jBi2CkBi3 ]]Aj

= −εk
ca[[B

i2Bi3AjCk]]Aj

= −εk
caT

jk BAC
i1 Aj

(4.56)

We can also calculate pa(jaka, jbkb) by immediately using the projections of
the T jk onto image plane A (see equation (4.30b)). That is,

pa(jaka, jbkb) = (A4∧T iaja
a ) ∨ T ibjb

a

= T jaka
ia T jbkb

ib
(A4∧Lia

a ) ∨ Lib
a

= T jaka
ia T jbkb

ib
(A4∧[[Aia

a A4
a]]) ∨ [[Aib

a A4
a]]

= T jaka
ia T jbkb

ib

[[(
A4 ·(Aia

a ∧A4
a)

)
Aib

a A4
a

]]

' T jaka
ia T jbkb

ib
[[Aia

a Aib
a A4

a]]

(4.57)
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From the definition of the dual bracket we have

Ai3 = [[Ai1
a Ai2

a A4
a]]a

Therefore, from equation (4.57) we find

pa(j1k, j2k) ' (T j1k
i1 T j2k

i2 − T j1k
i2 T j2k

i1 )Ai3 (4.58)

Equating this with equation (4.56) gives

T i3k BAC
j3 ' (εk

ca)
−1(T j1k

i1 T j2k
i2 − T j1k

i2 T j2k
i1 ) (4.59)

Since εk
ca can be found from T (as will be shown later) we can find TBAC from

T up to an overall scale. Equation (4.59) may also be written in terms of the
standard cross product.

T •k BAC
j3

' (εk
ca)

−1(T j1k
• × T j2k

• ) (4.60)

Had we used equation (4.55b) instead of equation (4.55a) in the previous
calculation, we would have obtained the following relation.

T ji3 CBA
k3

' (εj
ba)

−1(T jk1
i1 T jk2

i2 − T jk1
i2 T jk2

i1 ) (4.61)

Or, in terms of the standard cross product

T j•CBA
k3

' (εj
ba)

−1(T jk1
• × T jk2

• ) (4.62)

Hence, we can also obtain T CBA from T up to an overall scale. Note that since

T jk ABC
i1 = [[Ai2Ai3BjCk]]

= −[[Ai2Ai3CkBj]]

= −T kj ACB
i1

(4.63)

we have found all possible trifocal tensors for a particular camera setup from
T .

Equations (4.60) and (4.62) simply express that the projections of the in-
tersection points between some lines onto image plane A are the same as the
intersection points between the projections of the same lines onto image plane
A. This implies that independent of the intersection points, i.e. the com-
ponents of T jk

i , equations (4.60) and (4.62) will always give a self-consistent
tensor, albeit not necessarily one that expresses the correct camera geometry.
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4.3.8 Second Order Constraints

There are more constraints on T which we will call “second order” because
they are products of determinants of components of T . Their derivation is
more involved and can be found in [48] and [49]. Here we will only state the
results. These constraints may be used to check the self-consistency of T when
it is calculated via a non-linear method.

0 = |T jaka
a T jbka

a T jakb
a | |T jbkb

a T jakc
a T jbkc

a |
− |T jaka

a T jbka
a T jbkb

a | |T jakb
a T jakc

a T jbkc
a |

(4.64)

0 = |T jaka
a T jakb

a T jbka
a | |T jbkb

a T jcka
a T jckb

a |
− |T jaka

a T jakb
a T jbkb

a | |T jbka
a T jcka

a T jckb
a |

(4.65)

0 = |T iaja
a T ibja

a T iajb
a | |T ibjb

a T iajb
a T ibjc

a |
− |T iaja

a T ibja
a T ibjb

a | |T iajb
a T iajc

a T ibjb
a |

(4.66)

Where the determinants are to be interpreted as

|T jaka
a T jbka

a T jakb
a | = det(T jaka

ia , T jbka
ib

, T jakb
ic )iaibic

4.3.9 Epipoles

The epipoles of T can be found indirectly via the relation of bifocal tensors to
T (e.g. equation (4.52)). Also recall that the right null vector of some FXY

ij

is εj
yx, whereas the left null vector is εi

xy (equations (4.23) and (4.24)). From
equation (4.53) we know that

Fij T jk
i = 0

When calculating F from this equation, we cannot guarantee that the rows
are scaled consistently. Nevertheless, this does not affect the right null space
of F . Hence, we can find εj

ba from this F . In the following we will list the
necessary relations to find all epipoles of T .

0 = [[Ai2Ai3 ]]∧[[B1B2B3]]∧[[Ai2Ai3Ck]]

= Fi1j T jk
i1 → εj

ba

(4.67a)

0 = [[Ai2Ai3 ]]∧[[C1C2C3]]∧[[Ai2Ai3Bj]]

= FAC
i1k T jk

i1 → εk
ca

(4.67b)
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0 = [[Bi2Bi3 ]]∧[[A1A2A3]]∧[[Bi2Bi3Ck]]

= FBA
i1j T jk BAC

i1 → εj
ab

(4.68a)

0 = [[Bi2Bi3 ]]∧[[C1C2C3]]∧[[Bi2Bi3Aj]]

= FBC
i1k T jk BAC

i1 → εk
cb

(4.68b)

0 = [[Ci2Ci3 ]]∧[[A1A2A3]]∧[[Ci2Ci3Bj]]

= F CA
i1k T jk CBA

i1 → εk
ac

(4.69a)

0 = [[Ci2Ci3 ]]∧[[B1B2B3]]∧[[Ci2Ci3Ak]]

= F CB
i1j T jk CBA

i1 → εj
bc

(4.69b)

By→ εj
xy we denote the epipole that can be found from the respective relation.

Note that since

FXY
i1j1

= [[X i2X i3Y j2Y j3 ]]

= [[Y j2Y j3X i2X i3 ]]

= FYX
j1i1

(4.70)

we have also found all fundamental matrices.

4.4 The Quadfocal Tensor

4.4.1 Derivation

Let L be a line in P3 and let {Aµ}, {Bµ}, {Cµ} and {Dµ} define four cameras
A, B, C and D, respectively (see figure 4.7). The projection of L onto the
image planes of these four cameras is

L
A−→ LA = L·La

i Li
a = λa

i Li
a (4.71a)

L
B−→ LB = L·Lb

i Li
b = λb

i Li
b (4.71b)

L
C−→ LC = L·Lc

i Li
c = λc

i Li
c (4.71c)

L
D−→ LD = L·Ld

i Li
d = λd

i Li
d (4.71d)

The intial line L can be recovered from these projections by intersecting any
two of the planes (LA∧A4), (LB∧B4), (LC∧C4) and (LD∧D4). For example,

L ' (LA∧A4) ∨ (LB∧B4) ' (LC∧C4) ∨ (LD∧D4) (4.72)
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B4

A 4

C4

D4

LA

L B

L C

LD

LA A 4^
B4L B^

L C C4^
LD D4^

L

Figure 4.7: Line projected onto four image planes.

Therefore,

0 =
[[(

(LA∧A4) ∨ (LB∧B4)
)(

(LC∧C4) ∨ (LD∧D4)
)]]

= λa
i λ

b
jλ

c
kλ

d
l

[[ (
(Li

a∧A4) ∨ (Lj
b∧B4)

)
(
(Lk

c∧C4) ∨ (Ll
d∧D4)

)]]

= λa
i λ

b
jλ

c
kλ

d
l

[[(
[[Ai]] ∨ [[Bj]]

)(
[[Ck]] ∨ [[Dl]]

)]]

= λa
i λ

b
jλ

c
kλ

d
l [[AiBjCkDl]]

(4.73)

Therefore, a quadfocal tensor may be defined as

Qijkl = [[AiBjCkDl]] (4.74)

If the quadfocal tensor is contracted with the homogeneous line coordinates
of the projections of one line onto the four camera image planes, the result
is zero. In this way the quadfocal tensor encodes the relative orientation of
the four camera image planes. However, note that contracting the quadfocal
tensor with the line coordinates of the projection of one line onto only three
image planes gives a zero vector. This follows directly from the following
considerations. Let L = A1∧A2 be a line and P = A1∧A2∧A3 be a plane in
P3. That is, line L lies in plane P . Then we find

L·[[P ]] = A1 [[A2P ]]− A2 [[A1P ]] = 0. (4.75)
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For the quadfocal tensor we have, for example,

λa
i λ

b
jλ

c
kQ

ijkl = λa
i λ

b
jλ

c
k[[A

iBjCk]]·Dl

'
(
L·(λc

kC
k)

)
·Dl , L ' λa

i λ
b
j[[A

iBj]]

= 0.

(4.76)

L is the line whose images on image planes A, B and C have coordinates
{λa

i }, {λb
j} and {λc

k}, respectively. Hence, L lies on plane [[λc
kC

k]], and thus
it follows from equation (4.75) that L· (λc

kC
k) = 0. This also shows that the

quadfocal tensor does not add any new information to what can be known
from the trifocal tensor, since the quadfocal tensor simply relates any three
image planes out of a group of four.

The form for Q given in equation (4.74) can be shown to be equivalent to
the form given by Heyden in [32]. From equation (4.74) it is also immediately
clear that changing the order of the reciprocal vectors at most changes the
overall sign of Q.

4.4.2 Transferring Lines

If the image of a line is known on two image planes, then the quadfocal tensor
can be used to find its image on the other two image planes. This can be
achieved through a somewhat indirect route. Let L be a line projected onto
image planes A and B with coordinates {λa

i } and {λb
j}, respectively. Then we

know that

L ' λa
i λ

b
j[[A

iBj]] (4.77)

Therefore, we can define three points {Xk
L} that lie on L as

Xk
L ≡ λa

i λ
b
j([[A

iBj]] ∨ [[Ck]])

= λa
i λ

b
j[[A

iBjCk]]
(4.78)

The projections of the {Xk
L} onto image plane D, denoted by {Xk

Ld
} are given

by

Xk
Ld

≡ Xk
L ·Dl Dl

= λa
i λ

b
j[[A

iBjCk]]·Dl Dl

= λa
i λ

b
j[[A

iBjCkDl]]Dl

= λa
i λ

b
jQ

ijklDl

(4.79)
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From the points {Xk
Ld
} the projection of line L onto image plane D can be

recovered.

4.4.3 Rank of Q

The form for the quadfocal tensor as given in equation (4.74) may be expanded
in a number of ways. For example,

Qi1jkl = (Ai2∧Ai3∧A4)·(Bj∧Ck∧Dl)

= εj
ba

[
Kk c

i3
K l d

i2
−K l d

i3
Kk c

i2

]

− εk
ca

[
Kj b

i3 K l d
i2
−K l d

i3
Kj b

i2

]

+ εl
da

[
Kj b

i3 Kk c
i2
−Kk c

i3
Kj b

i2

]
(4.80)

In terms of the standard cross product this may be written as

Q•jkl = U j
b (Kk c

• ×K l d
• )− Uk

c (Kj b
• ×K l d

• ) + U l
d(K

j b
• ×Kk c

• ) (4.81)

From equation (4.80) it becomes clear that, as for the trifocal tensor, the
transformation Ai 7→ s(Ai + tiA4) leaves Q unchanged up to an overall scale.

Let P = B4∧C4∧D4. As for the trifocal tensor case, define a basis {A′
i}

for image plane A by

A′
i = (Ai∧A4) ∨ P (4.82)

All the {A′
i} lie on plane P , that is they lie on the plane formed by B4, C4

and D4. Therefore, Kb′
j
i
= A′

i ·Bj, Kc′ = A′
i ·Ck and Kd′ = A′

i ·Dl are of rank

2. As was shown previously, this is the minimum rank the camera matrices
can have. Hence, forming Q with the {A′

i} should yield its rank. However, it
is not immediately obvious from equation (4.80) what the rank of Q is when
substituting the {A′

i} for the {Ai}. A more yielding decomposition of Q is
achieved by expanding equation (4.82).

A′
i = (Ai∧A4) ∨ P

' [[AiA4]]·(B4∧C4∧D4)

= [[AiA4B4C4]]D4 − [[AiA4B4D4]]C4 + [[AiA4C4D4]]B4

= α1
i B4 + α2

i C4 + α3
i D4

(4.83)
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where the {αj
i} are defined accordingly. Furthermore,

A′
i1∧A′

i2 = λ1
i3

C4∧D4 + λ2
i3

D4∧B4 + λ3
i3

B4∧C4 (4.84)

with λj3
i3 = αj1

i1α
j2
i2 − αj1

i2α
j2
i1 . Equation (4.80) may also be written as

Qi1jkl = (Ai2∧Ai3∧A4)·(Bj∧Ck∧Dl)

= U j
b

[
(A′

i2∧A′
i3)·(Ck∧Dl)

]

− Uk
c

[
(A′

i2∧A′
i3)·(Bj∧Dl)

]

+ U l
d

[
(A′

i2∧A′
i3)·(Bj∧Ck)

]
(4.85)

From equation (4.84) it then follows

(A′
i2∧A′

i3)·(Ck∧Dl) = λ1
i1

D4 ·Ck C4 ·Dl

− λ2
i1

D4 ·Ck B4 ·Dl

− λ3
i1

B4 ·Ck C4 ·Dl

(4.86a)

(A′
i2∧A′

i3)·(Bj∧Dl) = λ1
i1

D4 ·Bj C4 ·Dl

− λ2
i1

D4 ·Bj B4 ·Dl

+ λ3
i1

C4 ·Bj B4 ·Dl

(4.86b)

(A′
i2∧A′

i3)·(Bj∧Ck) = − λ1
i1

C4 ·Bj D4 ·Ck

− λ2
i1

D4 ·Bj B4 ·Ck

+ λ3
i1

C4 ·Bj B4 ·Ck

(4.86c)

Each of these three equations has a linear combination of three rank 1, 3-
valence tensors on its right hand side. Furthermore, none of the rank 1, 3-
valence tensors from one equation is repeated in any of the others. Therefore,
substituting equations (4.86) into equation (4.85) gives a decomposition of Q
in terms of 9 rank 1 tensors. Since this is a minimal decomposition, Q is of
rank 9.

4.4.4 Degrees of Freedom of Q

Substituting equations (4.86) back into equation (4.85) gives

Qijkl = εj
ba

[
λ1

i ε
k
cdε

l
dc − λ2

i ε
k
cdε

l
db + λ3

i ε
k
cbε

l
dc

]

− εk
ca

[
λ1

i ε
j
bdε

l
dc − λ2

i ε
j
bdε

l
db + λ3

i ε
j
bcε

l
db

]

+ εl
da

[
λ1

i ε
j
bcε

k
cd − λ2

i ε
j
bdε

k
cb + λ3

i ε
j
bcε

k
cb

]

(4.87)
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This decomposition of Q has 9×3+3×3−1 = 35 DOF. The general formula for
the DOF of Q gives 4×11−15 = 29 DOF. Therefore the parameterisation of Q
in equation (4.87) is overdetermined. However, it will still give a self-consistent
Q.

4.4.5 Constraints on Q

The constraints on Q can again be found very easily through geometric con-
siderations. Let the points {X ijk

Q } be defined as

X ijk
Q ≡ [[AiBjCk]] (4.88)

A point X ijk
Q can be interpreted as the intersection of line [[AiBj]] with plane

[[Ck]]. Therefore,

X ijka

Q ∧X ijkb
Q ∧X ijkc

Q = 0 (4.89)

because the three intersection points X ijka

Q , X ijkb
Q and X ijkc

Q lie along line
[[AiBj]]. Hence, also their projections onto an image plane have to lie along a
line. Thus, projecting the intersection points onto an image plane D we have

0 = (X ijka

Q ·Dla) (X ijkb
Q ·Dlb) (X ijkc

Q ·Dlc)

(Dla∧Dlb∧Dlc)

⇐⇒ 0 = Qijkala Qijkblb Qijkclc [[DlaDlbDlcD4]]d

= εlalblc Qijkala Qijkblb Qijkclc

= det(Qijkl)kl

(4.90)

Similarly, this type of constraint may be shown for every pair of indices. We
therefore get the following constraints on Q.

det(Qijkl)ij = 0; det(Qijkl)ik = 0; det(Qijkl)il = 0

det(Qijkl)jk = 0; det(Qijkl)jl = 0; det(Qijkl)kl = 0
(4.91)
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4.4.6 Relation between Q and T

We can find the relation between Q and T via the method employed to find
the relation between T and F . For example,

0 = [[A1A2A3]]∧[[BjCkDl]]∧[[BjCk]]

=
∑

i1

(
[[Ai1BjCkDl]][[Ai2Ai3BjCk]]

)

= QijklT jk
i

(4.92)

Similarly, equations for the other possible trifocal tensors can be found. Be-
cause of the trifocal tensor symmetry detailed in equation (4.63) all trifocal
tensors may be evaluated from the following set of equations.

Qijkl T jk ABC
i = 0; Qijkl T jl ABD

i = 0; Qijkl T kl ACD
i = 0

Qijkl T ik BAC
j = 0; Qijkl T il BAD

j = 0; Qijkl T kl BCD
j = 0

Qijkl T ij CAB
k = 0; Qijkl T il CAD

k = 0; Qijkl T jl CBD
k = 0

Qijkl T ij DAB
l = 0; Qijkl T ik DAC

l = 0; Qijkl T jk DBC
l = 0

(4.93)

Note that the trifocal tensors found in this way will not be of consistent scale.
To fix the scale we start by defining intersection points

Xjkl
BCD ≡

[
A4∧[[BjCk]]

]
∨ [[CkDl]]

' εk
ca[[B

jCkDl]]
(4.94)

Projecting these points onto image plane A gives

Xjkl
BCDa

≡ Xjkl
BCD ·AiAi

' εk
ca[[B

jCkDl]]·AiAi

' εk
ca[[A

iBjCkDl]]Ai

= εk
caQ

ijklAi

(4.95)

But we could have also arrived at an expression for Xjkl
BCDa

via

Xjkl
BCDa

'
(
[[BjCk]]·La

ia

)(
[[CkDl]]·La

ib

)[
A4∧Lia

a

]
∨ Lib

a

'
(
T jk ABC

i1 T kl ACD
i2

− T jk ABC
i2 T kl ACD

i1

)
Ai3

(4.96)
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Equating this with equation (4.95) gives

T jk ABC
i1 T kl ACD

i2
− T jk ABC

i2 T kl ACD
i1

' εk
caQ

i3jkl (4.97)

This equation may be expressed more concisely in terms of the standard cross
product.

T jk ABC
• × T kl ACD

• ' εk
caQ

•jkl (4.98)

Furthermore, from the intersection points

Xkjl
CBD ≡

[
A4∧[[CkBj]]

]
∨ [[BjDl]]

and their projections onto image plane A we get

T jk ABC
• × T jl ABD

• ' εj
baQ

•jkl (4.99)

We can now find the correct scales for TABC by demanding that

T jk ABC
i1 T kl ACD

i2
− T jk ABC

i2 T kl ACD
i1

Qi3jkl
= φ (4.100)

for all j while keeping i1, k and l constant, where φ is some scalar. Furthermore,
we know that

T jk ABC
i1 T jl ABD

i2 − T jk ABC
i2 T jl ABD

i1

Qi3jkl
= φ (4.101)

for all k while keeping i1, k and l constant, where φ is some different scalar.
Equations (4.100) and (4.101) together fix the scales of TABC completely. Note
that we do not have to know the epipoles εk

ca and εj
ba.

Similarly, all the other trifocal tensors can be found. These in turn can be
used to find the fundamental matrices and the epipoles.

4.5 Reconstruction and the Trifocal Tensor

In the following we will investigate a computational aspect of the trifocal ten-
sor. In particular we are interested in the effect the determinant constraints
have on the “quality” of a trifocal tensor. That is, a trifocal tensor calculated
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only from point matches has to be compared with a trifocal tensor calculated
form point matches while enforcing the determinant constraints.

For the calculation of the former a simple linear algorithm is used that
employs the trilinearity relationships, as, for example, given by Hartley in
[26]. In the following this algorithm will be called the “7pt algorithm”.

To enforce all the determinant constraints, an estimate of the trifocal ten-
sor is first found using the 7pt algorithm. From this tensor the epipoles are
estimated. Using these epipoles the image points are transformed into the
epipolar frame. With these transformed point matches the trifocal tensor can
then be found in the epipolar basis.

It can be shown [39] that the trifocal tensor in the epipolar basis has only 7
non-zero components3. Using the image point matches in the epipolar frame
these 7 components can be found linearly. The trifocal tensor in the “normal”
basis is then recovered by tranforming the trifocal tensor in the epipolar basis
back with the initial estimates of the epipoles. The trifocal tensor found in
this way has to be fully self-consistent since it was calculated from the minimal
number of parameters. That also means that the determinant constraints have
to be fully satisfied. This algorithm will be called the “MinFact” algorithm.

The main problem with the MinFact algorithm is that it depends crucially
on the quality of the initial epipole estimates. If these are bad, the trifocal ten-
sor will still be perfectly self-consistent but will not represent the true camera
structure particularly well. This is reflected in the fact that typically a trifocal
tensor calculated with the MinFact algorithm does not satisfy the trilinearity
relationships as well as a trifocal tensor calculated with the 7pt algorithm,
which is of course calculated to satisfy these relationships as well as possible.

Unfortunately, there does not seem to be a way to find the epipoles and the
trifocal tensor in the epipolar basis simultaneously with a linear method. In
fact, the trifocal tensor in a “normal” basis is a non-linear combination of the
epipoles and the 7 non-zero components of the trifocal tensor in the epipolar
basis.

Nevertheless, since the MinFact algorithm produces a fully self-consistent
tensor, the camera matrices extracted from it also have to form a self-consistent
set. Reconstruction using such a set of camera matrices may be expected to
be better than reconstruction using an inconsistent set of camera matrices, as
typically found from an inconsistent trifocal tensor. The fact that the trifocal
tensor found with the MinFact algorithm may not resemble the true camera
structure very closely, might not matter too much, since reconstruction is only

3From this it follows directly that the trifocal tensor has 18 DOF: 12 epipolar components
plus 7 non-zero components of the trifocal tensor in the epipolar basis minus 1 for an overall
scale.
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exact up to a projective transformation. The question is, of course, how to
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Figure 4.8: Mean distance between original points and re-
constructed points in arbitrary units as a function of mean
Gaussian error in pixels introduced by the cameras. The
solid line shows the values using the MinFact algorithm,
and the dashed line the values for the 7pt algorithm.

measure the quality of the trifocal tensor. Here the quality is measured by how
good a reconstruction can be achieved with the trifocal tensor in a geometric
sense. This is done as follows:

1. A 3D-object is projected onto the image planes of the three cameras,
which subsequently introduce some Gaussian noise into the projected
point coordinates. These coordinates are then quantised according to
the simulated camera resolution. The magnitude of the applied noise is
measured in terms of the mean Gaussian deviation in pixels.

2. The trifocal tensor is calculated in one of two ways from the available
point matches:

(a) using the 7pt algorithm, or

(b) using the MinFact algorithm.

3. The epipoles and the camera matrices are extracted from the trifocal
tensor. The camera matrices are evaluated using Hartleys recomputation
method [26].
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Figure 4.9: Mean difference between elements of calcu-
lated and true tensors in percent. Tensors are scaled pre-
viously, so that they are equal in one element. Solid line
shows values for trifocal tensor calculated with 7pt algo-
rithm, and dashed line shows values for trifocal tensor cal-
culated with MinFact algorithm.

4. The points are reconstructed using a version of what is called “Method
3” in [56] and [57] adapted for three views. This uses a SVD to solve for
the homogeneous reconstructed point algebraically using a set of camera
matrices. In [56] and [57] this algorithm was found to perform best of a
number of reconstruction algorithms.

5. This reconstruction still contains an unknown projective transformation.
Therefore it cannot be compared directly with the original object. How-
ever, since only synthetic data is used here, the 3D-points of the original
object are known exactly. Therefore, a projective transformation matrix
that best transforms the reconstructed points into the true points can be
calculated. Then the reconstruction can be compared with the original
3D-object geometrically.

6. The final measure of “quality” is arrived at by calculating the mean
distance in 3D-space between the reconstructed and the true points.

These quality values are evaluated for a number of different noise magnitudes.
For each particular noise magnitude the above procedure is performed 100
times. The final quality value for a particular noise magnitude is then taken
as the average of the 100 trials.

Figure 4.8 shows the mean distance between the original points and the
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Figure 4.10: Mean difference between elements of true
trifocal tensor and trifocal tensor calculated with 7pt al-
gorithm in percent. Tensors are scaled previously, so that
they are equal in one element. (This figure shows the solid
line of figure 4.9 enlarged.)

reconstructed points in 3D-space in some arbitrary units4, as a function of the
noise magnitude. The camera resolution was 600 by 600 pixels.

This figure shows that for a noise magnitude of up to approximately 10 pixels
both trifocal tensors seem to produce equally good reconstructions. Note that
for zero added noise the reconstruction quality is not perfect. This is due to
the quantisation noise of the cameras. The small increase in quality for low
added noise compared to zero added noise is probably due to the cancellation
of the quantisation and the added noise.

Apart from looking at the reconstruction quality it is also interesting to
see how close the components of the calculated trifocal tensors are to those
of the true trifocal tensor. Figures 4.9 and 4.10 both show the mean of the
percentage differences between the components of the true and the calculated
trifocal tensors as a function of added noise in pixels. Figure 4.9 compares the
trifocal tensors found with the 7pt and the MinFact algorithms. This shows
that the trifocal tensor calculated with the MinFact algorithm is indeed very
different to the true trifocal tensor, much more so than the trifocal tensor
calculated with the 7pt algorithm (shown enlarged in figure 4.10).

The data presented here seems to indicate that a tensor that obeys the deter-

4The particular object used was 2 units wide, 1 unit deep and 1.5 units high in 3D-space.
The Y-axis measures in the same units.
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minant constraints, i.e. is self-consistent, but does not satisfies the trilinearity
relationships particularly well is equally as good, in terms of reconstruction
ability, as an inconsistent trifocal tensor that satisfies the trilinearity relation-
ships quite well. In particular the fact that the trifocal tensor calculated with
the MinFact algorithm is so very much different to the true trifocal tensor
(see figure 4.9) does not seem to have a big impact on the final recomputation
quality.

4.6 Conclusions

Table 4.1 summarises the expressions for the different tensors, their degrees
of freedom, their rank and their main constraints. In particular note the
similarities between the expressions for the tensors.

We have demonstrated in this chapter how Geometric Algebra can be used
to give a unified formalism for multiple view tensors. Almost all properties of
the tensors could be arrived at from geometric considerations alone. In this
way the Geometric Algebra approach is much more intuitive than traditional
tensor methods. We have gained this additional insight into the workings
of multiple view tensors because Projective Geometry in terms of Geometric
Algebra allows us to describe directly the geometry on which multiple view
tensors are based. Therefore, we can understand their “inner workings” and
inter-relations. The best examples of this are probably the derivations of the
constraints on T and Q which followed from the fact that the intersection
points of a line with three planes all have to lie along a line. It is hard to
imagine a more trivial fact.

A similar analysis of multiple view tensors was presented by Heyden in [32].
However, we believe our treatment of the subject is more intuitive due to its
geometric nature. In particular the “quadratic p-relations” used by Heyden
were here replaced by the geometric fact that the intersection point of a line
with a plane lies on that line.

We hope that our unified treatment of multiple view tensors has not just
demonstrated the power of Geometric Algebra, but will also give a useful new
tool to researchers in the field of Computer Vision.
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Fundamental Matrix Trifocal Tensor

Fi1j1 = [[Ai2Ai3Bj2Bj3 ]] T
i1

jk = [[Ai2Ai3BjCk]]

Fij1 = εj3
baK

b
j2i
− εj

baK
b
j3i

T
i
jk = εj

baK
c
ki
− εk

caK
b
ji

Fij = La
i ·(Bj∧B4)︸ ︷︷ ︸

line

T
i
jk = La

i ·[[BjCk]]︸ ︷︷ ︸
line

det F = 0 det(T jk
i )jk = 0 for each i

7 DOF 18 DOF

rank 2 rank 4

Quadfocal Tensor

Qijkl = [[AiBjCkDl]]

Qi1jkl = εj
ba

[
Kc

ki3
Kd

li2
−Kd

li3
Kc

ki2

]

− εk
ca

[
Kb

ji3
Kd

li2
−Kd

li3
Kb

ji2

]

+ εl
da

[
Kb

ji3
Kc

k
i2
−Kc

k
i3
Kb

ji2

]

Qijkl = Ai ·[[BjCkDl]]︸ ︷︷ ︸
point

det(Qijkl)xy = 0
where x and y are any pair of {ijkl}

29 DOF

rank 9

Table 4.1: Comparison of Multiple View Tensors
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Chapter 5

3D-Reconstruction

Now is the winter of our discontent
Made glorious summer by this son of York;
And all the clouds that loured upon our house
In the deep bosom of the ocean burried.

”Richard III”, William Shakespeare.

Although I am no son of York, I hope that this chapter will bury any doubt
the reader may have about the usefulness of GA (or the previous chapters),
and bring this thesis to a “glorious” conclusion.

In the following we will consider a system of two pinhole cameras looking
at a scene in the world. Our goal is to create a 3D-reconstruction of the world
scene from the images taken by the pinhole cameras. We will show that a
(affine) 3D-reconstruction is possible if we know a number of point matches
between the images and also some parallel world lines.

5.1 Introduction

3D-reconstruction is currently an active field in Computer Vision, not least
because of its many applications. It is applicable wherever the “real world”
has to be understood by a computer. This may be with regard to control
movement (robots), to survey a scene for later interpretation (medicine), or to
create and mix artifical with real environments (special effects).

Research on 3D-reconstruction can roughly be separated into three areas:

1. Reconstruction with calibrated cameras. [40, 38, 37, 34, 19, 46, 63] In
this case, a set of images is taken of a scene with one or more calibrated

103
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cameras. However, the camera positions are unknown. To perform a 3D-
reconstruction we therefore first have to reconstruct the camera positions.
To do this it is assumed that point matches between all the points are
known.

2. Reconstruction from sequences of images. [66, 68, 67, 71, 12, 10, 43] Here
a series of monocular, binocular or trinocular images is taken. To perform
a reconstruction it is then assumed that point matches between the views
in space and over time are known, and that the relative camera geometry
and their internal parameters do not change. A popular method in this
area is the use of the Kruppa equations [36, 13].

3. Reconstruction from static views. [3, 4] A set of images of a scene taken
with unknown cameras, from unknown positions is given. We still assume
that we have point matches over the images. However, note that we
cannot assume anymore that the internal parameters of the cameras that
took the images are the same.

The least information about a scene is given in point 3. In fact, there is so
little information that a correct 3D-reconstruction is impossible, as we have
shown in chapter 3. Therefore, some additional information is needed. Such
information could be the knowledge of lengths, angles or parallel lines.

Our approach to 3D-reconstruction falls into the area of Reconstruction from
static views. We have two images taken with unknown cameras from unknown
positions and assume that apart from the point matches we also know the
projections of a number of sets of parallel world lines. The latter are used to
find vanishing points but also to constrain the reconstruction. This information
allows us to perform an affine reconstruction of the scene. That is, we find the
rotation, translation and the internal parameters of the second camera relative
to the first. If we assume furthermore, that we have three mutually orthogonal
sets of parallel lines, we can also find the internal calibration of the first camera
and thus obtain a Euclidean 3D-reconstruction.

In the following discussion of our reconstruction algorithm we use the same
notation as in chapter 3. We will also assume that the reader is familiar with
our description of reciprocal frames, pinhole cameras, camera matrices and
the basic form of the fundamental matrix. Of course, all this assumes some
familiarity with Geometric Algebra (GA).

5.2 Image Plane Bases

Our general setup is that we have two pinhole cameras described by frames
{Aµ} and {Bµ}, respectively. The frame {Aµ} is also regarded as the world
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frame which we use for our reconstruction. Hence, we obtain an affine recon-
struction.

The basic form of our calculation is as follows. We start with the image
points obtained from real cameras, i.e. in E3. These image points are then
embedded in P3. All our calculations are then performed in P3 and the resul-
tant reconstruction is projected back into E3. This method forces us to take
note of two important concepts.

1. Correct Basis. The power of GA in this field derives from the fact that
we are not working purely with coordinates, but with the underlying
geometric basis. Therefore, we have to make sure that the basis we are
working with is actually appropriate for our problem.

2. Scale Invariance. The projection of homogeneous vectors into E3 is
independent of the overall scale of the homogeneous vector. Calculations
in P3 may depend on such an overall scale, though. We have to make sure
that all our calculations are invariant under a scaling of the homogeneous
vectors, because such a scaling cannot and should not have any influence
on our final result. Furthermore, since we are initially embedding vectors
from E3 in P3, we are not given any particular scale. Any expression that
is invariant under a scaling of its component homogeneous vectors will
be called scale invariant.

As mentioned above, the frames {Aµ} and {Bµ} define two pinhole cameras.
Since {Aµ} also serves as our world frame in P3 we can choose that A4, the
optical centre of camera A, sits at the origin. A1, A2 and A3 define the image
plane of camera A. If we want to be true to our previously stated concepts,
we need to give some thought as to how we should choose the {Ai}.

Note here that we use latin indices to count from 1 to 3 and greek indices to
count from 1 to 4. We also make use of the Einstein summation convention, i.e.
if a superscript index is repeated as a subscript within a product, a summation
over the range of the index is implied. Hence, αiAi ≡ ∑3

i=1 αiAi.

The images we obtain from real cameras are 2-dimensional. Therefore,
the image point coordinates we get are of the form {x, y}, which give the
displacement in a horizontal and vertical direction1 in the image coordinate
frame. However, in P3 an image plane is defined by three vectors. Therefore,
a point on a plane in P3 is defined by three coordinates. A standard way given
in the literature to extend the 2D image point coordinates obtained from a
real camera to P3 is by writing the vector {x, y} as {x, y, 1}. This is a well

1Note that although we call these directions horizontal and vertical, they may not be at
a 90 degree angle to each other in general.
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founded and very practical choice, and if we just worked with matrices and
tensors we would not need to do anything else. However, since we want to tap
into the power of GA, we need to understand what kind of basis is implicitly
assumed when we write our image point coordinates in the form {x, y, 1}.

The best way to proceed, is first to describe a 2D-image point in a 3D basis
and then to embed this point in P3. An image point {x, y} gives the horizontal
and vertical displacements in the 2D-image plane coordinate frame. Let the
basis corresponding to this 2D frame in E3 be {a1, a2}. If we define a third
vecor a3 to point to the origin of the 2D frame in E3, then an image point with
coordinates {x, y} can be expressed as follows in E3.

xa = x a1 + y a2 + 1 a3 = α̂i ai, (5.1)

with {α̂i} ≡ {x, y, 1}. The {α̂i} are the image point coordinates corresponding
to image point {x, y} in E3. Now we embed the point xa in P3.

xa
P3−→ Xa = xa + e4 = α̂iAi, (5.2)

where we defined A1 ≡ a1, A2 ≡ a2 and A3 ≡ a3 + e4. That is, A1 and A2 are
direction vectors, or points at infinity, because they have no e4 component2.
However, they still lie on image plane A. More precisely, they lie on the
intersection line of image plane A with the plane at infinity. Note that A1 and
A2 do not project back to a1 and a2, respectively. For example,

A1
E3−→ A1 · ei

A1 · e4
ei =

a1

0
−→∞ (5.3)

Nevertheless, {Ai} is still the projective image plane basis we are looking for,
as can be seen when we project Xa down to Euclidean space.

Xa
E3−→ xa =

Xa · ei

Xa · e4
ei =

α̂i ai

α̂3
= x a1 + y a2 + 1 a3 (5.4)

What is important here is that neither α̂1 nor α̂2 appear in the denominator.
This shows that by writing our image point coordinates in the form {x, y, 1}
we have implicitly assumed this type of basis. We will call this type of frame a
normalised homogeneous camera frame. The camera frames we will use
in the following are all normalised homogeneous camera frames.

2This shows very nicely that a Euclidean vector interpreted as a homogeneous vector is
a direction.
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Figure 5.1: Transformation from general basis to a particular
basis in which image points have coordinates of the type {x, y, 1}.

It might seem a bit odd that we have devoted so much space to the de-
velopment of normalised homogeneous camera frames. However, this has far
reaching implication later on and is essential to understand our derivation.

In P3 a point on the image plane of camera A can be written as Xa = αi Ai

in general. We can normalise the coordinates without changing the projection
of Xa into E3. That is, Xa ' ᾱi Ai with ᾱi ≡ αi/α3. The symbol ' means
equality up to a scalar factor. In this case we clearly have {ᾱi} = {α̂i}.

A general point in P3 can be written as X = αµ Aµ in the A-frame. We can
normalise the coordinates of Xa in the same way as before to obtain X ' ᾱµ Aµ

with ᾱµ ≡ αµ/α3. If we project this point down to E3 we get3

X
E3−→ x =

X ·ei

X ·e4
ei =

(αµAµ)·ei

(αµAµ)·e4
ei

=
αi

α3 + α4
ai =

ᾱi

1 + ᾱ4
ai

= α̂i ai ; α̂i ≡ ᾱi

1 + ᾱ4

(5.5)

Therefore, if ᾱ4 = 0, then X is a point on the image plane of camera A. Also,
if ᾱ4 = −1 then X is a point at infinity. We will call ᾱ4 the projective depth
of a point in P3.

In P3 a general plane is defined by three homogeneous vectors that give
points on that plane. We will now show how we can transform such a general
basis into a normalised homogeneous camera frame. Figure 5.1 shows this
transformation.

3Recall that A4 = e4 (the origin of P3) and that the {Ai} are a normalised homogeneous
camera frame.
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Let the {A′
i} be normalised homogeneous vectors, i.e. A′

i · e4 = 1. This
can be assumed without loss of generality, because any homogeneous vector
can be normalised without changing the point it corresponds to in E3. A point
X ′

a on plane P ′
a ≡ A′

1∧A′
2∧A′

3 may then be given by

X ′
a = ά1A′

1 + ά2A′
2 + ά3A′

3

= ά1(A′
1 − A′

3) + ά2(A′
2 − A′

3) + (ά1 + ά2 + ά3)A′
3

≡ α1A1 + α2A2 + α3A3

= Xa

(5.6)

where we identified A1 ≡ A′
1 − A′

3, A2 ≡ A′
2 − A′

3 and A3 ≡ A′
3. Also

α1 ≡ ά1, α2 ≡ ά2 and α3 ≡ (ά1 + ά2 + ά3). A1 and A2 are directions now, i.e.
A1 ·e4 = A2 ·e4 = 0, but we still have P ′

a = A1∧A2∧A3. That is, the {Ai},
which are a normalised homogeneous camera frame, are also a valid basis for
plane P ′

a. As before we now have {α̂i} = {ᾱi}.

5.3 Plane Collineation

Before we can get started on the actual reconstruction algorithm, we need
to derive some more mathematical objects which we will need as tools. The
problem we want to solve first is the following. Let us assume we have three
image point matches in cameras A and B. That is, if three points in space,
{Xi}, are projected onto image planes A and B to give images {Xa

i } and
{Xb

i } respectively, then we know that the pairs {Xa
i , Xb

i } are images of the
same point in space. If the three points in space do not lie along a line, they
define a plane. This plane induces a collineation, which means that we can
transfer image points from camera A to camera B through that plane. For
example, let Xa

4 be the image point on image plane A which we want to transfer
to camera B through the plane. First we have to find the intersection point of
line A4∧Xa

4 with the plane4, and then we project this intersection point onto
image plane B (see figure 5.2). This transformation can also be represented
by a 3×3 matrix, which is called a collineation matrix. Our goal is to find the
collineation induced by the plane P ≡ X1∧X2∧X3 by knowing the projections
of the points {Xi} onto image planes A and B, and the fundamental matrix for
the two cameras. Since we know the fundamental matrix we can also calculate
the epipoles. The epipoles on the two image planes are always projections of

4Recall that A4 is the optical centre of camera A.
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A4
B4

X p

X 4
b

X 4
a

P

L

Figure 5.2: Schematic representation of a plane collineation.
Image point Xa

4 is projected to Xb
4 under the P -collineation.

a single point in space and thus give us the projections of a fourth point from
any plane in space. That is, we have in fact the projections of four points
that lie on some plane P . Hence, we can find the collineation matrix directly
through a matrix diagonalisation.

However, it is interesting to see what this means geometrically. Faugeras
gives a geometrical interpretation5 in [13]. We will follow his construction
method to obtain a 3× 3× 3 collineation tensor.

5.3.1 Calculating the Collineation Tensor M

We start by defining three points Xi = αµ
i Aµ. The projections of these three

points onto image planes A and B are Xa
i = ᾱj

iAj and Xb
i = β̄j

i Bj, respectively.
We know the coordinates {ᾱj

i} and {β̄j
i }, and we know that the pairs {ᾱj

i , β̄
k
i }

are images of the same point in space. Furthermore, we have the fundamental
matrix for the two cameras. We find the collineation induced by the plane
P = X1∧X2∧X3 geometrically, through a two step construction.

5In [13] this method is called the Point-Plane procedure.
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Step 1:

X 1
a

X 1
b

a
X 4

X p
a

b
X p

4BA 4X p
a
^ ^

E ba

X 3
a

X 2
a

X 2
b

X 3
b

A 4 4B

L
b
p

Lp

Let Xa
4 = αi

4Ai be the image point we want to project
onto image plane B under the P -collineation. Now con-
sider the intersection point Xa

p of lines Xa
3∧Xa

4 and Xa
1∧Xa

2 .
The intersection point of line Lp ≡ A4∧Xa

p with an arbi-
trary plane in P3 obviously lies on Lp. Denote the projec-
tion of Lp onto image plane B by Lb

p. Obviously Xa
p can

only be projected to some point on Lb
p, independent of the

collineation. We also know that Xa
p has to project to some

point on the line Xb
1∧Xb

2 under the specific P -collineation.
Hence, Xb

p is the intersection point of lines Lb
p and Xb

1∧Xb
2.

We can also write this as

Xb
p = (Xa

p∧A4∧B4) ∨ (Xb
1∧Xb

2) (5.7)

Step 2:

4B

X 1
a

X 1
b

A 4

a
X 4

X p
a

b
X p

E ba

b
X 4

4BA 4
a

X 4 ^ ^

L4
b

L4

X 3
a

X 2
a

X 3
b

X 2
b

Now that we have calculated the point Xb
p, we can project

Xa
4 under the P -collineation in an analogous way. We form

a line L4 = A4∧Xa
4 which we project onto image plane B.

Xb
4, the projection of Xa

4 under the P -collineation, is then
the intersection point of Lb

4 and line Xb
3∧Xb

p. This can also
be expressed as

Xb
4 = (Xa

4∧A4∧B4) ∨ (Xb
3∧Xb

p) (5.8)
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Now we will perform this two step calculation, starting with Xa
p .

Xa
p = (A4∧Xa

3∧Xa
4 ) ∨ (Xa

1∧Xa
2 )

= [[A4X
a
3Xa

1Xa
4 ]]Xa

2 + [[A4X
a
2 Xa

3Xa
4 ]]Xa

1

= φ1
paX

a
1 + φ2

paX
a
2

(5.9)

with φ1
pa ≡ [[A4X

a
2Xa

3 Xa
4 ]] and φ2

pa ≡ [[A4X
a
3 Xa

1Xa
4 ]]. Xb

p is then found by

Xb
p = (Xa

p∧A4∧B4) ∨ (Xb
1∧Xb

2)

= −[[Xa
p Xb

1A4B4]]X
b
2 + [[Xa

p Xb
2A4B4]]X

b
1

= −φ2
pa[[X

a
2Xb

1A4B4]]X
b
2 + φ1

pa[[X
a
1Xb

2A4B4]]X
b
1

= φ1
pbX

b
1 + φ2

pbX
b
2

(5.10)

with φ1
pb ≡ φ1

pa[[X
a
1Xb

2A4B4]] and φ2
pb ≡ −φ2

pa[[X
a
2 Xb

1A4B4]]. The step from
line 2 to line 3 in the previous calculation follows because [[Xa

i Xb
i A4B4]] = 0.

(Recall that the pairs {Xa
i , Xb

i } are projections of the same point in space.)
We are now in a position to calculate Xb

4.

Xb
4 = (Xa

4∧A4∧B4) ∨ (Xb
3∧Xb

p)

= −[[Xa
4Xb

3A4B4]]X
b
p + [[Xa

4 Xb
pA4B4]]X

b
3

= −φ1
pb[[X

a
4 Xb

3A4B4]]X
b
1 − φ2

pb[[X
a
4 Xb

3A4B4]]X
b
2

+φ1
pb[[X

a
4 Xb

1A4B4]]X
b
3 + φ2

pb[[X
a
4 Xb

2A4B4]]X
b
3

(5.11)

If we write Xb
4 = βk

4Bk then the {βk
4} are given by

βk
4 = −φ1

pb[[X
a
4 Xb

3A4B4]]β
k
1 − φ2

pb[[X
a
4 Xb

3A4B4]]β
k
2

+
(
φ1

pb[[X
a
4Xb

1A4B4]] + φ2
pb[[X

a
4Xb

2A4B4]]
)
βk

3

(5.12)

At this point we should think about whether we can use the normalised image
point coordinates {ᾱi

j}, {β̄i
j} and {ᾱi

4}, instead of their unnormalised counter-
parts. If this is not the case, we cannot use equation (5.12). Let the {φ̄i

pa}



112 Chapter 5: 3D-Reconstruction

be the {φi
pa} calculated from normalised coordinates. They are related in the

following way.

φ1
pa = α3

2α
3
3α

3
4φ̄

1
pa (5.13a)

φ2
pa = α3

3α
3
1α

3
4φ̄

2
pa (5.13b)

Therefore, the relation between the {φ̄i
pb} and {φi

pb} is

φ1
pb = α3

2α
3
3α

3
4α

3
1β

3
2 φ̄

1
pb (5.14a)

φ2
pb = α3

3α
3
1α

3
4α

3
2β

3
1 φ̄

2
pb (5.14b)

Hence, the {φi
pb} have the term (α3

1α
3
2α

3
3α

3
4) in common. Therefore, we can

write equation (5.12) as

βk
4 ' −β3

2 φ̄
1
pb (αi

4β
j
3Fij) βk

1 − β3
1 φ̄

2
pb (αi

4β
j
3Fij) βk

2

+
(
β3

2 φ̄
1
pb (αi

4β
j
1Fij) + β3

1 φ̄
2
pb (αi

4β
j
2Fij)

)
βk

3

' φ̄1
pb (ᾱi

4β̄
j
3Fij) β̄k

1 + φ̄2
pb (ᾱi

4β̄
j
3Fij) β̄k

2

−
(
φ̄1

pb (ᾱi
4β̄

j
1Fij) + φ̄2

pb (ᾱi
4β̄

j
2Fij)

)
β̄k

3

(5.15)

where Fij ≡ [[AiBjA4B4]] is the fundamental matrix relating cameras A and
B. That is, we can find the {βk

4} up to an overall constant from the {ᾱj
i}, {β̄j

i }
and {ᾱj

4}. To obtain our final equation we will expand the {φ̄i
pa} and {φ̄i

pb}.

φ̄j1
pa = [[A4X̄

a
4 X̄a

j2
X̄a

j3
]]

= ᾱi
4 (ᾱk2

j2 ᾱk3
j3 − ᾱk3

j2 ᾱk2
j3 ) [[A4AiAk2Ak3 ]]

' ᾱi
4 λ̄j1

a i

(5.16)

with

λ̄j1
a k1

≡ (ᾱk2
j2 ᾱk3

j3 − ᾱk3
j2 ᾱk2

j3 ). (5.17)

To simplify the final equation we make the following definitions.

F (r, s) ≡ ᾱi
rβ̄

j
s Fij (5.18a)

f b
ir ≡ β̄j

r Fij (5.18b)
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Now we can write the {φ̄i
pb} as

φ̄1
pb = ᾱi

4 λ̄1
a i F (1, 2) (5.19a)

φ̄2
pb = −ᾱi

4 λ̄2
a i F (2, 1) (5.19b)

Therefore, equation (5.15) becomes

βk
4 ' ᾱi

4ᾱ
j
4 Mk

ij, (5.20)

with

Mk
ij ≡

[ (
F (1, 2) λ̄1

a i β̄k
1 − F (2, 1) λ̄2

a i β̄k
2

)
f b

j3

−
(
F (1, 2) λ̄1

a i f
b
j1 − F (2, 1) λ̄2

a i f
b
j2

)
β̄k

3

]
(5.21)

Note that since Mk
ij can be calculated from the normalised image point coor-

dinates, it is scale invariant.

To our knowledge a collineation tensor which can be used instead of the
collineation matrix has not been derived before. Faugeras describes the method
which we followed to find Mk

ij [13], but he does not obtain a simple tensor to
perform the collineation projection. The advantage of calculating a collineation
tensor is that we do not have to perform any diagonalisations. The price we
pay is the higher computational cost of equation (5.20) compared to using a
collineation matrix.

5.3.2 Rank of M

Equation (5.20) seems to indicate that a collineation is a quadratic relation.
However, we know that βk

4 = αi
4Ψ

k
i where Ψk

i is the collineation matrix. If we
take a closer look at the components of equation (5.21) we see that M is not
of full rank. Reordering the terms of equation (5.21) gives

Mk
ij =

(
F (1, 2) f b

j3 β̄k
1 − F (1, 2) f b

j1 β̄k
3

)
λ̄1

a i

−
(
F (2, 1) f b

j3 β̄k
2 − F (2, 1) f b

j2 β̄k
3

)
λ̄2

a i.

(5.22)

Now, λ̄r
a 3 is a linear combination of λ̄r

a 1 and λ̄r
a 2. The relation is

λ̄r1
a 3 = − ᾱ1

r2

ᾱ3
r2

λ̄r1
a 1 −

ᾱ2
r2

ᾱ3
r2

λ̄r1
a 2. (5.23)
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Therefore, the three matrices in indices i, j of Mk
ij are of rank 2. Furthermore,

we can write equation (5.20) as

βk
4 ' ᾱ1ᾱ1 Mk

11 + ᾱ2ᾱ2 Mk
22 + ᾱ1ᾱ2 (Mk

12 + Mk
21)

+ᾱ1 (Mk
13 + Mk

31) + ᾱ2 (Mk
23 + Mk

32) + ᾱ3 Mk
33

(5.24)

since ᾱ3 = 1 by definition. Thus, if we perform a set of similarity transforms
on Mk

ij such that the components Mk
11,M

k
22,M

k
12,M

k
21 are zero, we can read off

the components of the collineation matrix from the transformed Mk
ij. Such a

similarity transformation on Mk
ij is possible because the matrices in indices i, j

of Mk
ij are of rank 2.

5.4 The Plane at Infinity

It will be very useful to see what the collineation of the plane at infinity looks
like. Without loss of generality we can set A4 = e4. Also recall that A1 and
A2 are direction vectors, i.e. have no e4 component, by definition. Therefore,
the plane at infinity P∞ may be given by

P∞ = A1∧A2∧(A3 − A4) (5.25)

Now that we have the plane at infinity we can also find an expression for the
collineation matrix associated with it. We want to project a point Xa = αiAi

on image plane A to image plane B under the P∞-collineation. First we have
to find the intersection point Xp of line L = A4∧Xa with P∞.

Xp = (A4∧Xa) ∨ P∞

= [[A4X
a]]·

(
(A1∧A2∧A3)− (A1∧A2∧A4)

)

=
∑

i1

(
[[A4X

aAi2Ai3 ]]Ai1

)
− [[A4X

aA1A2]]A4

= αj
∑

i1

[[A4AjAi2Ai3 ]]Ai1 − αj[[A4A1A2Aj]]A4

' αiAi − α3A4

(5.26)
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Now we need to find the projection Xb
p of Xp onto image plane B.

Xb
p = Xp ·Bj Bj

'
(
αi Ai ·Bj − α3 A4 ·Bj

)
Bj

=
(
αiKj b

i − α3εj
ba

)
Bj

(5.27)

where Kj b
i ≡ Ai ·Bj is the 3 × 3 camera matrix minor of camera B, and

εj
ba ≡ A4 ·Bj is the epipole of camera B and also the fourth column of the full

camera matrix6. That is,

Kj b
µ = [Kj b

i , εj
ba] (5.28)

From equation (5.27) it follows that we can write the collineation of P∞ as

Ψj ∞
i ≡ [Kj b

1 , Kj b
2 , Kj b

3 − εj
ba] (5.29)

where i counts the columns. Then we can write, as before

βj
∞ ' αi Ψj ∞

i (5.30)

for the projection of image point Xa under the P∞-collineation.

What does the P∞-collineation describe geometrically? If Xa is an image
point in camera A and Xb is its projection under the P∞-collineation, then
from the construction of the collineation it follows that the lines La = A4∧Xa

and Lb = B4∧Xb meet in a point on P∞. If two lines meet in a point on
the plane at infinity, they are parallel. Therefore, the P∞-collineation tells us
which two image points Xa and Xb on image planes A and B, repectively,
correspond such that the lines A4∧Xa and B4∧Xb are parallel. Obviously, this
tells us something about the relative orientation of the two cameras.

We can use our knowledge of the relation between Ψ∞ and the camera
matrix to find the depths of a set of world points whose projections are known
in both cameras, if we also know the projections of at least three pairs of
parallel lines. We will assume for the moment that for each point pair {ᾱi, β̄j}
we also know β̄j

∞, which is the projection of ᾱi under the P∞-collineation. We

6The full camera matrix is given by Kj b
µ = Aµ·Bj . See [51] for details on camera matrices

and epipoles.
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will show later how the {β̄j
∞} may be calculated. From the definition of the

camera matrix we know that

βj = αiKj b
i + α4εj

ba. (5.31)

Furthermore, equation (5.30) may be rewritten as

βj
∞ ' αiKj b

i − α3εj
ba (5.32)

First of all note the ' symbol, which means that we cannot use this equation
directly. Secondly, we do not actually know the {αi}, {βi} and {εi

ba} but only
the normalised coordinates7 {ᾱi}, {β̄i} and {ε̄i

ba}, because in practical applica-
tions we find all our image point coordinates in the form {x, y, 1}. Therefore,
we have to rewrite equations 5.31 and 5.32 so that they are independent of the
unknown scales. Equation 5.31 becomes

β̄j =
βj

β3
=

ᾱiK̄j b
i + ᾱ4ε̄j

ba

ᾱiK̄3 b
i + ᾱ4

⇐⇒ ᾱiβ̄jK̄3 b
i + ᾱ4β̄j = ᾱiK̄j b

i + ᾱ4εj
ba,

(5.33)

and equation (5.32) becomes

β̄j
∞ =

βj
∞

β3∞
=

ᾱiK̄j b
i − ε̄j

ba

ᾱiK̄3 b
i − 1

⇐⇒ ᾱiβ̄j
∞K̄3 b

i − β̄j
∞ = ᾱiK̄j b

i − ε̄j
ba.

(5.34)

Note that K̄j b
i ≡ Kj b

i /ε3
ba. Subtracting equation (5.34) from equation (5.33)

gives

ᾱiK̄3 b
i (β̄j − β̄j

∞) + ᾱ4β̄j + β̄j
∞ = ᾱ4εj

ba + ε̄j
ba

⇐⇒ ᾱiK̄3 b
i (β̄j − β̄j

∞) + β̄j
∞ − ε̄j

ba = ᾱ4(ε̄j
ba − β̄j)

⇐⇒ ᾱ4 = ᾱiK̄3 b
i

β̄j
∞ − β̄j

β̄j − ε̄j
ba

− β̄j
∞ − ε̄j

ba

β̄j − ε̄j
ba

; j ∈ {1, 2}.

(5.35)

The last equation may be written more succinctly as

ᾱ4 = ᾱiK̄3 b
i ζj

1 − ζj
2 ; j ∈ {1, 2}. (5.36)

7Recall that ᾱi ≡ ᾱi/ᾱ3 and similarly for the other coordinates.



5. Vanishing Points and P∞ 117

with

ζj
1 ≡

β̄j
∞ − β̄j

β̄j − ε̄j
ba

; ζj
2 ≡

β̄j
∞ − ε̄j

ba

β̄j − ε̄j
ba

(5.37)

Since equation (5.36) has to give the same result for both j = 1 and j = 2
independent of K̄3 b

i , it follows8 that ζ1
1 = ζ2

1 and ζ1
2 = ζ2

2 . Therefore, we will
discard the superscript of the ζs in the following.

Equation 5.36 by itself is still not useful, since we neither know ᾱ4 nor K̄3 b
i .

However, if we had some constraints on the depth components ᾱ4 for a number
of points we could find K̄3 b

i . Once K̄3 b
i is known for a particular camera setup,

we can use it to calculate the (affine) depths for any point matches. Before we
show how K̄3 b

i can be evaluated, we will take a closer look at how to find the
{β̄j

∞}.

5.5 Vanishing Points and P∞

Vanishing Point

Figure 5.3: The figure demonstrates that the projections of two parallel world
lines onto an image plane, are only parallel if the image plane is parallel to the
world lines. The intersection point of the projections of two parallel world lines
is called a vanishing point.

We mentioned earlier that the {βj
∞} are the projections of the {αi} onto

image plane B under the P∞-collineation. We can find the P∞-collineation
matrix Ψ∞, or tensor M ∞, from the projection pairs of three points on P∞
and the fundamental matrix.

8The ζs are only equal for different j if the image points they are calculated from are
perfect. For real data they are not.
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If two parallel world lines are projected onto an image plane, their projec-
tions are only parallel if the image plane is parallel to the world lines. The
intersection point of the projections of two parallel world lines is called a van-
ishing point (see figure 5.3).

Two parallel world lines meet at infinity. In projective space P3 this may
be expressed by saying that the intersection point of two parallel world lines
lies on P∞. Points on P∞ may also be interpreted as directions. Therefore,
intersecting a line with P∞ gives its direction. In this light, a vanishing point
is the projection of the intersection point of two parallel lines. Or, in other
words, it is the projection of a direction.

If we knew three vanishing points which are projections of three mutually
orthogonal directions, we would know how a basis for the underlying Euclidean
space E3 projects onto the camera used. This information can be used to
find the internal camera calibration [4]. Here our initial goal is to find the
relative camera calibration of the two cameras. We can then find an affine
reconstruction. To achieve this, we do not require the vanishing points to
relate to orthogonal directions. However, the more mutually orthogonal the
directions related to the vanishing points are, the better the reconstruction
will work.

5.5.1 Calculating Vanishing Points

Before we go any further with the actual reconstruction algorithm, let us take
a look at how to calculate the vanishing points.

Vanishing Points from Parallel Line Pairs. Suppose we have two image
point pairs {ᾱi

u1, ᾱ
i
u2} and {ᾱi

v1, ᾱ
i
v2}, defining two lines on image plane A,

which are projections of two parallel world lines. The vanishing point is the
intersection of lines Lu and Lv where

Lu = λu
i L

i
a ; Lv = λv

i L
i
a (5.38)

and

λu
i1
≡ ᾱi2

u1ᾱ
i3
u2 − ᾱi3

u1ᾱ
i2
u2 ; λv

i1
≡ ᾱi2

v1ᾱ
i3
v2 − ᾱi3

v1ᾱ
i2
v2 (5.39)

are the homogeneous line coordinates. Also note that Li1
a ≡ Ai2 ∧Ai3 (see

chapter 3). Since lines Lu and Lv lie on image plane A we know that their join
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is simply J = A1∧A2∧A3. Therefore, J−1 = A3∧A2∧A1. The intersection
point Xa

uv of lines Lu and Lv is then given by

Xa
uv = Lu ∨ Lv

=
(
Lu ·(A3∧A2∧A1)

)
·Lv

=
∑

i1,j1

λu
i1

λv
j1

(
(Ai2∧Ai3)·(A3∧A2∧A1)

)
·(Aj2∧Aj3)

=
∑

i1,j1

λu
i1

λv
j1

Ai1 ·(Aj2∧Aj3)

=
∑

i1

(λv
i2

λu
i3
− λv

i3
λu

i2
)Ai1

= αi
uvAi ; αi1

uv ≡ (λv
i2

λu
i3
− λv

i3
λu

i2
)

(5.40)

First of all note that the {αi
uv} give a point in P2. Since we defined A1 and

A2 to be directions, the image point coordinates {x, y} in E2 corresponding
to the {αi

uv}, are found to be {ᾱ1
uv, ᾱ

2
uv} through the projective split, where

ᾱi
uv ≡ αi

uv/α
3
uv. Note that points which lie at infinity in E2 can be expressed

in P2 by points which have a zero third component. Such points will also be
called directions.

The fact that points at infinity in E2 are nothing special in P2 shows an
immediate advantage of using homogeneous coordinates for the intersection
points over using 2D-coordinates. Since we are looking for the intersection
point of the projections of two parallel world lines, it may so happen, that
the projections are also parallel, or nearly parallel. In that case, the 2D image
point coordinates of the vanishing point would be very large or tend to infinity.
This, however, makes them badly suited for numerical calculations. When
using homogeneous coordinates, on the other hand, we do not run into any
such problems.

A Closer Look at Vanishing Points. It will be instructive to see what the
homogeneous intersection point coordinates look like for certain sets of lines.
We rewrite the {αi

uv} from above as

α1
uv = λv

2λ
u
3 − λv

3λ
v
2 = ᾱ1

v1ᾱ
1
v2 d3

vd
1
u − ᾱ1

u1ᾱ
1
u2 d3

ud
1
v (5.41a)

α2
uv = λv

3λ
u
1 − λv

1λ
v
3 = ᾱ1

v1ᾱ
1
v2 d3

vd
2
u − ᾱ1

u1ᾱ
1
u2 d3

ud
2
v (5.41b)

α3
uv = λv

1λ
u
2 − λv

2λ
v
1 = d1

ud
1
v

(
d2

u

d1
u

− d2
v

d1
v

)
(5.41c)
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with

d1
u ≡ ᾱ1

u1 − ᾱ1
u2 ; d2

u ≡ ᾱ2
u1 − ᾱ2

u2 ; d3
u ≡

ᾱ2
u2

ᾱ1
u2

− ᾱ2
u1

ᾱ1
u1

(5.42a)

d1
v ≡ ᾱ1

v1 − ᾱ1
v2 ; d2

v ≡ ᾱ2
v1 − ᾱ2

v2 ; d3
v ≡

ᾱ2
v2

ᾱ1
v2

− ᾱ2
v1

ᾱ1
v1

(5.42b)

d1
u and d2

u define the direction of the line Lu in E2. Hence, d1
u = 0 if Lu is

parallel to A2, and d2
u = 0 if Lu is parallel to A1.

ᾱ2
u1/ᾱ

1
u1 gives the gradient of the line from the origin of E2 to the point

{ᾱ1
u1, ᾱ

2
u2}. Therefore, d3

u gives the difference in gradients between the lines
passing through the origin of E2 and {ᾱ1

u1, ᾱ
2
u1} or {ᾱ1

u2, ᾱ
2
u2}, respectively.

Hence, d3
u = 0 if the line Lu passes through the origin of E2.

Now we can see the effect of some special cases of line sets {Lu, Lv} on the
homogeneous coordinates of their intersection points.

1. If Lu and Lv are parallel then α3
uv = 0. That is, the homogeneous

coordinates of their intersection point are of the form {x, y, 0}.

2. If Lu and Lv are both parallel to the A1 direction, i.e. ᾱ2
u1 = ᾱ2

u2 and
ᾱ2

v1 = ᾱ2
v2, then d2

u = d2
v = 0. Thus, the intersection point of Lu and Lv

in homogeneous coordinates is of the form {x, 0, 0}.

3. If Lu and Lv are both parallel to the A2 direction, i.e. ᾱ1
u1 = ᾱ1

u2 and
ᾱ1

v1 = ᾱ1
v2, then d1

u = d1
v = 0. Then the intersection point of Lu and Lv

in homogeneous coordinates is of the form {0, y, 0}.

4. If Lu and Lv both pass through the origin of E2, i.e. the principal point of
the image plane, then the homogeneous coordinates of their intersection
point are of the form {0, 0, w}.

From these special cases it becomes clear that if we knew three vanishing points
on image plane A of the types 2, 3 and 4 from above, and also knew how these
vanishing points project onto image plane B, we would know the 3× 3 camera
matrix minor Kj b

i of camera B. This may be seen as follows.

A Special Set of Vanishing Points. Let {αi
n, β

j
n} be three sets of matching

vanishing points in cameras A and B. That is, the direction that projects
to αi

nAi on camera A, projects to βj
nBj on camera B. Now suppose that
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αi
1 = {α1

1, 0, 0}, αi
2 = {0, α2

2, 0} and αi
3 = {0, 0, α3

3}. Then we can write

βj
n = αi

n Ai ·Bj

⇐⇒ βj
1 = α1

1 A1 ·Bj ; βj
2 = α2

2 A2 ·Bj ; βj
3 = α3

3 A3 ·Bj

⇐⇒ βj
n

αn
n

= An ·Bj

(5.43)

Note that this calculation does not give the internal calibration of the cameras.
It only tells us how the two camera frames are related. However, if we take
the {Aµ} frame as the world frame and if we furthermore knew the correct

scale of the epipole on camera B, we could use it in conjunction with Kj b
i

to find the depths of image point matches in the A-frame. The problem with
this approach, apart from the unknown scale of the epipole, is that vanishing
points of the form needed are hard to obtain in real life situations.

Vanishing Points from Multiple Parallel Lines. Above we described
how to find a vanishing point from the projections of two parallel world lines.
In practical applications the lines will only be known with a finite precision
and will also be subject to a measurment error. Therefore, we could improve
on the quality of a vanishing point if sets of more than two parallel lines are
known. In particular, the vanishing point quality is improved if these parallel
lines are taken from varying depths within in world scene.

How can we find the vanishing point of more than two projections of parallel
lines? Let the {Ln} be a set of N projections of parallel world lines onto image
plane A. We are looking for the point Xv that is closest to the intersection
points of all lines. Xv is an intersection point of all lines {Ln} if Ln∧Xv = 0 for
all n. That is, finding the best vanishing point means minimising a measure ε
which is given by

ε2 =
∑
n

(
(Ln∧Xv)·P−1

a

)2
(5.44)

where P−1
a ≡ (A1∧A2∧A3)

−1. Note that if Ln∧Xv is not zero, it gives a scalar
multiple of Pa = A1∧A2∧A3. That is, in general we have Ln∧Xv = τn Pa,
where τn is a scalar. The closer Xv is to line Ln, the smaller is τn. Since
we are interested in minimising τn, we take the inner product of Ln∧Xv with
P−1

a , which cancels the Pa and leaves us with τn. We then take the sum of the
squares of τn for all n to obtain an overall quality measure.
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Let Ln = λniL
i
a and Xv = αi

vAi, then

(Ln∧Xv)·P−1
a =

∑

i1,j

λni1α
j
v

(
(Ai2∧Ai3)∧Aj

)
·P−1

a

= λni α
i
v

(
(A1∧A2∧A3)·(A3∧A2∧A1)

)

= λni αi
v

(5.45)

The above expression is equivalent to taking the inner product of vectors9 ~ln ≡
[λn1, λn2, λn3] and ~v ≡ [α1

v, α
2
v, α

3
v]. If we define a matrix Λ ≡ [~l1,~l2, . . . ,~lN ],

then ~v has to minimise the length of the vector ~ε given by

~ε = Λ ~v T (5.46)

~ε is related to the measure ε2, which we try to minimise, via

ε2 = ~ε 2 = ~v (ΛT Λ) ~v T (5.47)

To find the best ~v we can now simply perform a Singular Value Decomposition
(SVD) on the matrix Λ2 = ΛT Λ. This will give us the ~v that minimises Λ2 ~v T

and thus minimises ε2. That is, we found the best fitting vanishing point in
homogeneous coordinates, in the least squares sense.

Note that in [3] vanishing points are found as 2D-image point coordinates,
which means that only parallel world lines can be used that are not parallel in
the image. In [4] the projections of at least three parallel world lines have to be
known to calculate a vanishing point. The implementation of our algorithm
switches automatically between finding a vanishing point from two parallel
lines, and calculating it from multiple parallel lines, depending on how much
information is available.

5.5.2 Ψ∞ or M ∞ from Vanishing Points

Now we return to our reconstruction algorithm. We discussed vanishing points
since they are projections of points on P∞. If we know three vanishing point
matches over cameras A and B and the epipoles, we can calculate the P∞-
collineation matrix Ψ∞, or tensor M ∞. Once we have Ψ∞ or M ∞ we can

9We use here the notation with the arrow above a letter to describe a vector in some
orthonormal frame. This notation is used to distinguish these vectors from vectors in E3.
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find the projections of some image points {ᾱi
n} on image plane A, onto image

plane B under the P∞-collineation. That is,

β̄k
n∞ ' ᾱi

n Ψk ∞
i , or β̄k

n∞ ' ᾱi
n ᾱj

n Mk ∞
ij (5.48)

We can now use the {β̄j
n∞} to find the {ζn} for equation (5.36). It is worth

repeating this equation.

ᾱ4
n = ᾱi

n K̄3 b
i ζ1n − ζ2n (5.49)

with

ζ1n ≡ β̄j
n∞ − β̄j

n

β̄j
n − ε̄j

ba

; ζ2n ≡ β̄j
n∞ − ε̄j

ba

β̄j
n − ε̄j

ba

(5.50)

where j is either 1 or 2.

5.6 The Reconstruction Algorithm

Now that we have found M ∞ and thus can calculate the {ζn} from equation
(5.49), we can think about how to find the correct depth values for the image
point matches {ᾱi

n, β̄
j
n}.

We will perform an affine reconstruction. That is, we reconstruct in the
frame of camera A. When we plot our final reconstructed points we will as-
sume that the A-frame forms an orthonormal frame of E3, though. However,
we do not need to assume anything about the frame of camera B, since we will
find the translation, rotation and internal calibration of camera B relative to
camera A. To find the internal calibration of camera A relative to an orthonor-
mal frame of E3, we would need to know the projection of this orthonormal
set of directions onto camera A [4].

We have already found sets of parallel lines to calculate vanishing points. We
can reuse these sets of lines to constrain the depth values found with equation
(5.49). In particular, we will regard the {K̄3 b

i } as free parameters. If we now
take the image point matches that define the projections of two parallel world
lines, we can use this extra information to constrain the {K̄3 b

i }. That is, we
vary the free parameters until the reconstructed points define a pair of parallel
world lines again.
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A 4

B4

B2
B1

Xb
A 3

A 2

A 1

Eab

B3

Eba

Xb

8

Xa

X

Figure 5.4: This figure shows the geometry behind equation (5.49). A point
X is projected onto cameras A and B, giving images Xa and Xb, respectively.
Projecting Xa onto image plane B under the P∞-collineation gives X∞

b . We
choose A4 to be the origin of E3. K3 b

i gives the components of A1, A2 and A3

along B3.

5.6.1 The Geometry

Before we start developing an algorithm to find the best {K̄3 b
i } we should

understand what varying the free parameters means geometrically. In figure
5.4 we have drawn the geometry underlying our reconstruction algorithm.

A4 and B4 are the optical centres of cameras A and B, respectively. We
have also chosen A4 to lie at the origin of E3. Recall that A1, A2 and B1, B2

are direction vectors in P3. We have drawn these vectors here as lying on the
image planes to indicate this.

A world point X is projected onto image planes A and B giving projections
Xa and Xb, respectively. X∞

b is the projection of Xa onto image plane B under
the P∞-collineation. Also, Eba is the epipole of camera B.

Now we can see what the {ζ1n, ζ2n} components from equation (5.49) ex-
press.

ζ1n ≡ β̄j
n∞ − β̄j

n

β̄j
n − ε̄j

ba

gives the ratio of the distance (in x or y direction)
between X∞

b and Xb, and Xb and Eba.

ζ2n ≡ β̄j
n∞ − ε̄j

ba

β̄j
n − ε̄j

ba

gives the ratio of the distance (in x or y direction)
between X∞

b and Eba, and Xb and Eba.

Some Special Cases.

1. If Xb = X∞
b then X is a point on P∞, for example a vanishing point. In

this case ζj
1n = 0 and ζj

2n = 1. Hence, equation (5.49) gives ᾱ4
n = −1.

From equation (5.5) it follows that this does indeed give a point on P∞.
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2.

Xa

A4 Eba

Xb
Xb

8

B4
Eab

X

Suppose we move a world point
X along a line towards A4 (see
figure). In that case, Xa and
X∞

b will stay constant, but Xb

will move towards Eba. There-
fore, ζj

1n → ∞ and ζj
2n → ∞,

and thus ᾱ4 →∞ (from equa-
tion (5.49)) and α̂i → 0. That
is, in the limit that X = A4, X
will be reconstructed to lie at
the origin, which is A4.

3.

A4 Eab

Xa

B4Xb

8

Xb
Eba

X

Now suppose we move a world
point X along a line towards
B4 (see figure). Now Xb will
stay constant, whereas Xa →
Eab and X∞

b → Eba. There-
fore, ζj

1n → −1 and ζj
2n →

0. In the limit that X = B4

we have Xa = Eab and thus
equation (5.49) gives ε̄4

ab =
−ε̄i

ab K̄3 b
i . That is, we have

found the position of B4 in the
A-frame.

The equation for the projective depth of the {ε̄i
ab} given above can also be

derived as follows.

B4 = B4 ·Aµ Aµ = εµ
ab Aµ

⇒ B4 ·Bj = εµ
ab Aµ ·Bj

⇒ 0 = εµ
ab Kj b

µ ; Kj b
µ ≡ Aµ ·Bj

⇒ ε4
ab = −εi

ab

Kj b
i

Kj b
4

(5.51)

What we have done here is first to express B4 in the A-frame. Then we project
B4 onto image plane B. In the third line we use the fact that B4 ·Bj = 0 by
definition. The resultant equation has to be valid for each j ∈ {1, 2, 3}. If we
choose j = 3 we can write

ε̄4
ab = −ε̄i

ab K̄3 b
i . (5.52)
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The Meaning of the Free Parameters. Let us return to figure 5.4.
Recall that K3 b

i = Ai ·B3, that is, it gives the components of the {Ai} along
B3. Therefore, varying the {K3 b

i } means that we are moving B3, which is
the principal point on image plane B. Since X∞

b cannot change when we
vary K3 b

i the relation between B3 and B4 is fixed. Thus, changing B3 means
changing B4. In this respect, finding the correct {K3 b

i } means finding the
correct translation of camera B relative to camera A. The relative rotation
has already been fixed through finding P∞.

However, it is the relative sizes of the {K̄3 b
i } that are really important.

An overall scale factor will only change the depths of all reconstructed points
simultaneously. Therefore, we can fix the depth of one image point, to fix the
scale of K̄3 b

i .

5.6.2 The Minimisation Function

We mentioned before that we will use our knowledge of parallel lines once
again to constrain the {K̄3 b

i } from equation (5.49). Let La
u = Xa

u1∧Xa
u2 and

La
v = Xa

v1∧Xa
v2 be the projections of two parallel world lines onto image plane

A. In general we define world points and their corresponding images on image
plane A as

Xur ≡ ᾱµ
urAµ ; Xa

ur ≡ ᾱi
urAi

Xvr ≡ ᾱµ
vrAµ ; Xa

vr ≡ ᾱi
vrAi





r ∈ {1, . . . , n}. (5.53)

Furthermore, if we know the image points on image plane B corresponding
to Xa

u1, Xa
u2, Xa

v1 and Xa
v2, and we have found M ∞, then we can calculate

the corresponding ζs from equation (5.50). Equation (5.49) will now allow us
to find the projective depths for Xa

u1, Xa
u2, Xa

v1 and Xa
v2. Therefore, we can

calculate the world lines Lu = Xu1∧Xu2 and Lv = Xv1∧Xv2.

Now, we know that Lu and Lv are supposed to be parallel, which means
that they have to intersect P∞ in the same point. This will be the constraint
which we will use to find the correct {K̄3 b

i }. Let X∞
u and X∞

v be defined as

X∞
u ≡ Lu ∨ P∞ ; X∞

v ≡ Lv ∨ P∞. (5.54)

Lines Lu and Lv are parallel iff

X∞
u ∧X∞

v = 0 (5.55)
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Instead of using this condition we could also project Lu and Lv into E3, and
then check that they are parallel. However, projecting into E3 means dividing
through by the projective depth, which means that our free parameters are
now in the denominator of a minimisation function. Apart from creating a
minimisation surface with singularities, the derivatives of such a minimisation
function will be more complicated and thus cost more computing time.

Finding the minimisation parameters. We will now derive an expression
for X∞

u in terms of the {ᾱi
u1, ᾱ

i
u2}.

X∞
u = Lu ∨ P∞ = (ᾱµ

u1 ᾱν
u2 Aµ∧Aν) ∨ P∞

=
(
λ̄u

µ1µ2
Aµ1∧Aµ2

)
∨

(
A1∧A2∧(A3 − A4)

)

= λ̄u
µ1µ2

(
[[Aµ1Aµ2A1A2]] A3 + [[Aµ1Aµ2A3A1]] A2

+[[Aµ1Aµ2A2A3]] A1

)

− λ̄u
µ1µ2

(
[[Aµ1Aµ2A1A2]] A4 + [[Aµ1Aµ2A4A1]] A2

+[[Aµ1Aµ2A2A4]] A1

)

' (λ̄u
13 + λ̄u

14) A1 + (λ̄u
23 + λ̄u

24) A2 + λ̄u
34 (A3 − A4)

= χi
u A∞

i

(5.56)

where

χi
u ≡ (λ̄u

i3 + λ̄u
i4) ; λ̄u

µ1µ2
≡ ᾱµ1

u1 ᾱµ2
u2 − ᾱµ2

u1 ᾱµ1
u2, (5.57)

and

A∞
1 ≡ A1 ; A∞

2 ≡ A2 ; A∞
3 ≡ A3 − A4 (5.58)

The free parameters we have are the {K̄3 b
i }. To make future equations

somewhat clearer we will define ϕi ≡ K̄3 b
i . Hence, equation (5.49) will be

written as

ᾱ4
n = ᾱi

n ζ1n ϕi − ζ2n. (5.59)
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Substituting equation (5.59) into equation (5.57) gives

χi
u = ᾱi

u1 ᾱ4
u2 − ᾱi

u2 ᾱ4
u1 + ᾱi

u1 − ᾱi
u2

= ᾱi
u1 (ᾱj

u2 ζ1 u2 ϕj − ζ2 u2)

− ᾱi
u2 (ᾱj

u1 ζ1 u1 ϕj − ζ2 u1) + ᾱi
u1 − ᾱi

u2

=
(
ζ1 u2 ᾱi

u1 ᾱj
u2 − ζ1 u1 ᾱi

u2 ᾱj
u1

)
ϕj

+ᾱi
u1 (1− ζ2 u2)− ᾱi

u2 (1− ζ2 u1)

(5.60)

This equation may be written more succinctly as

χi
u = Dij

u ϕj + pi
u (5.61)

with

Dij
u ≡ ζ1 u2 ᾱi

u1 ᾱj
u2 − ζ1 u1 ᾱi

u2 ᾱj
u1

pi
u ≡ ᾱi

u1 (1− ζ2 u2)− ᾱi
u2 (1− ζ2 u1)

(5.62)

The reason for defining the {Dij
u } and {pi

u} is, that they can be calculated for
every parallel line pair available before we minimise over the {ϕj}. In this way
we reduce the calculation time at each minimisation step.

Recall that lines Lu and Lv are parallel iff X∞
u ∧X∞

v = 0. We can now write
this expression in terms of the {χi}.

X∞
u ∧X∞

v = (χi
u A∞

i )∧(χj
v A∞

j )

=
∑

i1

(χi2
u χi3

v − χi3
u χi2

v ) A∞
i2
∧A∞

i3

= Λuv
i Li

∞ ; Li1∞ ≡ A∞
i2
∧A∞

i3

(5.63)

with

Λuv
i1
≡ χi2

u χi3
v − χi3

u χi2
v (5.64)
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Each of the {Λuv
i } has to be zero if X∞

u ∧X∞
v = 0. Therefore, from an analytical

point of view, the expression we should try to minimise for each parallel line
pair {Lu, Lv} is

∆uv : ϕj −→
3∑

i=0

(Λuv
i )2. (5.65)

Improving computational accuracy. However, for a computer with finite
floating point precision, this equation poses a problem. The culprits in this
case are the {χi}. Recall that they give the direction of a line in homogeneous
coordinates. Before they are used in equation (5.64) they should be normalised
to improve the precision of the equation on a computer. We normalise the {χi

u}
in the following way.

χ̂i
u ≡

χi
u√∑

i (χ
i
u)

2
(5.66)

Therefore, the minimisation function we will use is

∆uv : ϕj −→
3∑

i=0

(Λ̂uv
i )2. (5.67)

where

Λ̂uv
i1
≡ χ̂i2

u χ̂i3
v − χ̂i3

u χ̂i2
v (5.68)

Since the {χ̂i
u} are normalised it might seem possible on first sight to use

as minimisation function

∆uv : ϕj −→
3∑

i=0

(χ̂i
u − χ̂i

v)
2. (5.69)

This would be faster to calculate and also have much simpler derivatives. How-
ever, this equation is sensitive to an overall sign change of the {χ̂i}, but we are
only interested in whether two lines are parallel, not in whether the vectors
that define them point in the same or in opposite directions.

The derivatives. The derivative of ∆uv is computationally not a particu-
larly expensive expression. Therefore, we can use a minimisation routine that
also uses the derivatives of the minimisation function. This will make the
minimisation process more efficient and robust.
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The partial derivatives of the {χ̂i
u} are

∂ϕr χ̂i
u =

Dir
u√∑

k (χk
u)

2
− χi

u

∑
k (χk

u Dkr
u )

3

√∑
k (χk

u)
2

, (5.70)

and the partial derivatives of the {Λ̂uv
i } are

∂ϕr Λ̂uv
i1

= (∂ϕr χ̂i2
u ) χ̂i3

v + χ̂i2
u (∂ϕr χ̂i3

v )− (∂ϕr χ̂i3
u ) χ̂i2

v − χ̂i3
u (∂ϕr χ̂i2

v ). (5.71)

Now we can calculate the partial derivatives of the minimisation function ∆uv.

∂ϕr ∆uv = 2
3∑

i=0

(Λ̂uv
i ∂ϕr Λ̂uv

i ) (5.72)

Implementing the depth constraint. At the moment the minimisation
function ∆uv depends on three parameters: the {ϕj}. However, we mentioned
earlier that we can fix the depth of one point. This will reduce the number of
free parameters to two.

If we choose to fix the depth of point Xu1 it follows from equation (5.59)
that the following condition must hold.

0 = ζ1 u1 ᾱi
u1 ϕi − ζ2 u1 − ᾱ4

u1

= ξi
u1 ϕi − ωu1

(5.73)

with

ξi
u1 ≡ ζ1 u1 ᾱi

u1 ; ωu1 ≡ ζ2 u1 + ᾱ4
u1 (5.74)

With regard to equation (5.5) a good choice for ᾱ4
u1 is −0.5, which means that

α̂3 = 2. However, if the point we chose to fix has a much larger depth value
than the other points we are trying to reconstruct, then some points may be
reconstructed to lie behind the optical centre. In this case, we will invariably
get a bad reconstruction.

We can rewrite equation (5.73) as

ξ̄i
u1 ϕi = 1 ; ξ̄i

u1 ≡
ξi
u1

ωu1

(5.75)
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Of course, we have to make sure that ωu1 6= 0, which means we have to be
somewhat careful with the choice of ᾱ4

u1.

Our minimisation routine should only search over that parameter space
where equation (5.75) is satisfied. We can achieve this by reparameterising the
equation.

ξ̄i
u1 (τ1 Φ1

i + τ2 Φ2
i + τ3 Φ3

i ) = 1 ; τ3 ≡ 1 (5.76)

with

ϕj = τi Φ
i
j (5.77)

and

ξ̄i
u1 Φ1

i = 0 ; ξ̄i
u1 Φ2

i = 0 ; ξ̄i
u1 Φ3

i = 1 (5.78)

We have replaced the {ϕi} with the {τi}. Therefore, {τ1, τ2} are now the free
parameters, while τ3 is fixed at unity.

The question now is how we can find the appropriate Φj
i matrix. First of

all we can set the vector Φ3
i to be the inverse of the vector ξ̄i

u1.

Φ3
i =

ξ̄i
u1∑

j (ξ̄j
u1)

2
=⇒ ξ̄i

u1 Φ3
i =

∑
i (ξ̄

i
u1)

2

∑
j (ξ̄j

u1)
2

= 1 (5.79)

We find the remaining first two rows of Φj
i with the help of an SVD. We do

this by creating a 3× 3 matrix H whose three rows are all given by Φ3
i . That

is, H ≡ [Φ3
i , Φ

3
i , Φ

3
i ]. Therefore, H is of rank 1 and has a nullity of 2. Applying

an SVD to H will find a set of three orthogonal vectors, two of which span
the null space of H, while the remaining one is just a scaled version of Φ3

i . We
first should find that scale and apply it to H. The null space of H is exactly
the space we want our minimisation routine to search over. Hence, we set Φ1

i

and Φ2
i to be the correctly scaled null space vectors found with the SVD. This

satisfies equation (5.78), and therefore equation (5.76) will stay unchanged
when varying τ1 and τ2.

Image Point Normalisation. Before we can calculate the collineation
tensor for the P∞-collineation we have to find the fundamental matrix (F ) for
the two views (see equation (5.21)). For the calculation of the F we cannot use
the pixel coordinates directly, because they are typically too large to obtain
good accuracy in our numerical calculations. This is also true for all other
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calculations performed here. Therefore, we need to scale the image point
coordinates so that they are of order 1.

In [26] Hartley suggests that the scales and skews applied to the image
point coordinates are found in the following way. The skew is given by the
coordinates of the centroid of all image points. Then the average distance of
the skewed image points from the origin is calculated. The inverse of that
distance gives the scale.

This is a good method if we just wanted to calculate F . However, it turns
out that for our purposes such a scaling is not suitable. In fact, we found it
is important to conserve the aspect ratio of the images (separately), and to
ensure that the origin of the image plane is chosen in the same way in both
images.

We choose the image plane origin to be in the centre of each image plane
and then scale the image points by dividing their x and y coordinate by the
image resolution in the x-direction. This preserves the aspect ratio.

Calculating the Fundamental Matrix. In recent times a lot of effort has
gone into the analysis of the fundamental matrix (F ) and the trifocal tensor
(T ), in order to find constraints so that they may be calculated as accurately
as possible [26, 24, 39, 48, 14, 17, 32]. However, as our experimental results will
show, calculating an optimal F does not seem to be of high importance for our
reconstruction algorithm. In retrospect this will justify the simple calculation
method we use for F .

We calculate F with a simple SVD method by writing the components of
F as a column vector ~f . If we have N point matches {ᾱi

n, β̄
i
n} then the F we

look for has to satisfy

ᾱi
n β̄j

n Fij = 0, (5.80)

for all n. In matrix notation this can written as

A ~f = 0 (5.81)

with

A ≡




ᾱ1
1 β̄1

1 ᾱ1
1 β̄2

1 ᾱ1
1 β̄3

1 ᾱ2
1 β̄1

1 . . . ᾱ3
1 β̄3

1

ᾱ1
2 β̄1

2 ᾱ1
2 β̄2

2 ᾱ1
2 β̄3

2 ᾱ2
2 β̄1

2 . . . ᾱ3
2 β̄3

2

...
...

...
...

...

ᾱ1
N β̄1

N ᾱ1
N β̄2

N ᾱ1
N β̄3

N ᾱ2
N β̄1

N . . . ᾱ3
N β̄3

N




(5.82)
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For real data there will typically not be an F that satisfies equation (5.80)
perfectly. Therefore, what we try to calculate is the F that satisfies these
conditions as well as possible. This is equivalent to finding the vector that has
the least influence on the range of A. This can be achieved by performing an
SVD on A.

A = U D V T , (5.83)

where U and V are orthogonal matrices and D is a diagonal matrix [53]. The
column vector in V that corresponds to the smallest diagonal value in D is the
~f that we are looking for. Note that at least nine point matches have to be
known to find F in this way.

As was shown in chapter 3, F is of rank 2. An F found with the above
method from real image point matches, usually does not satisfy this constraint.
An indication that the image point matches are particularly bad is that there
are two or more diagonal values in D of the same order of magnitude.

A linear method to enforce the rank of F is to project the initial F to the
nearest F that satisfies the rank constraint. This may be done by performing
an SVD on F , i.e. F = UDV T , then setting the smallest diagonal value in D
to zero, and recalculating F = UDV T with the changed D. However, this did
not have any significant effect on our reconstructions.

5.6.3 The Minimisation Routine

We used a modified version of the conjugate gradient method to perform the
minimisation. This modified version is called MacOpt and was developed by
David MacKay [45]. It makes a number of improvements over the conjugate
gradient method as given in [53]. We will list the most important modifications
in the following.

• The initial step size in the line minimisation as given in [53] may be
too big, which can result in a lot of wasted computing power. MacOpt
rectifies this in two ways:

1. the initial step size of any line minimization is inversely proportional
to the gradient,

2. the constant of proportionality is adopted during the minimisation.

• MacOpt uses the gradient information also for the line search. In this way
the line minimum can be bracketed with only two gradient evaluations.
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• MacOpt does not evaluate the function at all, but only uses the gradient
information.

• The general purpose minimiser in [53] gives very high precision in the line
minimisations, which is actually not necessary. MacOpt only brackets
the minimum and then guesses where it is by linear interpolation.

To optimise the minimisation process we calculate the {Dij} and {pi} from
equation (5.62) for each parallel line pair, before we start MacOpt. During
the minimisation process we can then calculate the {χi} quickly with equation
(5.61). Unfortunately, we cannot precalculate anything else because of the
normalisation of the {χi} which we need to perform.

MacOpt assumes that the minimisation surface is fundamentally convex
with no local minima. However, our surface is not of that shape. It turns out
that the success rate of finding the absolute minimum can be improved if we
first use the unnormalised χs to step towards the minimum, and then use the
normalised χs to find the minimum with high accuracy. This is because the
minimisation surface for the unnormalised χs is of a convex shape, whereas
the minimisation surface for the normalised χs has a number of local minima.

The problems that may occur with MacOpt and a general discussion of
the minimisation surface, in particular with relation to the reconstruction,
is demonstrated by the program MVT. This program can be found on the
enclosed CD or can be downloaded from C.Perwass’ home page. For more
details see appendix A.
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5.7 Experimental Results

We can now outline the structure of our reconstruction algorithm.

Step 1: We find point matches and sets of projections of parallel
lines over the two images.

Step 2: We calculate three vanishing points and the fundamental
matrix. This allows us to find the P∞-collineation matrix
Ψ∞ or tensor M ∞.

Step 3: We select a set of parallel lines that we want to use to
constrain our minimisation. Note that one pair of parallel
lines may be enough. More pairs do not necessarily im-
prove the result, since they may not be consistent due to
errors.

Step 4: The image points on image plane A which define the cho-
sen parallel lines are projected onto image plane B under
the P∞-collineation with Ψ∞ or M ∞.

Step 5: We can now find the {K3 b
i } by minimising equation (5.65)

or equation (5.67).

Step 6: Once we have found K3 b
i we can use it in conjunction with

Ψ∞ or M ∞ in equation (5.59) to reconstruct any other
image point matches for this camera setup. Note that this
method of finding the image point depths saves us from
performing an additional triangulation [25], which would
be necessary if we first calculated the camera calibrations
explicitly and then tried to find the image point depths.

Note that we have used M ∞ instead of Ψ∞ for our calculations. This
was done to avoid the problem of numerical instability when calculating Ψ∞

through a matrix diagonalisation.

Figure 5.5 shows the data that has to be known and calculated as input
to our minimisation routine. The image points and parallel line indices are
the source data. The latter index which image point pairs form parallel lines.
The inputs to the minimisation routine are the image points, the parallel line
indices, the epipoles and the image points projected through the plane at in-
finity. The fundamental matrix and the vanishing points are only intermediate
calculations to find M ∞. M ∞ is also only needed once to project the image
points on image plane A onto image plane B under the P∞-collineation.

There are quite a number of factors that influence the reconstruction. These
are shown in figure 5.6. We can distinguish between two types of influences:
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those on which we have no influence once we are given our source data (i.e.
image points and parallel lines), and those which depend on how we deal with
the source data. The former are indicated by red, rounded boxes and the latter
by green, square ones. The pointed boxes indicate the calculations which we
need to perform before we can start the minimisation routine.

If we have real data we can only try to improve the reconstruction by varying
the choice of parallel lines, the choice of vanishing points and the method of
calculation of the fundamental matrix and the epipoles. However, if we use
synthetic data, we have a handle on all influences shown.

5.7.1 Synthetic Data

Figure 5.7: The synthetic data was created from projections of the
house onto the cameras.

To test the quality of the reconstruction algorithm we use synthetic data.
One big advantage of using synthetic data is that we can get a geometric
quality measure of the reconstruction. Also if an algorithm fails with perfect
synthetic data, it is clearly unlikely to work with real data.
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The lower picture in figure 5.7 shows a house with three cameras. The three
smaller pictures on top show the projections of the house onto the three image
planes. The house consists of 18 vertices, which were all used in our calcu-
lations. We performed two trials: trial 1 uses an orthogonal set of vanishing
points. Trial 2 uses two orthogonal vanishing points but the third vanishing
point is found from the two lines on the roof which are vertically sloping and
closest to the camera. In each trial we also tested two camera configurations:
the camera to the very left and the very right, and the two cameras which are
close together. The former will be called the far cameras and the latter the
close cameras configuration.

Recall that we can and, in fact, have to fix the depth of one point. Since we
know the true points we can set this depth to its true value. Also remember
that we perform our reconstruction in the frame of one of the cameras. But
we also know this frame and can therefore transform our reconstructed points
to lie in the appropriate frame. The reconstruction obtained in this way can
then be compared directly with the true object.

In our experiments we added a Gaussian error with a mean deviation be-
tween 0 and 12 pixels to the image points. The camera resolutions were
600× 600 pixels. For each setting of the mean deviation of the induced error
we calculated the {K3 b

i } 100 times, each time with different errors, to obtain
a statistically meaningful result. Each calculation of the {K3 b

i } can be used
to reconstruct any image point matches in the two images. Therefore, we pro-
jected the house again onto the two image planes, again introducing an error
of the same mean deviation. These image points are then reconstructed and
compared with the true points. This was done 20 times for each calculation
of the {K3 b

i }. This way we obtained a separation of the calibration and the
reconstruction.

The quality measure of a reconstruction is given by the root mean squared
error between the locations of the reconstructed points and the true points.
That is, we take the root of the mean of the sum of the distances squared
between the true and the reconstructed points. We evaluated the RMS error
over the 20 reconstructions for each calibration (i.e. calculation of the {K3 b

i }),
and also over all calculations of the {K3 b

i } for each mean deviation of the
induced error. The former will be called the “RMS/Trial” and the latter the
“Total RMS”.

Figure 5.8 shows the results when using an orthogonal set of vanishing points
and figure 5.9 when using a non-orthogonal set, as described above. Note that
the y-axis has a log10 scale. The length of the house is 2 units, its total height
1.5 units and its depth 1 unit. The results for the close cameras configuration
are slighty displaced to the right, so that they can be distinguished from the
far cameras setup.
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Figure 5.8: Comparison of reconstruction quality for first trial.
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The first thing we can see from the graphs is that as the induced error
increases over 6 pixels we start to get error configurations where the algorithm
breaks down. This can be either due to the minimisation getting stuck in local
minima or because the absolute minimum is at a wrong position. The latter
is possible since the minimisation surface depends on M ∞ and F.

Furthermore, it can be seen that the far cameras configuration is more
immune to induced errors than the close cameras configuration. Also the
non-orthogonal set of vanishing points fares worse than the orthogonal one.
Curiously, in trial 2 the far cameras configuration is worse than the close
cameras configuration.

In general it can be seen, though, that an error with a mean deviation of up
to 5 pixels still gives acceptable reconstructions. It might seem odd, though,
that if some error is introduced into the image points, the reconstruction can
actually be better than with no noise at all. This is because even if no ad-
ditional error is applied, there is still an error due to the digitisation in the
cameras. Particular configurations of induced error can compensate for that
by chance. However, the figures also show that the probability of the added
error improving the reconstruction is about as high as making the reconstruc-
tion worse (relative to the total RMS). Nevertheless, this fact supplies us with
an interesting idea: we might be able to improve our reconstructions from real
data by adding noise to the image points. Since our calibration algorithm
is very fast it seems feasible to employ maximum entropy methods. We will
discuss this in future work.

Recall that we have calculated F with a simple method which does not
enforce the rank 2 constraint on F . Nevertheless, the reconstruction quality is
quite good, which seems to indicate that a highly accurate F is not very im-
portant for our algorithm. Of course, using a fully contraint F might improve
the results.
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Figure 5.10: Initial images with parallel lines used for the calculation of the
vanishing points and minimisation function indicated.

Figure 5.11: Reconstruction of the chessboard (Schachbrett).
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5.7.2 Real Data

The real test for any reconstruction algorithm is the reconstruction of a real
world scene. Figure 5.10 shows two views of a chessboard which we used for
reconstruction10. The original images had a resolution of 1280 × 960 pixels.
The lines indicate the parallel lines used to calculate the vanishing points.
The two sets of parallel lines on the front of the chessbox were used in the
minimisation routine. The fundamental matrix used was calculated from 13
point matches. The resultant reconstruction11 can be seen in figure 5.11.

The different views of the reconstruction show that the chessbox was recon-
structed quite well. However, the chessboard is not really square. Remember,
though, that this is only an affine reconstruction drawn in an orthonormal
frame. That is, we assume that the camera frame is orthonormal. Further-
more, we have only used two line pairs and one line triplet to find three van-
ishing points, of which only two relate to orthogonal directions in E3. The
reconstruction might be improved by exploiting all the parallel lines available,
of which there are many on a chessboard.

Also note that the front side of the chessboard is reconstructed very nicely,
at a proper right angle to its top side. The chess figure, which can be seen best
in the bottom left hand view of figure 5.11, is not reconstructed particularly
well. This is because it is very difficult to find matching point sets for round
objects.

5.8 Conclusions

We have presented here an algorithm for the affine reconstruction of 3D scenes
from two static images. The information we need is firstly point matches over
the two images, and secondly at least three sets of parallel lines. From this
information alone we implicitly12 find the internal calibration, rotation and
translation of the second camera relative to the first one. This allows us to
perform an affine reconstruction of the scene. Assuming that the three sets of
parallel lines are mutually orthogonal we could also find the internal calibration
of the first camera.

Our algorithm is clearly not automatic. This is because apart from the point

10These pictures were actually taken by C.Perwass’ father, in a different country, with
equipment unknown to the authors. They were then sent via email to the authors. That is,
the only thing known about the pictures to the authors, are the pictures themselves.

11This and other reconstructions, as well as some more analysis of the reconstruction
algorithm are demonstrated by the program MVT. See appendix A.

12Future work will look at how these entities can be found explicitly.
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matches, combinations of vanishing points and parallel lines can be chosen
freely. Also the information that certain lines in an image are actually parallel
in the world, is a knowledge-based decision that humans are easily capable of,
but not computers.

Advantages of our algorithm are that it is fast and that the reconstruction is
robust for a particular calibration. On a PentiumII/233MHz under Windows
98 it took on average 160ms for a calibration (10000 trials). This time includes
updating of dialog boxes. In an optimised program this time could probably
be reduced to less than half. Robustness of the calibration depends mostly on
the set of vanishing points used. The more similar the directions the vanishing
points describe are, the less robust the calibration is.

We believe that apart from presenting an interesting affine reconstruction
algorithm we have also shown that GA is a useful tool which allows us to gain
geometric insight into a problem.



Chapter 6

Conclusions

I give you now Professor Twist,
A conscientious scientist.
Trustees exclaimed, “He never bungles!”
And sent him off to distant jungles.
Camped on a tropic riverside,
One day he missed his loving bride.
She had, the guide informed him later,
Been eaten by an alligator.
Professor Twist could not but smile.
“You mean,” he said, “a crocodile.”

“The Purist”, Ogden Nash, 1938.

We have presented here not only some new results but have also shown how
the GA approach to Computer Vision can simplify and unify the mathematical
expressions and concepts. This was possible because GA gives us a “behind
the scenes” look. That is, we do not just work with coordinates, as in the
standard tensor method approach, but with the underlying geometry. The
best example of this is probably that the complicated “p-relations” [32] follow
from the geometric fact that the intersection point of a line with a plane, lies
on that line (see equation (4.49), page 83).

Using GA to work in projective space is intuitive to us because we can in-
terpret all algebraic objects as points, lines or planes and intersections thereof.
However, points, lines and planes are just convenient interpretations of linear
spaces, which is what GA is really all about. The power of GA is derived from
the outer product and the extension of the scalar to the inner product. The
outer product basically adds two linear spaces if they are linearly independent.
The inner product, on the other hand, subtracts two linear spaces, if one is
contained in the other. That is, apart from adding and subtracting linear de-

145
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pendences, as in standard vector algebra, we can also add and subtract linear
spaces in GA.

A geometry is generally defined through a set of elements and an intersection
operation which acts on them. In this respect, GA does not immediately seem
to be a good candidate to describe a geometry. However, an intersection
operation can be defined in terms of the inner and outer product, and is called
the meet (see definition 3.9.1, page 59). Therefore, we have all the necessary
prerequisites to describe projective, affine and Euclidean geometry with GA.

A particular feature of our description of projective geometry is that we use
frames and reciprocal frames throughout. We showed that a reciprocal vector
is the dual of a plane. Reciprocal vectors therefore enabled us to express
intersections between planes very concisely (see equations (3.54) and (3.55),
page 62).

This particular use of reciprocal vectors formed the basis of our unified
treatment of multiple view tensors. In chapter 4 we showed that the funda-
mental matrix can be understood as the projection matrix of a line onto an
image plane (see equation (4.20), page 75).

The affine 3D-reconstruction algorithm we presented in chapter 5 is a direct
result of the additional geometric insight we gained on the collineation of the
plane at infinity (Ψ∞) by using GA. There we expressed Ψ∞ in terms of a
camera matrix (see equation (5.29), page 115). Together with the collineation
matrix or tensor this enabled us to obtain a reconstruction equation with just
two free parameters. The result of this analysis was a fast and robust affine
reconstruction algorithm.

In conclusion we can say that we have presented new results in geometric
algebra, in projective geometry, in the analysis of multiple view tensors and in
the field of (affine) 3D-reconstruction. We believe that this thesis has shown
clearly the advantages gained when using GA, but apart from that has also
provided new insights and tools for Computer Vision research.
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6.1 Summary of Important Results

In the following we will summarise the most important or useful results.

6.1.1 Geometric Algebra

Definition 2.3.1 (p.20) Let µ, ν ∈ PVn , then the outer product of reduced
basis blades eµ, eν ∈ Gn is written eµ∧eν and defined as

eµ∧eν ≡





eµeν if µ ∩ ν = ∅
0 otherwise

Definition 2.3.4 (p.23) Let µ, ν ∈ PVn , then the inner product of reduced
basis blade eµ, eν ∈ Gn is written eµ ·eν and defined as

eµ ·eν ≡





eµeν if µ ∩ ν 6= ∅ and

µ ∩ ν =





µ 0 < |µ| ≤ |ν|

ν 0 < |ν| < |µ|

0 otherwise

Theorem 2.3.1 (p.21) Let µ ∈ PVn , r ∈ NVn and hence eµ, er ∈ Gn. Then
the outer product between eµ and er can be written as

eµ∧er =





eµ×−er if |µ| is even or zero

eµ×−er if |µ| is odd

Theorem 2.3.2 (p.23) Let µ ∈ PVn , r ∈ NVn and hence eµ, er ∈ Gn. Then
the inner product between eµ and er can be written as

eµ ·er =





eµ×−er if |µ| is even or zero

eµ×−er if |µ| is odd
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Theorem 2.4.2 (p.28) The cyclic reordering property. Let A, B, C ∈ Gn be
three general multivectors. Then

〈ABC〉 = 〈CAB〉

Lemma 2.5.2 (p.34) Let a, b ∈ Vn and A〈k〉 ∈ Gn. Furthermore, assume that
A〈k〉∧a 6= 0 and A〈k〉 ·b 6= 0. Then

(A〈k〉∧a)·b = A〈k〉(a·b)− (A〈k〉 ·b)∧a

Equations 2.64 (p.35)

A〈k〉×−(a∧b) = (A〈k〉∧a)·b− (A〈k〉∧b)·a
A〈k〉×−(a∧b) = (A〈k〉 ·a)·b + (A〈k〉∧a)∧b

Theorem 2.5.1 (p.36) Let the {ai} be a basis of Vn, and let a blade A〈k〉 ∈ Gn

be defined as A〈k〉 = a1∧a2∧. . .∧ak. Also let b ∈ Vn. Then,

A〈k〉 ·b =
k−1∑

i=0

(−1)i(ak−i ·b) [A〈k〉\ak−i]

6.1.2 Projective Geometry

Embedding a vector from E3 in P3. Equation (3.3) (p.44)

x
P3−→ X = αi ei + e4 = αµ eµ,

Projecting from P3 into E3. Equation (3.4) (p.44)

X
E3−→ x =

X ·ei

X ·e4
ei

The dual bracket. Equation (3.14) (p.47)

[[Aµ1Aµ2 · · ·Aµn ]] ≡ (Aµ1∧Aµ2∧. . .∧Aµn)I−1

Reciprocal A-frame. Equation (3.32) (p.56)

Aµ1 = ρ−1
a [[Aµ2Aµ3Aµ4 ]]



1. Summary of Important Results 149

Reciprocal A-line frame. Equation (3.36) (p.57)

La
ν = ρ−1

a

{
[[A1A4]], [[A2A4]], [[A3A4]],

[[A3A1]], [[A2A3]], [[A1A2]]
}

The meet operation. Equation (3.47) (p.59)

A ∨B = [[[[A]][[B]]]] = [[A]]·B = A∗ ·B

Equation (3.48) (p.60)

[[A]] ∨ [[B]] = [[AB]]

Equation (3.50) (p.60)

X
A−→ X ′ = (X∧A4) ∨ (A1∧A2∧A3) ' ( X ·Ai )Ai

Equation (3.52) (p.61)

L
A−→ L′ = (L∧A4) ∨ (A1∧A2∧A3) ' ( L·La

i )Li
a

Camera matrix. Equation (3.58) (p.63)

Kj b
µ ≡ Aµ ·Bj
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6.1.3 Multiple View Tensors

Fundamental Matrix Trifocal Tensor

Fi1j1 = [[Ai2Ai3Bj2Bj3 ]] T jk
i1 = [[Ai2Ai3BjCk]]

Fij1 = εj3
baK

j2 b
i − εj

baK
j3 b
i T jk

i = εj
baK

k c
i − εk

caK
j b
i

Fij = La
i ·(Bj∧B4)︸ ︷︷ ︸

line

T jk
i = La

i ·[[BjCk]]︸ ︷︷ ︸
line

det F = 0 det(T jk
i )jk = 0 for each i

7 DOF 18 DOF

rank 2 rank 4

Quadfocal Tensor

Qijkl = [[AiBjCkDl]]

Qi1jkl = εj
ba

[
Kk c

i3
K l d

i2
−K l d

i3
Kk c

i2

]

− εk
ca

[
Kj b

i3 K l d
i2
−K l d

i3
Kj b

i2

]

+ εl
da

[
Kj b

i3 Kk c
i2
−Kk c

i3
Kj b

i2

]

Qijkl = Ai ·[[BjCkDl]]︸ ︷︷ ︸
point

det(Qijkl)xy = 0
where x and y are any pair of {ijkl}

29 DOF

rank 9
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6.1.4 3D-Reconstruction

Collineation Tensor. Equation (5.21) (p.113)

Mk
ij ≡

[ (
F (1, 2) λ̄1

a i β̄k
1 − F (2, 1) λ̄2

a i β̄k
2

)
f b

j3

−
(
F (1, 2) λ̄1

a i f
b
j1 − F (2, 1) λ̄2

a i f
b
j2

)
β̄k

3

]

with

λ̄j1
a k1

≡ (ᾱk2
j2 ᾱk3

j3 − ᾱk3
j2 ᾱk2

j3 ).

F (r, s) ≡ ᾱi
rβ̄

j
s Fij

f b
ir ≡ β̄j

r Fij

P∞-collineation. Equation (5.29) (p.115)

Ψj ∞
i ≡ [Kj b

1 , Kj b
2 , Kj b

3 − εj
ba]

Reconstruction equation. Equation (5.36) (p.116)

ᾱ4 = ᾱiK̄3 b
i ζj

1 − ζj
2 ; j ∈ {1, 2}
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Appendix A

The MVT Program

Enclosed with this thesis is a CD which contains the MVT program. The
program runs under Windows 95/98/NT4/5. It demonstrates some aspects
of the reconstruction algorithm. In particular it shows the relation between
the minimisation surface and the reconstruction. However, some examples of
how the reconstruction quality changes when using different sets of vanishing
points and parallel lines, are also given.

The program allows the user to rotate and move all objects freely in 3D-
space. Furthermore, the objects can be viewed in a real 3D-mode with red/green
or red/blue 3D-glasses.

Before starting the program please make sure that your graphics card and
monitor can display 16Bit colour and are set appropriately. Also, help and
the demonstrations are only available if the Internet Explorer is installed1.
When the program is started it should come up with a help screen which gives
detailed information about everything else you need to know.

Should you not be in posession of the enclosed CD, you can also download
the program from my webpage. At the time of writing this is:

http://www.perwass.de/

If you have any questions or comments please contact me under:

christian@perwass.de

1Apologies to all those who have uninstalled Internet Explorer out of protest.
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Wenn er [der Mensch] sein Einssein mit den anderen
fühlt, sieht er vielleicht zum ersten Mal, daß es eine
Illusion ist, sein isoliertes, individuelles Ich für etwas
zu halten, das er festhalten, kultivieren und bewahren
soll; er wird empfinden, wie nutzlos es ist, die Antwort
auf das Leben darin zu suchen, sich zu haben, anstatt er
selbst zu sein und zu werden.

“Haben oder Sein”, Erich Fromm.


